

						_	T.Y.B. Tec	h wef AY	2024-25	SEM	4-V						
	Course	Title of	Ie	achingScl	teme	I	Evaluation Sch	eme and l	Marks					C	redits		
CourseCode	Туре	Course	TH	TU	PR	INSEM	ENDSEM	CCE	TU	TW	PR	OR	TOTAL	тн	TU	PR	TOTAL
MEC223001	DCC	Machine Design-I	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
MEC223002	DCC	Heat Transfer	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
MEC223003	DCC	Numerical and Statistical Methods	3	-	-	20	60	20	-	-	-	-	100	3		-	3
MEC223004	DCC	Heat Transfer Lab	-	-	2	-	-	-	-	25	-	25	50	-	-	1	1
MEC223005	DCC	Numerical and Statistical Methods Lab	-	-	2	-	-	-	-	25	25	-	50	-		1	1
MEC223006	DEC	Elective-I	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
MEC223007	DEC	Elective-I Lab	-	-	2	-	-	-	-	25	-	25	50	-	-	1	1
MEC223008	OEC	Environmental Economics	2	-	-	-	-	50	-	-	-	-	50	2	-	-	2
MEC223009	ESC	Mechatronics	3	-	-	20	60	20	-	-	-	-	100	3		-	3
MEC223010	PSI	PBL	-	1	2	-	-	-	25	25	-	-	50	-	1	1	2
	Total		17	01	08	100	300	150	25	100	25	50	750	17	1	4	22
Elective-I MEC223006A Machining Technology					ology	ME C223006B Energy Audit and Management								MEC223006C Design of Pressure Vessel and Piping			
E				ME) Machining	C223007A g Technolo								ME C223007C Design of Pressure Vessel and Pipting, Lab				

	T.Y. B. Tech met AY 2024-25 SEM-VI																
	Course			aching cheme		F	Evaluation Sch	ieme and N	larks						Cree	lits	
CourseCode	Туре	Title of Course	тн	TU	PR	INSEM	ENDSEM	CCE	TU	тw	PR	OR	TOTAL	тн	TU	PR	TOTAL
MEC223011	DCC	Machine Design-II	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
MEC223012	DCC	Energy Engineering	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
MEC223013	DCC	Machine Design Lab (I&II)	-	-	2	-	-	-	-	25	-	25	50		-	1	1
MEC223014	DEC	Elective-II	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
MEC223015	DEC	Elective-III	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
MEC223016	DEC	Elective-II Lab	-	-	2	-	-	-	-	25	-	25	50	-	-	1	1
MEC223017	ESC	Machine Intelligence	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
MEC223018	OEC	Financial management	2	-	-	-	-	50	-	-	-	-	50	2	-	-	2
MEC223019	ASM	Measurement and Automation Lab	-	1	2	-	-	-	25	-	25	-	50	-	1	1	2
MEC223020	PSI	Seminar	-	-	2	-	-	-	-	50	-	-	50	-	-	1	1
	Total		17	01	08	100	300	150	25	100	25	50	750	17	1	4	22
Elective-II					C223014 ement A			Renewa	MEC22 ble Ener	23014B rgy Engine	ering	•	MEC223014C MEC223014D Computational Fluid Operation Dynamics Research				ration
Elective-III Com				Compu	C223018 iter Integ ufacturi	grated		Aut	MEC22	23015B Engineerin	g		Product De Entrepren	esign, In eurship		ion and	
	Elective-II Lab			ME C223016A Finite Element Analysis Lab			MEC223016B Compu							2C223016C ME C22301 Itational Fluid Operatio namics Lab Kesearch L			ration

		T. Y. B. Tech. Semester: V (Mechan EC223001-:Machine De	0 0/		
Teaching	g Scheme:	Credit Scheme:	Examination Sch	eme:	
Theory :	03 hrs/week	03	Continuous Com Evaluation: 20M InSem Exam: 20 EndSem Exam: 60	arks Marks	ve
theories of manufactur fits. Constr Course Of 1. UNDER application 2. CALCU 3. ANALY	STAND the various design of	The design cycle, basis of order and codes. The preferron oots of equations, Interpole considerations, design pro- ne components due to variable loading	design consideration ed sizes and series, t ation rule cedure and select ma ous types of loads ar for finite and infinit	s like stres olerances tterials for d failure te life	ngth, rigidity, and types of
Course (Dutcomes: On completion o	f the course, students wi	ll be able to–		
		Course Outcomes		Blo	om's Level
CO1	Determine the dimensions Joints, levers, shafts, keys conditions. Calculate the various stree	s and couplings under s	tatic /eccentric load	ding	3-Apply
	procedure.				3-Apply
CO3	Illustrate dimensions of m				3-Apply
CO4	Analyze the stresses dev threaded joints.	veloped on the different	t type of welded	and 4	-Analyze
		COURSE CONTENT	TS	1	
Unit I	Design of Simple Machine	Elements	(08 hrs)	COs Ma CO1	apped -
	safety, Selection of Factor hand / foot lever, lever for oading.	•			
Unit II	Design of Shafts, Keys and	Couplings	(07hrs)	COs Ma	apped -
Shaft desi	gn on the Strength basis, to	reional rigidity basis and	l lateral rigidity ba	CO1	m of shaft as
	.E. code. Design of key and	e .	U .		si or share as
Unit III	Design of Power Screws		(07hrs)	COs Ma CO1, C	Ô2
	gy of Power Screw, Torque			-	-
	ollar friction torque, Self-lo g screw, Design of screw, n	•	-	a screw,	Efficiency of

l	nit V	Design	agains	t Fluc	uating	g loads				(07hrs	5)	COs CO3	Mapped	-
													stresses,	
													ce strengt	
						0					umula	tive dar	nage in fa	atigue
							Modifie	ed Good	man dia	-				
Un	it V	Thread	led and	l Weld	ed joi	nts				(07hrs	5)	COs CO1,	Mapped C04	-
Intro	ductio	on to th	nreaded	joints	Bolts	of unit	form st	rength,	locking	device	s, ecce	ntricall	y loaded	bolted
													circular b	
													Axially	
				oints, I	Eccenti	ric load	in plan	e of we	elds, We	elded jo	ints su	bjected	to bendi	ng and
torsi	onal n	noment	s.											
							Text l	Books						
Text	Book	s:												
			Design	of Mac	hine E	lements	, Tata N	AcGraw	Hill Pul	olicatior	n Co. L	td.		
2. Sh	igley.	J.E. and	l Misch	ke C.R	, Mech	nanical I	Enginee	ring De	sign, Mo	Graw H	Hill Pub	lication	Co. Ltd.	
						R	eferen	ce Book	S					
		H. and	O. Eug	ene Ad	ams, M	lachine	Design,	McGra	ı, John V w Hill B	ook Co	. Inc.			
4. W 5. Ha Outli 6. C. 7. D. 8. P. 9. De	II A.S ne Ser S. Sha K. Ag C. Go esign I	., Holo ries. arma ar ggarwal pe, Ma Data - P	wenko Id Kam & P. C chine D P.S.G. C	A.R. ar lesh Pu 2. Sharr besign: college	id Laug rohit, I na, Ma Fundar of Tecl Reddy,	ghlin H. Design c chine D nentals mology Design	G, Theo of Mach esign, S and App , Coimb Data H	ory and l ine Eler S.K Kata plicatior patore. fandbool	Problem nents, Pl ria and a s, PHI I <u>s for Me</u>	s of Ma HI Lear Sons. Learing	chine I ing Pvt Pvt. Lt	Design, S . Ltd. d.	cations Ho Schaum's BS Publis	
4. W 5. Ha Outli 6. C. 7. D. 8. P. 9. De	II A.S ne Ser S. Sha K. Ag C. Go esign I	., Holo ries. arma ar ggarwal pe, Ma Data - P	wenko Id Kam & P. C chine D P.S.G. C	A.R. ar lesh Pu 2. Sharr besign: college	id Laug rohit, I na, Ma Fundar of Tecl Reddy,	ghlin H. Design c chine D nentals mology Design	G, Theo of Mach esign, S and App , Coimb Data H	ory and l ine Eler S.K Kata plicatior patore. andbool	Problem nents, Pl ria and a s, PHI I <u>s for Me</u>	s of Ma HI Lear Sons. Learing	chine I ing Pvt Pvt. Lt	Design, S . Ltd. d.	Schaum's	
4. W 5. Ha Outli 6. C. 7. D. 8. P. 9. De	II A.S ne Ser S. Sha K. Ag C. Go esign I	., Holo ries. arma ar ggarwal pe, Ma Data - P	wenko Id Kam & P. C chine D P.S.G. C	A.R. ar lesh Pu 2. Sharr besign: college	id Laug rohit, I na, Ma Fundar of Tecl Reddy,	ghlin H. Design c chine D nentals mology Design	G, Theo of Mach esign, S and App , Coimb Data H	ory and l ine Eler S.K Kata plicatior patore. fandbool	Problem nents, Pl ria and a s, PHI I <u>s for Me</u>	s of Ma HI Lear Sons. Learing	chine I ing Pvt Pvt. Lt	Design, S . Ltd. d.	Schaum's	shers.
4. W 5. Ha Outli 6. C. 7. D. 8. P. 9. De	III A.S ne Ser S. Sha K. Ag C. Go esign I <u>C. Mah</u>	., Holo ries. arma ar ggarwal pe, Ma Data - F adevar	wenko nd Kam l & P. C chine D P.S.G. C n, K. Ba	A.R. ar lesh Pu 2. Sharr besign: college lveera	id Laug rohit, I na, Ma Fundar of Tecl Reddy, Sti	chlin H. Design c chine D nentals nology Design rength c	G, Theo of Mach esign, S and Apj , Coimb Data H	ory and l ine Eler S.K Kata plicatior batore. andbool PO Map PO	Problem nents, Pl ria and 3 as, PHI I <u>x for Me</u> ping	s of Ma HI Lear Sons. Learing	chine I ing Pvt Pvt. Lt <u>l Engir</u>	Design, S . Ltd. d. neers, C	Schaum's	shers.
4. W 5. Ha Outli 6. C. 7. D. 8. P. 9. De 10. K	III A.S ne Ser S. Sha K. Ag C. Go esign I C. Mah	, Holo ries. arma ar ggarwal pe, Ma Data - P nadevar	wenko I & P. C chine D P.S.G. C I, K. Ba	A.R. ar lesh Pu 2. Sharr college lveera	id Laug rohit, I na, Ma Fundar of Tecl Reddy, Stu 5	chlin H. Design c chine D nentals nology Design rength c 6	G, Theo of Mach esign, S and Apj , Coimb Data H of CO-F 7	ory and l ine Eler S.K Kata plication batore. andbool PO Map PO 8	Problem nents, Pl ria and 3 is, PHI I <u>c for Me</u> ping 9	s of Ma HI Lear Sons. Learing chanica	chine I ing Pvt Pvt. Lt <u>I Engir</u>	Design, S Ltd. d. neers, C	Schaum's BS Publis	shers.
4. W 5. Ha Outli 6. C. 7. D. 8. P. 9. De 10. K	III A.S ne Ser S. Sha K. Aş C. Go esign I <u>S. Mah</u>	., Holo ries. arma ar ggarwal pe, Ma Data - F adevar	wenko nd Kam l & P. C chine D P.S.G. C n, K. Ba 3	A.R. ar lesh Pu 2. Sharr besign: lollege lveera 4 2	id Lauş rohit, I na, Ma Fundar of Tecl Reddy, Str 5 	Question H. Design C chine D nentals nology Design rength C 6 2	G, Theo of Mach esign, S and Apj , Coimb Data H of CO-F	ory and l ine Eler S.K Kata plicatior batore. andbool PO Map PO 8 	Problem nents, Pl ria and b ns, PHI I <u>k for Me</u> ping 9 2	s of Ma HI Lear Sons. Learing chanica	chine I ing Pvt Pvt. Lt I Engir	Design, S Ltd. d. neers, C	Schaum's BS Publis PSO1 2	shers. PSO2
4. W 5. Ha Outli 6. C. 7. D. 8. P. 9. De 10. K	Ill A.S ne Ser S. Sha K. Ag C. Go esign I <u>C. Mah</u> 1 <u>3</u> 3	., Holo ries. arma ar ggarwal pe, Ma Data - F hadevar	wenko nd Kam l & P. C chine D P.S.G. C n, K. Ba 3 3 3	A.R. ar lesh Pu 2. Sharr college lveera 1 4 2 2	id Lauş rohit, I na, Ma Fundar of Tecl Reddy, Stu 5 	ghlin H.Design cchine DnentalsnologyDesignrength c622	G, Theo of Mach esign, S and Apj , Coimt Data H of CO-F 7 	ory and l ine Eler S.K Kata plicatior atore. andbool Co Map PO PO 8 	Problem nents, Pl ria and 3 is, PHI I c for Me ping 9 2 2 2	s of Ma HI Lear Sons. Learing chanica	chine I ing Pvt Pvt. Lt <u>I Engir</u> 11 	Design, 5 . Ltd. d. neers, C	Schaum's BS Publis PSO1 2 2	shers. PSO2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course										
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted									
1	Assignments on each Unit	10									
2	Online/ offline Test on Each Unit	10									
	Total	20									

		T. Y. B. Tech. Semester: V (Mechanica EC223002: Heat Transfe		ng)	
Teaching	Scheme:	Credit Scheme:	Examinat	ion Sch	ieme:
Theory: 0)3 hrs/week	03	Continuor Evaluatio InSem Ex EndSem	n: 20M am: 20	Marks
-	site Courses: Engineering	Thermodynamics, Fluid	d Mechanic	cs, App	lied
Mathema					
	bjectives:	C1 C 1.1 .			
 Form Ana Unc Determinant 	ntify the important modes of mulate and apply the genera- alyze the thermal systems we derstand the mechanism of e ermine the radiative heat tra- luate the performance of he	al three dimensional heat with internal heat generation convective heat transfer ansfer between surfaces	conduction	equation	
	utcomes: On completion o	¥	l be able to-		
		Course Outcomes			Bloom's Level
	Apply heat transfer laws a		nalvze one		
CO1	dimensional Cartesian, cyl			tems	2-understand
02	Analyze thermal systems v and transient heat conducti	on			3- Apply
CO3	Evaluate heat transfer rate	in convection and radiati	ion heat trai	nsfer	2-Understand
CO4	Apply heat transfer princip thermal equipment's	les to design and estimate	e performar	nce of	2-Understand
	(COURSE CONTENTS			
Unit I	Introduction to Heat Tra	nsfer	(8 hrs)	COs I CO2	Mapped – CO1,
Cartesian o	cepts: Different Modes and coordinates (with derivation of the coordinates (with derivatit))))))) a de	on), and its simplified	equations,	t condu simplit	fied equations in
thermal diff 1-D steady	and spherical coordinates fusivity, electrical analogy, state heat conduction with n plane wall, composite wall,	Thermal contact Resistant nout and with heat gener	nce. Bounda ration: Heat	ary and conduct	initial conditions tion without heat
-	n Plane wall, Cylinder and Sp		-		iduction with neat
	Heat Transfer through I Transient Heat Conducti	Extended Surfaces and			Mapped - CO2
Heat Tran	sfer through Extended Su		l its applica	tions, G	loverning
Equation fo	or constant cross sectional and) fins, efficiency & effect	rea fins, solution for infi			
	heat conduction: Validity	-	•	•	
	ime constant and response	-	ansient hea	it analy	vsis using charts.
	n to Two Dimensional hea	t conduction		00	Manual CO2
	Convection		(6 hrs)		Mapped – CO3
	on: Mechanism of natura concept of velocity and				

physical significance,										
Forced convection: Empirical correlations for external and internal flow for both laminar and										
turbulent flows.										
Jet impingement cooling, Film cooling										
Natural convection: Empirical correlations for natural convect	ion.									
Condensation and Boiling: Boiling heat transfer, types of boiling,		curve and forced boiling								
phenomenon, condensation heat transfer, film wise and drop wise cor	ndensation	-								
Unit IV Radiation	(6hrs)	COs Mapped - CO3								
Fundamental concepts, Spectral and total emissive power, real a	and grey sur	rfaces, Stefan Boltzmann								
law, Plank's, Wien's, Kirchhoff's and Lambert's cosine law v	with simple	applications, Irradiation								
and radiosity, Electrical analogy in radiation, Radiation sha	pe factor,	radiation heat exchange								
between two black and diffuse gray surfaces, radiation shield.		0								
Unit V Heat Exchanger	(8 hrs)	COs Mapped - CO4								
Heat exchangers: Classification and applications, heat exchange	er analysis -	- LMTD for parallel and								
counter flow heat exchanger, effectiveness- NTU method f										
exchanger, cross flow heat exchanger, Fouling factor, LMTD	correction f	actor, design criteria for								
heat exchanger, Introduction to TEMA standards. Introduct	ion to heat	t pipe, Loop heat pipe,								
pulsating heat pipe and Heat wheel										
Heat Transfer Enhancement techniques used in heat exchanger										
Text Books										
1. F.P. Incropera, D.P. Dewitt, Fundamentals of Heat and Mass	Transfer, Jo	ohn Wiley.								
2. Y. A. Cengel and A.J. Ghajar, Heat and Mass Transfer: Fu										
McGraw Hill Education Private Limited.		11 /								
3. S.P. Sukhatme, A Textbook on Heat Transfer, Universities Pr	ress.									
4. R.C. Sachdeva, Fundamentals of Engineering Heat and Mass		New Age Science.								
5. P.K. Nag, Heat and Mass Transfer, McGraw Hill Education I		-								
6. M. M. Rathod, Engineering Heat and Mass Transfer, Third										
Delhi										
Reference Books										
1. A.F. Mills, Basic Heat and Mass Transfer, Pearson.										
2. S. P. Venkatesan, Heat Transfer, Ane Books Pvt. Ltd.										
3. Holman, Fundamentals of Heat and Mass Transfer, McGraw	– Hill publi	cation.								
4. M. Thirumaleshwar, Fundamentals of Heat and Mass Transfe										
5. B. K. Dutta, Heat Transfer: Principles and Applications, Pren	tice Hall In	dia.								
6. C.P. Kothandaraman, S. V. Subramanyam, Heat and Mass 7	Fransfer Da	ta Book, New Academic								
Science.										
Guidelines for Continuous Comprehensive Evalu	ation of Th	eory Course								
Sr. No. Components for Continuous Comprehensive	e Evaluatio									
1 Assignment on each unit		10								
2 Test (Online/Offline) on each unit		10								
	To	otal 20								

	Strength of CO-PO/PSO Mapping														
Strength	РО														
of Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO 1	3	3	1	-	-	-	1	-	2	2	-	2	1	-	
CO 2	3	3	2	1	-	-	-	-	2	2	-	2	2	-	
CO 3	3	3	2	-	-	-	1	-	1	-	-	1	2	-	
CO 4	3	3	2	1	-	-	1	-	3	2	-	3	3		
Avg	3	3	2	1	-	-	1	-	2	-	-	2	2		

		T. Y. B. Tech. Semester: V (Mechani)3: Numerical and Stati	8	
Teaching	Scheme:	Credit Scheme:	Examination Scho	eme:
Theory :(03 hrs/week	03	Continuous Comp Evaluation: 20Ma InSem Exam: 20M EndSem Exam: 6	arks Marks
	site Courses, if any: -Syste		artial differentiation,	Statistics,
Course O	bjectives:	<u> </u>		
	RSTAND applications of sys	-	-	
	Y numerical differentiation an		solve engineering app	lications.
	PARE the system's behavior face of RPRET Statistical measures for	1		
	YZE datasets using probabili	•		
••••••				
Course O	Dutcomes: On completion of	of the course, students wil	ll be able to-	
		Course Outcomes		Bloom's Level
	On completion of the co			
CO1	APPLY system of equation and iterative numerical m	nethods		3-Apply
CO2	APPLY numerical difference engineering applications.	_	-	3-Apply
CO3	APPLY curve fitting and applications.	interpolating techniques	to solve engineering	3-Apply
CO4	ANALYZE quantitative	data using statistical techn	nique	4-Analyze
CO5	RELATE the data, using	the concepts of probabili	ty and linear algebra	4-Analyze
		COURSE CONTENT	S	- !
	Solution of Equations: Alg and Simultaneous Equation		(07 hrs)	COs Mapped - CO1
Algebraic,	Transdental Equations	: Bracketing method :	Bisection Method,	Open End Method:
	aphson Method			
	ous Equations: Gauss Elin			
Unit II	Numerical Differentiation	n and Integration	(08 hrs)	COs Mapped - CO1, CO2
	Differential Equations	[ODE]: Euler Method, I	Runge-Kutta 2nd or	/
Partial D	order method ifferential Equations [PD]			
Numerical Unit	I Integration (1D): Trapeze Curve Fitting and		rdRule, Simpson's3/8	
III	Curve ritting and			COs Mapped - CO1, CO3
	ting: Least square techniqu	ie- first order, power equ	ation, exponential e	/
equation.			-	- 1
Interpolat	ion: Lagrange's interpolation	on, Newton's forward int	erpolation method	

Unit IV				S	Statist	ics					(07 hrs))		Mappe , CO4	ed -
Measures	of	ntral	tender	ov. m	ean n	nedia	n m	ode N	/easu	reme	ent of	variahi	lity an			
Standard				-									•	-		
diagram:																
Correlatio																
correlatio								lation	anu i	15 1110		ancar p	Topen	ics, sp	Carman	1 5 Malik
Unit V		i its iii	urpic		s robab	;]; _{fx7}					(07 hrs)		COa	Марре	d
						·								CO1,	, CO5	
	ability: Joint, conditional and marginal probability, Bayes' theorem, independence, theorem of															
probability									robabi	lity d	istribu	tions: E	Binomia	al, Pois	sson, Ge	ometric,
Uniform, l	Expor	ential,	Gamr	na, No	rmal a	nd Ch										
							T	'ext B	ooks							
1. St	even	C. Ch	apra,	'Appl	ied Nu	ımeri	cal N	Aetho	ds wit	h M.	ATLA	B for l	Engine	ers an	d Scier	ntist',
2. Ta	nta M	c-Gra	w Hill	Publi	ishing	Co. I	Ltd.						-			
3. B	S. G	rewal	, 'Nun	nerica	l Metł	nods i	in En	nginee	ring a	nd S	cience	e', Kha	nna Pi	ublicat	ion.	
В	S. G	rewal	, 'Hig	her Er	nginee	ring l	Math	emati	cs', K	hanr	na Put	olicatio	n.			
					•			erence								
1. Ei	win 1	Kreysz	zig, 'A	dvan	ced Er	gine	ering	g Math	nemat	ics',	Wiley	' India				
												tists', (CRC F	ress		
			-					0							ientists	', 5e,
		vier A						2				U				
•						emat	ics fo	or ma	chine	learn	ing'.	Cambr	idge U	nivers	ity Pre	SS.
					metho											
									nine I	earn	ing'.]	Machin	e lear	ning N	Iastery	
			-, ~								-0,-				j	
					Str	ength	of C	CO-PO) Map	ping	5					
							I	20						P	SO	
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	
C)1	2	2	2	2	3	n			2			2	2	n	ł

CO1	3	3	2	2	3	2	-	-	2	-	-	3	2	2
CO2	3	3	2	2	3	2	-	-	2	-	-	3	2	2
CO3	3	3	2	2	3	2	-	-	2	-	-	3	2	2
CO4	3	3	2	2	3	2	-	-	2	-	-	3	2	2
CO5	3	3	2	2	3	2	-	-	2	-	-	3	2	2
Average	3	3	2	2	3	2	-	-	2	-	-	3	2	2

(Components for Continuous Comprehensive Evaluation of Theory Course								
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted							
1	Assignment on each unit	10							
2	Test (Online/Offline) on each unit	10							
	Total	20							

T. Y. B. Tech. Pattern 2022 Semester: V (Mechanical Engineering) MEC223004: Heat Transfer Lab									
Teachin	g Scheme:	Credit Scheme:	Examination Sch	eme:					
Practical : 02 hrs/week01Term work: 25 marksOral Marks: 25 marksOral Marks: 25 marks									
Prerequ Mathem	isite Courses, if any: - Bas atics	ic Thermodynamics, Flu	uid Mechanics and	Applied					
 8. To us 9. To E 	halyse Natural and Forced co se radiative heat transfer cor valuate the performance of l Outcomes: On completion of	cepts in analyzing therm neat exchanger	·						
		Course Outcomes		Bloom's Level					
CO1	Analyze thermal systems	using concept of 1-D heat	t conduction	3-Apply					
CO2	Analyze Natural and Forced convection systems using convection 3-Apply								
CO3	Analyze thermal systems	using concept of Radiatio	n heat transfer	3-Apply					
CO4	Evaluate the performance	of heat exchanger		3-Apply					

List of Laboratory Experiments (Any Eight)							
Sr. No.	Laboratory Experiments / Visit	CO Mapped					
1.	Determination of Thermal Conductivity of metal rod	CO1					
2.	Determination of Thermal Conductivity of insulating powder	CO1					
3.	Determination of Thermal Conductivity of Composite wall	CO1					
4.	Determination of heat transfer coefficient in Natural Convection	CO2, CO3					
5.	Determination of heat transfer coefficient in Forced Convection	CO2					
6.	Determination of temperature distribution, heat transfer and fin efficiency in Natural / Forced Convection	CO1,CO2, CO3					
7.	Determination of Emissivity of a Test surface	CO2, CO3					
8.	Determination of overall heat transfer coefficient, heat transfer and effectiveness of heat exchanger	CO1,CO2, CO3, CO4					
9.	Study of pool boiling phenomenon and determination of critical heat flux	CO2					
10.	Visit to any industry related to heat transfer	CO1,CO2, CO3, CO4					
11.	Analysis of any heat transfer system using suitable software						

Guidelines for Laboratory Conduction

1. Teacher will brief the given experiment to students its procedure, observations, calculations, and outcome of the experiment.

2. Apparatus and equipments required for the allotted experiment will be provided by the lab assistant.

3. Students will perform the allotted experiment in a group under the supervision of faculty and lab

assistant.

4. After performing the experiment students will check their readings, calculations from the teacher.5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, setup diagram, working principle, procedure, observations, graphs, calculations and conclusions.

Guidelines for Assessment of Practical report

- 1. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

	T. Y. B. Tech. Pattern 2022 Semester: V (Mechanical Engineering) MEC223005: Numerical and Statistical Methods Lab									
Teaching	Scheme:	Credit Scheme:	Examination Schem	ne:						
Practical	:02 hrs/week	01	Termwork : 25 Ma Practical: 25 Marks							
	ite Courses, if any: - Syste y, Problemsolving and prog		artial differentiation, St	tatistics,						
 Course Objectives: 1. UNDERSTAND applications of systems of equations and solve mechanical engineering applications 2. APPLY numerical differentiation and integration techniques to solve engineering applications. 3. COMPARE the system's behavior for the experimental data. 4. INTERPRET Statistical measures for quantitative data. 5. ANALYZE datasets using probability theory and linear algebra. 										
Course O	utcomes: On completion of	f the course, students wi	ll be able to–							
	On completion of the co	Course Outcomes urse the learner will be	able to.	Bloom's Level						
On completion of the course the learner will be able to;CO1APPLY system of equations for engineering applications using direct and iterative numerical methods										
CO2 APPLY numerical differentiation and integration techniques to solve engineering applications.										
CO3	APPLY curve fitting and applications.	interpolating techniques	to solve engineering	3-Apply						
CO4	ANALYZE quantitative of	lata using statistical tech	nique	4- Analyze						
CO5	RELATE the data, using	the concepts of probabili	ty and linear algebra	4- Analyze						
		List of Practical								
Term Work shall consist of: Group A – (Any four programs using suitable programming language) 1. Roots of equation 2. Simultaneous equations 3. Ordinary differential equation 4. Partial differential equation 5. Numerical Integration										
Group B (A 6. Curve fit 7. Determir	Group B (Any two programs for simple dataset using suitable programing) 6. Curve fitting using least square technique 7. Determine statistical measures 8. Probability distribution									
Group C (M 10. One pro	fandatory) ogram based mini project u		ring application datase	t						
		Text Books								

• Steven C. Chapra, 'Applied Numerical Methods with MATLAB for Engineers and

Scientist',

- Tata Mc-Graw Hill Publishing Co. Ltd.
- B. S. Grewal, 'Numerical Methods in Engineering and Science', Khanna Publication.
 - B. S. Grewal, 'Higher Engineering Mathematics', Khanna Publication.

Reference Books

- Erwin Kreyszig, 'Advanced Engineering Mathematics', Wiley India
- Joe D. Hoffman, 'Numerical Methods for Engineers and Scientists', CRC Press
- Sheldon M. Ross, 'Introduction to Probability and Statistics for Engineers and Scientists', 5e, by Elsevier Academic Press
- Deisentoth, Faisal, Ong, 'Mathematics for machine learning', Cambridge University Press.
- Kandasamy, 'Numerical methods', S Chand.
- Jason Brownlee, 'Statistical Methods for Machine Learning', Machine learning Mastery.

	Strength of CO-PO Mapping													
		PO											PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	3	2	-	-	2	-	-	3	2	2
CO2	3	3	2	2	3	2	-	-	2	-	-	3	2	2
CO3	3	3	2	2	3	2	-	-	2	-	-	3	2	2
CO4	3	3	2	2	3	2	-	-	2	-	-	3	2	2
CO5	3	3	2	2	3	2	-	-	2	-	-	3	2	2
Average	3	3	2	2	3	2	-	-	2	-	-	3	2	2

		T. Y. B. Tech. Semester: V (Mechani 223006A:Machining Te	0 0/					
Teaching	g Scheme:	Credit Scheme:	Examination Sch	eme:				
Theory :	ory :03 hrs/week 03 Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks							
-	isite Courses, if any: -Fund s and their properties, Stress etc.		0 0	6				
	Objectives:							
1. Kr	now about fundamentals of n	netal cutting process, too	l wear and tool life.					
2. Im	part the knowledge of mach	ining phenomenon like n	nilling, gear and thre	ead manufacturing.				
3. Se	lect, describe and perform fi	nishing of parts using sta	indard tools					
4. Ur	nderstand the basic concepts	, importance and function	ns of Jigs, Fixtures.					
	lect appropriate non-conv		_	upon desired output				
	aracteristics	encional machining pr	access acpending	apon aconca outpu				
Course	Outcomes: On completion o		ll be able to–					
		Course Outcomes		Bloom's Level				
CO1	Calculate the tool life f		ng tool based on t	he 3-Apply				
CO2	Apply appropriate gear an			3-Apply				
CO3	Select appropriate grindin finishing processes	-		4-Anaryse				
CO4	Analyze and interpret requirements for jigs and f	ixtures.		4-Analyse				
CO5	Select various non-cor electrochemical machining laser cutting, abrasive jet (USM).	g (ECM), electro dischar machining (AJM), and	ultrasonic machini	Δ_{-} Δ_{-				
		COURSE CONTENT	S					
Unit I	Mechanics of Metal Cutti	ng	(08hrs)	COs Mapped - CO1				
Chip forn Machinat	ion to metal cutting, Geometry nation, Types of chips, Chip th pility- Factors affecting machin r and its types, Factors affectin	ickness ratio, chip breaker nability, Machinability Ind	rs, Merchant's Circle	ique cutting processes, of forces, Concepts of				
Unit II	Gear and Thread Manufa	acturing	ng (07 hrs) COs Mapped - CO2					
and num	tion, Materials of gears, Me erical), Helical gear cutting anufacturing, thread rolling,	g, Gear inspection. Thre	ad Manufacturing:	Various methods of				

Unit III	Grinding and Finishing processes	(07 hrs)	COs Mapped – CO3						
Types and	1 Operations of grinding machines, Grinding wheel- Shap	bes, Designation and	selection, Abrasives &						
classificat	tion, Bond & bonding, Grit, Grade & Structure of whee	ls, Types of grindin	g wheels, mounting of						
U U	wheels, Glazing and loading of wheels, Dressing and truin		0						
	Super-finishing processes – Introduction to Honing, Lapp	ing, Buffing and Bur	mishing. (Construction,						
working and controlling parameters)									
Unit IV									
Significa	nce and purpose of jigs and fixtures and their fun	ctions in the man	ufacturing processes,						
Concept	of degree of freedom, 3-2-1 principle of location.	General guideline	es to design jigs and						
fixtures.	Jigs- Definition, Elements of jig with the types, Princ	iples of clamping, I	Principles of guiding,						
Types of	jig. Fixtures: Definition. Elements of fixtures, Prin	ciples of clamping,	Principles of setting						
element,	Types of fixtures.								
Unit V	Advanced Machining Processes	(07 hrs)	COs Mapped – CO5						
Introducti	on, classification of advanced machining processes.	Principles, Working	g, Process Parameters,						
Estimation	n of MRR (simple numerical), Advantages, Lim	itations and Appl	ication for following						
processes:	Electric Discharge Machining (EDM), LASER	Beam Machining	(LBM), Abrasive Jet						
Machining	g (AJM), Ultra Sonic Machining (USM) and Electro G	Chemical Machinin	g (ECM)						
	Text Books								
1. A Text	Book of Production Technology, P. C. Sharma, S.Cha	and Publications							
2. A Text	Book of Manufacturing Technology, R. K. Rajput, La	axmi Publications (p) LTD						
3. A Text	book of Manufacturing Technology, Metal Cutting an	nd Machine Tools,	P. N. Rao, Vol. 2, 2nd						
	ata McGraw Hill Publishing Co. Ltd, New Delhi, 200								
4. Elemen	ts of Workshop Technology, Vol-II, S. K. HajraChau	dhary, Media Prom	oters & Publications						
Pvt Ltd.									
	Reference Books								
1. Theory	of Metal Cutting, M. C. Shaw, 1st Edition, Oxford an	d I.B.H. publishing	g, 1994						
-	Fixtures, P.H. Joshi, Third edition, McGraw Hill, 201								
	ion Technology Manufacturing Systems VOL-I & II,		a Publishers						
	ion Technology –HMT, Tata McGraw Hill publication								
5 Manufa	cturing Science, Amitabh Ghosh and AshokKumar N	Iallik. Affiliated Ea	st-West Press. 2010						

	Strength of CO-PO Mapping													
		PO												
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	2	-	-	-	-	-	-	2	-	-	2	2	-
CO2	3	2	-	-	-	-	-	-	2	-	-	1	2	-
CO3	2	2	-	2	-	-	-	-	2	-	-	2	2	-
CO4	3	2	2	2	-	2	-	-	2	-	-	2	2	-
CO5	3	-	-	-	3	-	2	-	2	-	-	2	2	-
Average	3	2	2	2	3	2	2	-	2	-	-	2	2	-

	Guidelines for Continuous Comprehensive Evaluation of Theory Course								
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted							
1	Assignments on each Unit	10							
2	Test on Each Unit	10							
	Total	20							

		Third Year B. Tech.				
	Pattern 2022	Semester: V (Mechani	ical Engineering)			
		06B :Energy Audit and	-			
Teaching	Scheme: 3 Hrs /week	Credit Scheme: 03	Continuous Comp Evaluation: 20Ma InSem Exam: 20N EndSem Exam: 60	arks Marks		
Prerequis	ite Courses: Thermal Engl	ineering, Fundamental of	Electrical Engineer	ing and Applied		
Thermody	namics	_	_			
		Course Objectives				
	introduce the concepts of en					
	understand energy audit prac acquire knowledge on energ		rical systems			
	understand the financial ana		incar systems			
Course Or	utcomes: On completion o	f the course, students wil	l be able to-			
		Course Outcomes		Bloom's Level		
CO1	UNDERSTAND the energy	y scenario.		2-Understand		
CO2	UNDERSTAND thermal and	nd electrical systems		2-Understand		
CO3	APPLY the concepts to eva	luate the thermal systems a	and electrical systems.	3-Apply		
CO4	SELECT and PREPARE th	e energy conservation optic	ons	3-Apply		
CO5	DEMONSTRATE understa	inding of financing decisior	ns of energy audit	3-Apply		
		COURSE CONTENT	ſS			
Unit I	Energy Scenario		(08 hrs)	COs Mapped – CO1		
-	nary energy reserves and con	· ·				
	sumption, energy needs of gronservation and introduction			• •		
-		of energy conservation act		COs Mapped –		
Unit II	Energy Economics		(06 hrs)	CO1,CO3		
	nomics: Simple payback peri	od, time value of money, re	eturn on investment, n	et present value and		
internal rate			1	·····		
0.	dit: Methodology, analysis a evolution of the evolution o		a online instruments	required for energy		
				COs Mapped –		
Unit III	Audit of Thermal Syster		(08 hrs)	CO2,CO3,CO4		
	iency calculation by direct an					
	raps, energy conservation op at losses and energy conser	-	•			
	imps, fans, D. G. set and cool		mate, Reingeräubli a			
-	sulation, types of insulation,	•	lation.			

Unit VI	Audit of Electrical systems	(08 hrs)	COs Mapped – CO2,CO3, CO4						
Demand cont scheduling.	rol, billing structure, power factor improvement, b	penefits and way							
Electric moto	ors: Losses and efficiency, energy efficient motors, sp	peed control met	hods of motor.						
Lighting: Illumination level, fixtures, timers, energy efficient illumination. Compressed air systems.									
Unit V	Cogeneration and Waste Heat Recovery	COs Mapped – CO3,CO5							
Cogeneration:	Concept, technical options, classification of cogener	ration system i.e.	. topping and						
bottoming cyc	ele, selection criteria, applications.								
Waste Heat R	ecovery: Introduction, classification and applications	s, benefits, waste	heat recovery						
equipments i.	e. recuperator, regenerator, economizer, heat wheel,	heat pipe, thermo	o-compressor,						
heat pump.									
	Text Books								
1. Guide	e Books for National Certification Examination	n vol.1, 2, 3 &	& 4 by Bureau of Energy						
Effici	ency (BEE) (https://aipnpc.org/Guidebooks.aspx	<u>x</u>)							
2. Practi	cal Energy Audit Manual, Indo – German Energy	gy Efficient Pro	oject, Tata Energy Research						
Institu	ute (TERI)								
	Reference Books								
1. Albert	Thumann, "Plant Engineers and Managers Guid	de to Energy Co	onservation", CRC Press.						
	Doty "Commercial Energy Auditing Refer hers Series,2016	rence Handboo	ok", Third Edition, River						
3. Albert Publis	Thumann; Terry Niehus; William J. Young hers	er "Handbook	of Energy Audits" River						
	hok Kumar, Gokul Ganesan, "Energy Audit and dures, and Case Studies", CRC press, 2023	nd Managemer	nt-Concept, Methodologies,						
Website:									

1. https://beeindia.gov.in/en/about-bee

	Strength of CO-PO/PSO Mapping													
Strength		РО											PSO	
of Cos	1	2	3	4	5	6	7	8	9	10	11	12	2	2
CO 1	2	1	-	-	-	2	2	-	2	-	-	2	-	-
CO 2	3	2	-	-	1	2	2	2	2	-	-	2	2	2
CO 3	3	2	-	-	1	2	2	2	2	-	2	2	2	2
CO 4	3	3	2	-	2	2	2	2	2	-	2	2	2	2
CO 5	3	3	2	-	2	2	2	2	2	-	-	2	2	2
Avg	3	2	2	-	2	2	2	2	2	-	2	2	2	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course								
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted							
1	Assignment on each unit	10							
2	Test (Online/Offline) on each Unit	10							
	Total	20							

	Pattern: 2022 MEC223006C:	T. Y. B. Tech. Semester: V (Mech Design of Pressure V	0	0/				
Teachin	g Scheme:	Credit Scheme:		Examination Scheme:				
	03hr / week	03	03 Insem – 20Marks Endsem – 60 Marks CCE – 20 Marks					
	site Courses: -Mathematics Geometric Modeling and P sy							
1. Unde mater 2. Appl condi	Objectives: erstand pressure vessel and rial selection. y design criteria to develo itions. ore advanced topics like v	op pressure vessel d	esigns suit	able for var	rious operating			
press 4. Gain	ure vessel design. proficiency in piping design standards.							
		Bloom's Level						
CO1	Describe fundamental princ including types, design code knowledge.	-	2- Understand					
CO2	Apply ASME standards to operating conditions, demon		-		3- Apply			
CO3	Analyze welding techniques innovations in pressure vess analysis.	s, corrosion protection	n methods,	and recent	4 - Analyze			
CO4	Synthesize piping design pr systems, and compliance wi	1 0 0	se effective		4 - Analyze			
Ι	Introduction to Pressure	Vessels	(08hrs)	COs Map	ped – CO1			
	of pressure vessels, Types o faterial selection for pressure				s for pressure			
II	Design of Pressure Vessel	\$	(07hrs)	COs Map	ped – CO2			
	vessel design criteria, Designical pressure vessels, Designical pressure v							
III	Advanced Topics in Press	6	(07hrs)	COs Map				
	and fabrication techniques, H rends and Innovations in Pres		tions, Testi	ng, and Qual	ity Assurance,			
IV	Introduction to Piping De	Ŭ	(07 hrs)	COs Ma	pped – CO1			
	of Piping Systems, Types of Piping Layout and Routing	f Pipes and Pipe Fitt	tings, Pipin	g Materials	and Selection			

V	Design of Piping Systems	(07hrs)	COs Mapped – CO4							
Pipe St	ress Analysis, Pipe Support and Hanger Design	n, Expansio	n Joints and Flexibility							
Analysi	Analysis, Piping Codes and Standards, Pipe inspection									
Text Books										
1. B	handari V.B. —Design of Machine ElementsI, Tata	McGraw H	ill Pub. Co. Ltd.							
2. J	ohn F. Harvey, "Theory and Design of Press	sure Vessel	s", CBS Publishers and							
D	Distributors, 1987. 53 53									
3. S	am Kannapan, "Introduction to Pipe Stress Analysi	s". John Wil	ey and Sons, 1985.							
	Reference Books									
	lenry H. Bedner, "Pressure Vessels, Design bistributors, 1987.	Hand Bool	x", CBS publishers and							
	harles Becht IV: Process Piping: The Complete Gu	ide to ASM	E B31.3, ASME Press.							
3. S	tanley, M. Wales, "Chemical process equipment eries in Chemical Engineering", 1988.									
	Codes / Handbooks									
	oy A. Parisher and Robert A. Rhea - Pipe Drafting Handbooks	and Design,	Cengage Learning. Codes							

- Design Data- P.S.G. College of Technology, Coimbatore.
 I.S. 2825: Code for unfired pressure vessels.

			Stre	engtł	n of (CO-I	PO/F	SO	Map	ping				
		PO's											PS	50
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	3	-	3	2	3	-	2	-	-	2	2	2
CO 2	3	3	3	-	3	2	3	-	2	-	-	2	2	2
CO 3	3	3	3	-	3	2	3	-	2	-	-	2	2	2
CO 4	3	3	3	-	3	2	3	-	2	-	-	2	2	2
Average	3	3	3	-	3	2	3	-	2	-	-	2	2	2
Level	3	3	3	-	3	2	3	-	2	-	-	2	2	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course										
Sr. No.	o. Components for Continuous Comprehensive Evaluation Marks Allotted										
1	Assignment on each unit	10									
2	Test on each unit	10									
	Total	20									

	T.Y. B.Tech. Pattern2022 Semester: V (Mechanical Engineering) MEC223007A : Machining Technology Lab										
Teachin	g Scheme:	Credit Scheme:	Examination Schen	ne:							
Practica	ll:02hrs/week	01	Termwork:25Mark Oral :25Marks	S							
-	iisite Courses, if any: - Outcomes: On completion		vill be able to-	Bloom's Level							
		Course Outcomes									
CO1	Calculate the tool life principles and mechanics	6 .	ing tool based on the	3-Apply							
CO2	Apply appropriate gear an	processes.	3-Apply								
CO3	Analyze and interpret engineering drawings to determine the requirements for jigs and fixtures. 4-Analyse										
CO4	Select various non-co electrochemical machinin laser cutting, abrasive jet (USM).		arge machining (EDM),	4-Analyse							

Sr.No.	Laboratory Experiments/Assignments	CO Mapped
1	Demonstration of cutting tool geometry and nomenclature of the tools used in conventional machines.(Cutting Inserts)	CO1
2	Machining of a mechanical component using conventional machines such as lathe, drilling, milling, grinding and any additional machine tool or processes as per requirement. Manufacturing drawing with appropriate geometrical and dimensional tolerances, detailed process planning to be included.	
3	Demonstration of Milling machine for Gear Manufacturing	CO2
4	Demonstration of Additive Machining technology (from modelling to printing) (To be performed Batch-wise)	CO4
5	Study various types of jigs and fixtures, and a case study on design and use of Jigs & Fixture for any given component.	CO3
6	Visit to an Industry which uses manufacturing processes	CO4

7	Preparing Online Calculator/Catalogue for selection of cutting parameters by using any programming languages like C, Python, MAT LAB etc	CO1
Guidelin	es for Laboratory Conduction	
'ractical a	re to be performed under the guidance of concerned faculty member.	
	es for Student's Lab Journal	
Write-up	should include title, aim, and diagram, working principle, procedure, observations	,
-	alculations, conclusion and questions, if any.	
graphs, c		

	Strength of CO-PO Mapping														
		PO													
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	
CO1	3	3	-	-	2	-	-	-	-	-	-	-	2	-	
CO2	3	-	3	-	2	-	-	-	-	-	-	-	2	-	
CO3	3	3	3	-	-	-	-	-	-	-	-	-	2	-	
CO4	3	-	-	-	3	-	2	-	-	-	-	-	2	-	
Average	3	3	3	-	2	-	2	-	-	-	-	-	2	-	

		T. Y. B. Tech. Semester: V (Mechar 23007B Energy Audit a	8				
Teaching	g Scheme:	Credit Scheme:	Examination Scher				
Practical	:02 hrs/week	01	Term work : 25 marks Oral: 25 marks				
-	site Courses, if any: - Ther Thermodynamics.	mal Engineering, Funda	amental of Electrical E	ngineering and			
 The Pra Ski Exp 	Objectives: eoretical insights in Energy actical exposure to energy au all building in Techno econo posure to Industry and susta Dutcomes: On completion o	ndit mic analysis of energy inable development goa	ıls				
	Juccomes. On completion o	Course Outcomes		Bloom's Level			
CO1	Report technical and econo	gs from case studies.	3-Apply				
CO2	Analyze theoretically therr	nal and electrical utilitie	es	4-Analyze			
CO3	Measure and analyze energ	gy conservation in Ther	mal & Electrical	4-Analyze			

Sr. No.	Laboratory Experiments / Assignments	CO Mapped
1.	Electricity bill analysis(Residential, Commercial and Industrial)	CO1
2.	Study of Tariff policy and analysis of MERC orders	CO1
3.	Demonstration of Energy Audit instruments	CO2, CO3
4.	Case study of energy performance assessment of Boiler/Furnace	CO2
5.	Case study of energy performance assessment of Air compressor/HVAC system	CO2
6.	Case study of energy performance assessment of Transformer/fans/blowers/motors/water pumps etc.	CO2
7.	Case study of Energy conservation recommendations with financial analysis	CO2
8.	Illumination study of Classroom/ office building/auditorium etc.	CO2, CO3
9.	Identifying energy saving opportunities in Educational institute/commercial establishment/Industry	CO2, CO3

1. Teacher will brief the given experiment to students its procedure, observations, calculation, and outcome of this experiment.

2. Apparatus and equipment's required for the allotted experiment will be provided by the lab assistants.

3. Students will perform the allotted experiment in a group under the supervision of faculty and lab assistant.

4. After performing the experiment students will check their readings, analysis, visit report from the teacher.

5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, setup diagram/layout, working principle, procedure, observations, graphs, calculations-technical and economics and conclusion.

Guidelines for Term work Assessment

6. Each experiment from lab journal is assessed for thirty marks based on three rubrics.

7. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

	Pattern: 2022 MEC223007C:De	T. Y. B. Tech. Semester: V (Mechani ssign of Pressure Vessel					
Teachin	g Scheme:	Credit Scheme:	Examination Sche	eme:			
	02hr / week	01	Term Work – 25Marks Oral – 25 Marks				
Material, Metallurg Course C 1. U m 2. Aj co 3. Ez pr 4. G	site Courses: -Mathematics Geometric Modeling and P y Dbjectives: nderstand pressure vessel ar aterial selection. pply design criteria to deve onditions. xplore advanced topics like essure vessel design. ain proficiency in piping ompliance with standards.	roduction Drawing, Man nd piping fundamentals, elop pressure vessel des welding, corrosion pro	including types, des igns suitable for va	s, Engineering sign codes, and rious operating innovations in			
		Course Outcomes		Bloom's Level			
CO1	Describe fundamental princ including types, design code knowledge.	2- Understand					
CO2	Apply ASME standards to operating conditions, demon	develop pressure vessel of nstrating proficiency in a	lesigns for diverse pplication.	3- Apply			
CO3	Analyze welding technique innovations in pressure vess analysis.	s, corrosion protection m	ethods, and recent	4 - Analyze			
CO4	Synthesize piping design pr systems, and compliance wi	ith standards to propose of		4 - Analyze			
	(COURSE CONTENTS					

Term Work shall consist of following assignments:

One Design Project on pressure Vessel:

The design project shall consist of two imperial size sheets (Preferably drawn with 3D/2D CAD software) - one involving assembly drawing with a part list and overall dimensions and the other sheet involving drawings of individual components, manufacturing tolerances, surface finish symbols and geometric tolerances must be specified so as to make it working drawing. A design report giving all necessary calculations of the design of components and assembly should be submitted.

Each student shall complete any two of the following assignments.

- 1. Write assignment on codes and standard used in piping design
- 2. A case study on piping design calculations for any system.
- 3. An assignment on specialty components used in piping system.
- 4. An assignment on occasional loads calculations for the piping system.
- 5. Use any suitable software and complete one design project on piping system.

Text Books

- 4. Bhandari V.B. —Design of Machine Elements^{II}, Tata McGraw Hill Pub. Co. Ltd.
- John F. Harvey, "Theory and Design of Pressure Vessels", CBS Publishers and Distributors, 1987. 53 53
- 6. Sam Kannapan, "Introduction to Pipe Stress Analysis". John Wiley and Sons, 1985.

Reference Books

- 4. Henry H. Bedner, "Pressure Vessels, Design Hand Book", CBS publishers and Distributors, 1987.
- 5. Charles Becht IV: Process Piping: The Complete Guide to ASME B31.3, ASME Press.
- 6. Stanley, M. Wales, "Chemical process equipment, selection and Design. Buterworths series in Chemical Engineering", 1988.

Codes / Handbooks

- 4. Roy A. Parisher and Robert A. Rhea Pipe Drafting and Design, Cengage Learning. Codes / Handbooks
- 5. Design Data- P.S.G. College of Technology, Coimbatore.
- 6. I.S. 2825: Code for unfired pressure vessels.

	Strength of CO-PO/PSO Mapping													
		PO's											PSO	
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	3	-	3	2	3	-	2	-	-	2	2	2
CO 2	3	3	3	-	3	2	3	-	2	-	-	2	2	2
CO 3	3	3	3	-	3	2	3	-	2	-	-	2	2	2
CO 4	3	3	3	-	3	2	3	-	2	-	-	2	2	2
Average	3	3	3	-	3	2	3	-	2	-	-	2	2	2
Level	3	3	3	-	3	2	3	-	2	-	-	2	2	2

	Guidelines for Continuous Comprehensive Evaluation of Lab Course									
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted								
1	Timely completion of Assignments/Sheet	10								
2	Understanding of Assignments/Sheet	10								
3	Presentation / Writing of Assignments/Sheet	05								
	Total	25								

		T. Y. B. Tech. Semester: V (Mechan 23008:Environmental l			
Teaching	g Scheme:	Credit Scheme:	Examination Scher	ne:	
Theory :	02 hrs/week	02	Continuous Comp Evaluation: 50Mar 		
Prerequi	site Courses, if any: Econd	omics for Sustainability			
		Course Objectives			
 An Evant De Example 	derstand the principles and a alyze ESG frameworks, star aluate the impact of ESG privelop skills to integrate ESC amine case studies of succes oply quantitative analysis to	ndards, and reporting me actices on corporate perf G considerations into dec asful ESG implementatio	chanisms. ormance and stakehol ision-making processe n across various indus	der value. es.	
Course (Dutcomes: On completion o	f the course, students wi	ll be able to-		
		Course Outcomes		Bloom's Level	
CO1	Understand the principles investment	2-Understand			
CO2	Calculating Carbon Footp	rint and Emission Reduc	tions	3- Apply	
CO3	Analyze ESG data for info	ormed decision-making		3- Apply	
CO4	Examine case studies of su industries and recommend	*		3- Apply	
Unit I	Environmental Social and			COs Mapped - CO1, CO2	
 His Ke Ov ES 	finition and Importance of E storical Context and Evoluti- y Drivers of ESG Integratio erview of ESG Frameworks G Rating Agencies and Met derstanding ESG Scores and	on n (e.g., GRI, SASB, TCF hodologies	D)		
Unit II	Environmental factors			COs Mapped - CO1, CO2	
ResEn	mate Change and Sustainab source Management and Eff vironmental Risk Assessme antitative Analysis: Measur	iciency nt	l Emission Reductions	3	

Unit III	Social factors	(05hrs)	COs Mapped - CO1, CO3, CO4
HuCorDiv	man Rights and Labor Practices mmunity Engagement and Social Impact versity, Equity, and Inclusion antitative Analysis: Social Impact Metrics and Divers	sity Indices	
	Governance factors	(05hrs)	COs Mapped - CO1 CO3, CO4
BoxEth	rporate Governance Structures ard Composition and Responsibilities nical Business Practices and Compliance uantitative Analysis: Governance Scorecards and Cor	npliance Metric	S
Unit V		(5hrs)	COs Mapped - CO1 CO4
 Ide ES¹ Qu ESG in Di ES⁴ Sec 	x Management ntifying and Assessing ESG Risks G Risk Mitigation Strategies antitative Analysis: Risk Assessment Models afferent Industries G Challenges and Opportunities in Various Sectors (e ctor-Specific ESG Strategies antitative Analysis: Sectoral ESG Performance Comp		ance, Technology)
(HarperCo "Sustainab "Environm	Text Books How ESG Can Benefit Your Business" by Mu Ilins India) (<u>HarperCollins India</u>). Ie Business: Key Issues" by Adrian Henriques and Ju mental Management Systems: Understanding Organiza HI Learning).	lie Richardson (Earthscan India).
	Reference Books		

''Principles for Responsible Investment'' by James P. Hawley, Shyam J. Kamath, and Andrew T. Williams

• Publisher: Routledge

"Sustainable Investing: Revolutions in Theory and Practice" by Cary Krosinsky and Nick Robins

• Publisher: Routledge

Strength of COs						Р	0					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	-	-	-	-	-	3	3	3	3	-	-	3
CO2	-	-	-	-	-	3	3	3	3	-	-	3
CO3	-	-	-	-	-	3	3	3	3	-	-	3
CO4	-	-	-	-	-	3	3	3	3	-	-	3
Avg	-	-	-	-	-	3	3	3	3	-	-	3

	Guidelines for Continuous Comprehensive Evaluationof Theory Course									
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted								
1	Assignments on Each topic	30								
2	Quizzes/Tests	10								
3	Group Project and Presentation	10								
	Total	50								

T. Y. B. Tech. Pattern 2022 Semester: V (Mechanical Engineering) MEC223009 : Mechatronics									
Teac	hing Scheme:	Credit Scheme:	Exa	aminatio	n Scl	neme:			
Theory	y : 03hrs/week	03	InSem Exam: 20 Marks EndSem Exam: 60 Marks Continuous Comprehensive Evaluation: 20 Marks						
Prerequ	isite Courses, if a	ny: -							
Basics of	Electrical and Elect	ronics Engineering,	Engineering Math	ematics, I	Mecha	nics			
• [• [• [• [Inderstand the Phy Inderstand the give Inderstand the con	cept of sensors ,act vsical system throug en system for Time cept of PLC & PID	gh Modelling and , Frequency Do) controller for d	d block d main and ifferent a	liagra l stabi	m ility			
		mpletion of the cou	rse, students wil	l be able	to-				
	Course Outcome			<u> </u>	•,•	Bloom's Level			
	system	concept of sensors	,actuators & Dat	a Acquis	111011	2- Understand			
		cal system through N	Į.	Ū		3 - Apply			
		ystem for Time, Fre	<u> </u>			4 - Analyze			
	Evaluate the con applications.	cept of PLC &	PID controller	for diffe	erent	5 - Evaluate			
		COURSE	CONTENTS						
Unit I	Fundamentals of Actuators	of Instrumentation	, Sensors and	(8hrs)	COs	s Mapped - CO1			
Measurin Sensors: incremen Piezoele Strain ga	ng Instruments, Do Classification of ntal), Lidar, Proxi ctric); Temperatu uges, Flow sensor	System and Mech omains of Mechatro sensors / Transdu mity (Optical, Ind re sensor –Pyrom rs – Electromagneti oid) and Rotary (S	onics acers; Motion S active, Capaciti eter, Infrared T c, Ultrasonic, Ho	ensors – ve), Acc hermom	Enco elero eter;	oder (Absolute & meter (MEMS & Force Sensors –			
Unit II		n and Signal Com		(7hrs)	CO	s Mapped – CO1			
Signal C Introduct Data Co digital co (4 bit R2	ommunication: Se tion to DAQ, Type nversion: Samplin onverters (4 bit Su R type DAC)	rial, Parallel; Syncles, Components of and ng, Aliasing, Samp accessive Approxim	hronous, Asynch a Data Acquisitio ple and hold cin nation type ADC	ironous on Syster rcuit, Qu	n ıantiz	ation, Analog-to-			
Unit III	modelling		ion based	(7hrs)	CO	s Mapped – CO2			
Function	, Block Diagram	stems, need, Types & Reduction princip odeling of Electric	ples and problem	ns;		-			
Unit IV	System Analysis	5		(7hrs)	CO	s Mapped –CO3			
		Unit step Response e time, Delay time,	•		respo	nse specifications			

Frequency	/ Domain Analysis – Frequency Domain Param	neters - Natur	al Frequency, Damping
Frequency	and Damping Factor;		
Stability A	Analysis - Concept of Poles & Zeros; Pole ze	ero plot, Map	ping of Pole Zero plot
with damp	bing factor, natural frequency and unit step resp	onse, Stabilit	y Analysis using Routh
Hurwitz C	Criterion, and Bode Plot		
Unit V	Controllers	(7hrs)	COs Mapped – CO4
Classificat	tion of Controllers		
PID Contr	roller - PI, PD and PID control systems in pa	arallel form;	Manual tuning of PID
control, Zi	iegler–Nichols method,		
PLC Cont	roller - Introduction to PLC; Architecture of P	LC; Ladder	Logic programming for
different t	ypes of logic gates; Latching; Timers, Counters	,	
	Text Books		
Text Bool	ks:		
1. Willian	n Bolton, Mechatronics: Electronics Control S	ystems in Me	echanical and Electrical
Engineerin	ng, 6th Ed, 2019		
2. K.P. R	amchandran, G.K. Vijyaraghavan, M.S. Balas	sundaram, M	echatronics: Integrated
Mechanica	al Electronic Systems, Willey Publication, 2008	3	
	Reference Books		
1. Alciato	re and Histand, Introduction to Mechatronics	and Measure	ement Systems, 5th Ed,
2019			
2. Bishop	(Editor), Mechatronics – An Introduction CRC	2006	
3. Mahal	lik, Mechatronics – Principles, concepts	and applica	tions, Tata Mc-Graw
Hillpublic	ation, New Delhi		
4. C.D.Joł	nnson, Process Control Instrumentation Technol	logy, Prentice	e Hall,New Delhi
5. Bolton,	Programmable Logic Controller, 4th Ed, Newn	nes, 2006	

	Strength of CO-PO/PSO Mapping													
	РО										PSO			
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	2	2	2	2	2	2	-	2	2	2	2	2	2	2
CO 2	2	2	2	2	2	-	-	-	2	-	-	2	3	2
CO 3	3	3	2	2	2	-	-	-	2	-	-	2	3	2
CO 4	3	3	2	2	2	2	2	2	2	2	2	2	3	2
Average	2.5	2.5	2	2	2	2	2	2	2	2	2	2	2.75	2
Level	3	3	2	2	2	2	2	2	2	2	2	2	3	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course									
Sr.	Components for Continuous	Marks	Evaluation Rubrics							
No.	Comprehensive Evaluation	Allotted								
1	One Assignment on each unit	10	 R1 – Timely Completion (10marks) R2 – Understanding (10marks) R3 – Presentation & Clarity (10marks) 5 Assignments each of 30 marks, total 							

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

			150 marks converted to 10 marks
			Pre Insem – 30 Marks,
2	Class Test	05	Pre end Sem – 60
			Total 100 marks converted to 05 marks
			MCQ test marks, 5 test one on each
3	LMS Test on Each Unit	05	Unit of 10 marks each
			Total 50 converted into 5 marks
	Total	20	

T. Y. B. Tech. Pattern 2022 Semester: V (Mechanical Engineering) MEC223010 PBL									
Teaching	g Scheme:	Credit Scheme:	Examination Scheme	2 •					
	:01hrs/week l: 02hrs/week	01 01	;						
Prerequi	isite Courses, if any: -Machi	ne Design-I, Machine	Design-II, Mechatronics	etc.					
		Course Objective	es						
. DEVEL arious ho . ESTAB . CREAT	DUCE the skills required in a OP the skills required for fau- ome appliances. LISH the skills required for n <u>E awareness about industrial</u> Dutcomes: On completion of	It diagnose of engine a naintenance of any ma environment.	and transmission of differ chine tool.	ent automotive and					
		Course Outcomes		Bloom's Level					
CO1	Understand procedure of as	sembly & disassembly	of various machines.	2					
CO2	Examine &Model a working	g/model of machine pa	arts or any new product.	3					
CO3	Illustrate fault with diagnos appliances.	is on the machines, ma	achine tools and home	3					
CO4	Analyze the various activiti asmaintenance, design of co	omponents, material se	lection.	4					
		COURSE CONTE							
l. Assen	nbly and Disassembly of a	ny of the following	mechanical systems/ s	ubsystems: bicycl					

Assembly and Disassembly of any of the following mechanical systems/ subsystems: bicycle (Geared), e-Bikes, e-Motor Cycles, Drones, Flying devices, gear box, IC engines, centrifugal pump etc.
 Assembly- Disassembly/ Fault diagnosis of home appliances such as mixer, grinder, washing machine, fan, ovens, gas geyser, chopping machine, kneading machine, exercise machines, etc.

3. Development and demonstration of working/animation model of any mechanism.

4. Design a circuit of electric and hydraulic system of 4 wheelers and its verification.

OR

Circuit design /PCB design using software for control of BLDC electric motors used in e-Vehicles.

5. Undertake total preventive maintenance for any machine tool or mechanical system.

6. Visit to an industry for awareness about preventive maintenance.

7. Use of ergonomic principles for the design of hand tools, control in automobile dashboards,human operated mobile devices.

8. Use of alternative materials in the construction of daily activity machine and toolcomponents

9. Interpretation of Drawings; Exercises in identifying the type of production, extracting important functional dimensions, checking the number of parts in an assembly. Checking and listing missing dimensions.

10. Exercises in -preparation of detailed production drawings as per BIS standard of simple machine parts having relevant notes and indications (limits/tolerances, surface finish, the process of production, relevant tools, materials, measuring instruments).

The documentation activity as a part of the Term work shall not be restricted to merelygeneration of 2D/3D CAD Drawings with dimensions (as applicable), Exploded View, Flowchartof Maintenance Work etc. but can be beyond.

Skill Development Documentation Diary must be maintained by every student.

	Strength of CO-PO/PSO Mapping													
Strength	PO										PSO			
of Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	2	2	2	-	-	2	-	-	-	-	2	2	2	2
CO 2	2	2	2	-	-	2	-	-	-	-	2	2	2	2
CO 3	2	2	2	-	-	2	-	-	-	-	2	2	2	2
CO4	2	2	2	-	-	2	-	-	-	-	2	2	2	2
Avg.	2	2	2	-	-	2	-	-	-	-	2	2	2	2

		T. Y. B. Tech. Semester: VI (Mechan EC223011 : Machine De					
Teaching	g Scheme:	Credit Scheme:	Examination Scheme:				
Theory :	03 hrs/week	03	Continuous Comp Evaluation: 20Ma InSem Exam: 20M EndSem Exam: 60N	rks [arks			
gear, Vir	isite Courses, if any: -Class tual number of teeth. Classif Objectives:						
	apply fundamentals of the c	lesign and/or selection of	f elements in mechani	cal systems.			
cha	understand the philosophy allenging. demonstrate design skills fo						
• To	develope an attitude of team neduling through design proj	n work, critical thinking,					
Course (Outcomes: On completion o	f the course, students will	ll be able to-				
		Course Outcomes		Bloom's Level			
CO1	Apply the principle of S application	orm gear for industr	ial 3-Apply				
CO2	Categorize Rolling and catalogue for a particular a			r's 3-Apply			
CO3	Illustrate design of variou	s drives for mechanical a	pplications.	3-Apply			
CO4	Analyze the stresses and one mechanical applications.			for 4-Analyze			
		COURSE CONTENT	S				
Unit I	Spur and Helical Gears			COs Mapped - CO1,CO3			
Number of	on to gears: Material selection of teeth and face width, Force and concentration factor, Effect	e analysis, Beam strength	(Lewis) equation, Vel	locity factor, Service			
Unit II	Bevel and Worm Gear			COs Mapped - CO1,CO3			
Gear. Des based on Y Worm Ge Worm gea stress fact Unit III	ars: Types of Bevel gears, Tern sign of Straight Bevel Gear ba Velocity factor (Barth factor) a ears: Terminology and propor ars, efficiency of worm gears, sor, speed factor, surface stress Sliding and Rolling Conta	sed on Beam Strength, We nd Buckingham's equation tions of worm and worm material selection, Strengt factor, zone factor) IS 1442 act Bearing	ear strength and estimated gears, Force analysis of h and wear ratings of v 3-1974, Thermal consider (07hrs)	tion of effective load of drives, Friction in worm gears (Bending leration in gear drive COs Mapped – CO2			
•	ontact bearing: Introduction tequations, Sommerfeld number	e		lds's equation (2D),			

Un	nit		s : Belt		-		nanufact			(07hrs		COs	Mapped	—
I												CO3		
ratin Selec limit Cha	g of t ction ation in Dr	oelts, co of Flat a s of Flat ives : T	ncept of and V-b t and V- 'ypes of	slip & elts fror belts, c chains a	creep, i n manu onstruc and its (nitial ter facturer tion and	nsion, ef 's catalo l applica ry, select	fect of c g, belt te tions of	entrifug ensionin timing b	al force, g methoo elts.	maxim ds, relat	um pow tive adv	f belt, pov ver condit antages an fect of cha	ion, nd
-	t V		anical				5			(07hrs	;)	COs CO4	Mapped	_
Type	s, ap	plicatio	ons and	materi	als for	· spring	s, Stres	s and d	eflectio	n equat	tions for		cal comp	ressi
													ies and p	
Surge	e in sj	prings,	Design	of Mu	lti-leaf	springs	s. Helica		n Sprin	g				
							Text E	Books						
							eferenc	C DOOR	-					
	0			•		nology	, Coimb	atore.		ohn Wi	lev & S	Sons Lt	ď	
2. Ve	hicle	Powert	rain Sys	stems b	y Behr	nnology ooz Mas	, Coimb shadi, D	atore. avid Cro	olla. A J		•		d Sons, Lto	d
2. Vel 3. Au 4. Au	hicle tomo tomo	Powert biles–P tive En	rain Sys ower tra gineerir	stems b ains and ng Powe	y Behr 1 Autor	nnology ooz Mas nobiles-	, Coimb shadi, D –Dynam	atore. avid Cro nics by C	olla. A J Crolla, E	David, A	John V	Wiley &		
2. Vel 3. Au 4. Au New	hicle tomo tomo York	Powert biles–P tive En , Londo	rain Sys ower tra gineerir on, Oxfo	stems b ains and ng Powe ord.	y Behr l Autor ertrain,	nology ooz Mas nobiles- Chassis	, Coimb shadi, D –Dynam s System	atore. avid Cro nics by C n and Ve	olla. A J Crolla, E bhicle Bo	David, A ody by I	John V David A	Wiley &	Sons, Lto	
2. Vel 3. Au 4. Au New 5. lac	hicle tomo tomo York k P.H	Powert biles–P tive En , Londo I. and C	rain Sys ower tra gineerin on, Oxfo). Euger	stems b ains and ng Powe ord. ne Adar	y Behro l Autor ertrain, ns, Ma	nnology ooz Mas nobiles Chassis chine D	, Coimb shadi, D –Dynam s System esign, M	atore. avid Cro nics by C n and Ve IcGraw	olla. A J Crolla, D hicle Bo Hill Bo	David, A ody by I ok Co. I	John V David A nc.	Wiley & A Crolla	cSons, Lto a, Elsevie	r B I
 Vel Au Au Au New lac Wi P. I 	hicle tomo tomo York, k P.H llium Kann	Powert biles–P tive En , Londo I. and C C. Orth aiah, Do	rain Sys ower tra gineerir on, Oxfo D. Euger hwein, I esign of	stems b ains and ng Powe ord. ne Adar Machin Transr	y Behr l Autor ertrain, ns, Ma e Comj nission	nology ooz Mas nobiles Chassis chine D ponents system	, Coimb shadi, D –Dynam s System esign, M Design, sl, SCIE	atore. avid Cro nics by C n and Ve fcGraw West P CTCH Pu	olla. A J Crolla, E hicle Bo Hill Bo ublishin ıblicatio	David, A ody by I ok Co. I ng Co. an ons Pvt I	John V David A nc. nd Jaice Ltd.	Wiley & A Crolla o Public	Sons, Lto	r B H
2. Vel 3. Au 4. Au New 5. lac 6. Wi 7. P. l 8. C.S	hicle tomo tomo York, k P.H Ilium Kann S. Sha	Powert biles–P tive En , Londo I. and C C. Ortl aiah, D urma an	rain Sys ower tra gineerir on, Oxfo). Euger hwein, I esign of d Kaml	stems b ains and ng Powe ord. ne Adar Machine Transr esh Pur	y Behr l Autor ertrain, ns, Ma e Comp nission ohit, D	nnology ooz Mas nobiles Chassis chine D ponents system esign of	, Coimb shadi, D –Dynam s System esign, N Design, sl, SCIE f Machin	atore. avid Cro nics by C n and Ve fcGraw West P TCH Pu ne Elem	olla. A J Crolla, E chicle B Hill Bo ublishin ublicatio ents, PH	David, A ody by I ok Co. I og Co. ai ons Pvt I II Learn	John V David A nc. nd Jaice Ltd.	Wiley & A Crolla o Public	cSons, Lto a, Elsevie	r B F
2. Ve 3. Au 4. Au New 5. lac 6. Wi 7. P. l 8. C.S 9. D.I	hicle tomo York k P.H Ilium Kann S. Sha X. Ag	Powert biles–P tive En , Londo L and C C. Ortl aiah, D urma an garwal	rain Sys ower tra gineerir on, Oxfo). Euger hwein, I esign of d Kaml & P.C.	stems b ains and ng Powe ord. ne Adar Machin Transr esh Pur Sharma	y Behr l Autor ertrain, ns, Ma e Comp nission ohit, D , Mach	nnology ooz Mas nobiles Chassis chine D ponents system esign of ine Des	, Coimb shadi, D –Dynam s System esign, N Design, sl, SCIE f Machin sign, S.K	atore. avid Cro nics by C n and Ve IcGraw West P TCH Pu ne Elem Kataria	olla. A J Crolla, D Hicle Bo Hill Bo ublishin ublicatio ents, PH a and So	David, A ody by I ok Co. I og Co. an ons Pvt I II Learn ons.	John V David A nc. nd Jaic Ltd. ing Pvt	Wiley & A Crolla o Publia t. Ltd.	cSons, Lto a, Elsevie	r B I
2. Vei 3. Au 4. Au New 5. lac 6. Wi 7. P. l 8. C.S 9. D.I 10. P. 11. B	hicle tomo tomo York k P.H llium Kann S. Sha K. Ag C. G handa	Powert biles–P tive En , Londo I. and C C. Ortl aiah, D urma an garwal ope, M ari, V. I	rain Sys ower tra gineerir on, Oxfo). Euger hwein, I esign of d Kaml & P.C. (achine) 3. Mach	stems b ains and ng Powe ord. ne Adar Machine Transr esh Pur Sharma Design: iine Des	y Behr I Autor ertrain, ertrain, e Comp nission ohit, D ., Mach Funda sign da	inology ooz Mas nobiles Chassis chine D ponents system esign of ine Des imentals ta book	, Coimb shadi, D –Dynam s System esign, N Design, sl, SCIE f Machin sign, S.K s and Ap , Tata M	atore. avid Cro nics by C and Ve fcGraw West P TCH Pu ne Elem Kataria oplicatio cGraw J	olla. A J Crolla, E chicle Bo ublishin ublicatio ents, PH and So ns, PHI Hill Pub	David, A ody by I ok Co. I og Co. an ons Pvt I II Learn ons. Learnin olication	John V David A nc. nd Jaice Ltd. ing Pvt co. Lt	Wiley & A Crolla o Publia t. Ltd. Ltd. d.	Sons, Lto a, Elsevie cations H	r B I ouse
2. Vei 3. Au 4. Au New 5. lac 6. Wi 7. P. l 8. C.S 9. D.I 10. P. 11. B	hicle tomo tomo York k P.H llium Kann S. Sha K. Ag C. G handa	Powert biles–P tive En , Londo I. and C C. Ortl aiah, D urma an garwal ope, M ari, V. I	rain Sys ower tra gineerir on, Oxfo). Euger hwein, I esign of d Kaml & P.C. (achine) 3. Mach	stems b ains and ng Powe ord. ne Adar Machine Transr esh Pur Sharma Design: iine Des	y Behr I Autor ertrain, ertrain, e Comp nission ohit, D ., Mach Funda sign da	inology ooz Mas nobiles Chassis chine D ponents system esign of ine Des imentals ta book	, Coimb shadi, D –Dynam s System esign, N Design, sl, SCIE f Machin sign, S.K s and Ap , Tata M	atore. avid Cro nics by C and Ve fcGraw West P TCH Pu ne Elem Kataria oplicatio cGraw 1	olla. A J Crolla, E chicle Bo ublishin ublicatio ents, PH and So ns, PHI Hill Pub	David, A ody by I ok Co. I og Co. ar ons Pvt I II Learn ons. Learnin olication	John V David A nc. nd Jaice Ltd. ing Pvt co. Lt	Wiley & A Crolla o Publia t. Ltd. Ltd. d.	cSons, Lto a, Elsevie	r B F ouse
2. Vei 3. Au 4. Au New 5. lac 6. Wi 7. P. l 8. C.S 9. D.I 10. P. 11. B	hicle tomo tomo York k P.H llium Kann S. Sha K. Ag C. G handa	Powert biles–P tive En , Londo I. and C C. Ortl aiah, D urma an garwal ope, M ari, V. I	rain Sys ower tra gineerir on, Oxfo). Euger hwein, I esign of d Kaml & P.C. (achine) 3. Mach	stems b ains and ng Powe ord. ne Adar Machine Transr esh Pur Sharma Design: iine Des	y Behr I Autor ertrain, ertrain, e Comp nission ohit, D ., Mach Funda sign da	inology ooz Mas nobiles Chassis chine D ponents system esign of ine Des imentals ta book	, Coimb shadi, D –Dynam s System esign, N Design, sl, SCIE f Machin sign, S.K s and Ap , Tata M	atore. avid Cro nics by C and Ve fcGraw West P TCH Pu ne Elem Kataria oplicatio cGraw 1	olla. A J Crolla, E chicle Bo ublishin ublicatio ents, PH and So ns, PHI Hill Pub	David, A ody by I ok Co. I og Co. ar ons Pvt I II Learn ons. Learnin olication	John V David A nc. nd Jaice Ltd. ing Pvt co. Lt	Wiley & A Crolla o Publia t. Ltd. Ltd. d.	Sons, Lto a, Elsevie cations H	r B F ouse.
2. Vei 3. Au 4. Au New 5. lac 6. Wi 7. P. l 8. C.S 9. D.I 10. P. 11. B	hicle tomo tomo York k P.H llium Kann S. Sha K. Ag C. G handa	Powert biles–P tive En , Londo I. and C C. Ortl aiah, D urma an garwal ope, M ari, V. I	rain Sys ower tra gineerir on, Oxfo). Euger hwein, I esign of d Kaml & P.C. (achine) 3. Mach	stems b ains and ng Powe ord. ne Adar Machine Transr esh Pur Sharma Design: iine Des	y Behr 1 Autor ertrain, ns, Ma e Comp nission ohit, D ., Mach Funda sign da Reddy,	nology ooz Mas nobiles- Chassis chine D ponents system esign of ine Des mentals ta book, Design	, Coimb shadi, D –Dynam s System esign, M Design, M S I, SCIE f Machin sign, S.K s and Ap , Tata M Data Ha	atore. avid Cro nics by C n and Ve IcGraw West P ETCH Pu ne Elem Kataria oplicatio cGraw I andbook	olla. A J Crolla, E chicle Bo ublishin ublicatio ents, PH a and So ns, PHI Hill Pub t for Me	David, A ody by I ok Co. I og Co. ar ons Pvt I II Learn ons. Learnin olication	John V David A nc. nd Jaice Ltd. ing Pvt co. Lt	Wiley & A Crolla o Publia t. Ltd. Ltd. d.	Sons, Lto a, Elsevie cations H	r B F ouse
2. Vei 3. Au 4. Au New 5. lac 6. Wi 7. P. l 8. C.S 9. D.I 10. P. 11. B	hicle tomo tomo York k P.H llium Kann S. Sha K. Ag C. G handa	Powert biles–P tive En , Londo I. and C C. Ortl aiah, D urma an garwal ope, M ari, V. I	rain Sys ower tra gineerir on, Oxfo). Euger hwein, I esign of d Kaml & P.C. (achine) 3. Mach	stems b ains and ng Powe ord. ne Adar Machine Transr esh Pur Sharma Design: iine Des	y Behr 1 Autor ertrain, ns, Ma e Comp nission ohit, D ., Mach Funda sign da Reddy,	nology ooz Mas nobiles- Chassis chine D ponents system esign of ine Des mentals ta book, Design	, Coimb shadi, D –Dynam s System esign, N Design, sl, SCIE f Machin sign, S.K s and Ap , Tata M	atore. avid Cro ics by C and Ve fcGraw West P TCH Pu ne Elem Kataria oplicatio (cGraw I andbook	olla. A J Crolla, E chicle Bo ublishin ublicatio ents, PH a and So ns, PHI Hill Pub t for Me	David, A ody by I ok Co. I og Co. ar ons Pvt I II Learn ons. Learnin olication	John V David A nc. nd Jaice Ltd. ing Pvt co. Lt	Wiley & A Crolla o Publia t. Ltd. Ltd. d.	Sons, Lto a, Elsevie cations H	r B F ouse.
2. Vei 3. Au 4. Au New 5. lac 6. Wi 7. P. l 8. C.S 9. D.I 10. P. 11. B	hicle tomo tomo York k P.H llium Kann S. Sha K. Ag C. G handa	Powert biles–P tive En , Londo I. and C C. Ortl aiah, D urma an garwal ope, M ari, V. I	rain Sys ower tra gineerir on, Oxfo). Euger hwein, I esign of d Kaml & P.C. (achine) 3. Mach	stems b ains and ng Powe ord. ne Adar Machine Transr esh Pur Sharma Design: iine Des	y Behr 1 Autor ertrain, ns, Ma e Comp nission ohit, D ., Mach Funda sign da Reddy,	nology ooz Mas nobiles- Chassis chine D ponents system esign of ine Des mentals ta book, Design	, Coimb shadi, D –Dynam s System esign, M Design, M S I, SCIE f Machin sign, S.K s and Ap , Tata M Data Ha	atore. avid Cro nics by C n and Ve IcGraw West P ETCH Pu ne Elem Kataria oplicatio cGraw I andbook	olla. A J Crolla, E chicle Bo ublishin ublicatio ents, PH a and So ns, PHI Hill Pub t for Me	David, A ody by I ok Co. I og Co. ar ons Pvt I II Learn ons. Learnin olication	John V David A nc. nd Jaice Ltd. ing Pvt co. Lt	Wiley & A Crolla o Publia t. Ltd. Ltd. d.	Sons, Lto a, Elsevie cations H	r B F ouse. shers
2. Vei 3. Au 4. Au New 5. lac 6. Wi 7. P. l 8. C.S 9. D.I 10. P. 11. B	hicle tomo tomo York k P.H Ilium Kanna S. Sha C. G handa . Mał	Powert biles–P tive En , Londo I. and C C. Ortl aiah, D urma an garwal ope, M ari, V. H nadevar	rain Sys ower tra gineerin on, Oxfo D. Euger hwein, I esign of d Kaml & P.C. 1 (achine 1 3. Mach h, K. Ba	stems b ains and ng Powe ord. Machin Transr esh Pur Sharma Design: ine Des lveera I	y Behr 1 Autor ertrain, ertrain, e Comp nission ohit, D , Mach Funda sign da Reddy, Str	nology ooz Mas nobiles- Chassis chine D ponents system esign of ine Des mentals ta book, Design	, Coimb shadi, D –Dynam s System esign, M Design, M Design, S I, SCIE f Machin sign, S.K s and Ap , Tata M Data Ha Data Ha	atore. avid Cro nics by C n and Ve IcGraw West P ETCH Pu ne Elem C Kataria oplicatio cGraw I andbook	olla. A J Crolla, E chicle Bo ublishin ublishin ublicatio ents, PH a and So ns, PHI Hill Pub for Me	David, A ody by I ok Co. I og Co. an ons Pvt I II Learn ons. Learnin chanica 10 2	John V David A nc. nd Jaice Ltd. ing Pvt. g Pvt. Co. Lt l Engin	Wiley & A Crolla o Publia t. Ltd. Ltd. d. neers, C	Sons, Lto a, Elsevie cations H BS Publis	r B F ouse shers
2. Vei 3. Au 4. Au New 5. laci 6. Wi 7. P. l 8. C.S 9. D.I 10. P. 11. Bi 12. K	hicle tomo tomo York k P.H Ilium Kanna S. Sha K. Ag C. G handa . Mał	Powert biles–P tive En , Londo I. and C C. Ortl aiah, D urma an garwal ope, M ari, V. H nadevar	rain Sys ower tra gineerir on, Oxfo). Euger hwein, I esign of d Kaml & P.C. (achine) 3. Mach h, K. Ba	stems b ains and ng Powe ord. Machine Transr esh Pur Sharma Design: ine Des lveera I	y Behr 1 Autor ertrain, ertrain, e Comp nission ohit, D , Mach Funda sign da Reddy, Str	nnology ooz Mas nobiles- Chassis chine D ponents system esign of ine Des mentals ta book, Design rength c	, Coimb shadi, D –Dynam s System esign, M Design, sl, SCIE f Machin sign, S.K s and Ap , Tata M Data Ha <u>of CO-P</u>	atore. avid Cro avid Cro and Ve fcGraw West P ETCH Pu ne Elem Kataria oplicatio cGraw I andbook O Mapp PO 8 - 2	olla. A J Crolla, E Crolla, E Hill Bo ublishin ublicatio ents, PH a and Sc ns, PHI Hill Pub t for Me oing 9 3 3	David, A ody by I ok Co. I og Co. ar ons Pvt I II Learn ons. Learnin chanica 10 2 2	John V David A nc. nd Jaice Ltd. ing Pvt. g Pvt. Co. Lt l Engin	Viley & A Crolla o Public t. Ltd. d. neers, C	Sons, Lto a, Elsevie cations H BS Publis PSO1 2 2	r B H ouse. shers
2. Vel 3. Au 4. Au New 5. lac 6. Wi 7. P. l 8. C.S 9. D.H 10. P. 11. B 12. K 01 02 03	hicle tomo tomo York, k P.H llium Kanna S. Sha K. Ag C. G handa . Mah	Powert biles–P tive En , Londo I. and C C. Orth aiah, D arma an garwal ope, M ari, V. H nadevar	rain Sys ower tra gineerin on, Oxfo D. Euger hwein, I esign of d Kaml & P.C. Gachine B. Mach h, K. Ba	stems b ains and ng Powe ord. ne Adar Machin Transr esh Pur Sharma Design: ine Des lveera I 4 2 - 3	y Behr 1 Autor ertrain, ertrain, e Comp nission ohit, D , Mach Funda sign da Reddy, Str	nnology ooz Mas nobiles- Chassis chine D ponents system resign of ine Des mentals ta book, Design rength of 6 2 2 -	, Coimb shadi, D –Dynam s System esign, N Design, N sll, SCIE f Machin sign, S.K s and Ap , Tata M Data Ha <u>of CO-P</u>	atore. avid Cro ics by C and Ve fcGraw West P TCH Pu ne Elem Kataria oplicatio (cGraw 1 andbook O Mapp PO 8 -	olla. A J Crolla, E chicle Bo ublishin ublishin ublicatio ents, PH and So ns, PHI Hill Pub for Me oing 9 3 3 3	David, A ody by I ok Co. I og Co. an ons Pvt I II Learn ons. Learnin blication chanica	John V David A nc. nd Jaice Ltd. ing Pvt. g Pvt. Co. Lt I Engin	Viley & A Crolla o Public t. Ltd. d. heers, C	Sons, Lto a, Elsevie cations H BS Publis PSO1 2 2 2	r B H
2. Vei 3. Au 4. Au New 5. laci 6. Wi 7. P. l 8. C.S 9. D.I 10. P. 11. Bi 12. K	hicle tomo tomo York k P.H Ilium Kanna S. Sha K. Ag C. G handa . Mał	Powert biles–P tive En , Londo I. and C C. Ortl aiah, D urma an garwal ope, M ari, V. H nadevar	rain Sys ower tra gineerir on, Oxfo). Euger hwein, I esign of d Kaml & P.C. (achine) 3. Mach h, K. Ba	stems b ains and ng Powe ord. Machine Transr esh Pur Sharma Design: ine Des lveera I	y Behr 1 Autor ertrain, ertrain, e Comp nission ohit, D , Mach Funda sign da Reddy, Str	nnology ooz Mas nobiles Chassis chine D ponents system resign of ine Des mentals ta book, Design rength c 6 2	, Coimb shadi, D –Dynam s System esign, N Design, sl, SCIE f Machin sign, S.K s and Ap , Tata M Data Ha of CO-P	atore. avid Cro avid Cro and Ve fcGraw West P ETCH Pu ne Elem Kataria oplicatio cGraw I andbook O Mapp PO 8 - 2	olla. A J Crolla, E Crolla, E Hill Bo ublishin ublicatio ents, PH a and Sc ns, PHI Hill Pub t for Me oing 9 3 3	David, A ody by I ok Co. I og Co. ar ons Pvt I II Learn ons. Learnin chanica 10 2 2	John V David A nc. nd Jaice Ltd. ing Pvt. g Pvt. Co. Lt I Engin	Viley & A Crolla o Public t. Ltd. d. neers, C	Sons, Lto a, Elsevie cations H BS Publis PSO1 2 2	r B F ouse shers

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation Marks Allotte						
1	Assignments on each Unit	10					
2	Online/Offline Test on Each Unit	10					
	Total	20					

Teaching Scheme:Credit Scheme:Examination Sche						
Lecture	: 03 hr / week	03	Continuous Comprehensiv Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks			
-	site Courses: -Linear algebr	a and calculus, Enginee	ring Thermodynamic	s, Fluid		
	bjectives:					
• To	o study the energy scenario	, the components of the	ermal energy based p	lant, improv		
R	ankine cycle.					
• To	o understand details of ste	eam condensing plant,	cooling tower system	m, analysis		
сс	ondenser, the environmental	l impacts and methods	to reduce various	pollution fro		
er	ergy systems.					
• To	o study layout and component	nt details nuclear power	and hydro-electric po	ower plants a		
_1	so to study economics of pov	wer generation.				
al		8				
	o understand components, la	e	ombined power plant	s.		
• To	•	yout of gas turbine and c		s.		
• To	o understand components, lay o study the working principle	yout of gas turbine and c		s. Bloom's Level		
• To	o understand components, lay o study the working principle	yout of gas turbine and c e, construction of renewa Course Outcomes	ble energy systems.	Bloom's		
• To	o understand components, lago study the working principle	yout of gas turbine and c e, construction of renewa Course Outcomes neration scenario, the lay	able energy systems.	Bloom's Level 2		
• To	o understand components, lay o study the working principle EXPLAIN the power ger	yout of gas turbine and c e, construction of renewa Course Outcomes neration scenario, the lay	able energy systems.	Bloom's Level 2		
• To	o understand components, lay o study the working principle EXPLAIN the power ger	yout of gas turbine and c e, construction of renewa Course Outcomes neration scenario, the lay entional power plants an impacts.	ble energy systems.	Bloom's Level 2		
• To • To CO1	o understand components, lay o study the working principle EXPLAIN the power ger conventional and non-conve	yout of gas turbine and c e, construction of renewa Course Outcomes neration scenario, the lay entional power plants an impacts.	tion of power plants	Bloom's Level 2		
• To • To CO1	D understand components, lay D study the working principle D Study the working principle D EXPLAIN the power ger Conventional and non-convertional and non-convertional Apply energy analysis for ANALYZE the performance Evaluate the actual performance	yout of gas turbine and c e, construction of renewa Course Outcomes neration scenario, the lay entional power plants and impacts. r performance determinat ce of power plants from the economics ormance of thermal and st prough case studies.	ble energy systems.	Bloom's Level 2 3		
 To To CO1 CO2 CO3 	o understand components, lay o study the working principle EXPLAIN the power ger conventional and non-conver Apply energy analysis for ANALYZE the performance Evaluate the actual performance the converter of the converter of th	yout of gas turbine and c e, construction of renewa Course Outcomes neration scenario, the lay entional power plants and impacts. • performance determinat ce of power plants from the economics ormance of thermal and st prough case studies. COURSE CONTENTS	ble energy systems.	Bloom's Level 2 3 4		
 To To CO1 CO2 CO3 	D understand components, lay D study the working principle D Study the working principle D EXPLAIN the power ger Conventional and non-convertional and non-convertional Apply energy analysis for ANALYZE the performance Evaluate the actual performance	yout of gas turbine and c e, construction of renewa Course Outcomes neration scenario, the lay entional power plants and impacts. • performance determinat ce of power plants from the economics ormance of thermal and st prough case studies. COURSE CONTENTS	ble energy systems.	Bloom's Level 2 3 4		
 To To To 	o understand components, lay o study the working principle EXPLAIN the power ger conventional and non-conver Apply energy analysis for ANALYZE the performance Evaluate the actual performance the converter of the converter of th	yout of gas turbine and c e, construction of renewa Course Outcomes neration scenario, the lay entional power plants and impacts. • performance determinat ce of power plants from the economics ormance of thermal and st prough case studies. COURSE CONTENTS	tion of power plants technical aspects and solar power plants	Bloom's Level 2 2 3 4 5 5 5		

type fuels, Coal handling plant, pulverized fuel handling systems, FBC systems, high pressure

	nproved Rankine cycle with reheating and regeneration.		nlanta mathada		
	nental impact of power plants: Different pollutants produce by pollutants	by power	plants, methods		
II	Condenser, power plant economics	(07 hrs)	COs Mapped –		
			CO1, CO2,		
			CO3		
of coolin efficienc Econom factor, D	sers and Cooling Towers: Types of Condensers, Classification ng water Required, Daltons Law of Partial Pressures, vacuur y, Sources of Air Leakage and Air Removal, Cooling Towers, C ics of power generation: load duration curve, load factor, c emand factor, Diversity factor, Plant use factor, cost of power g ntal heat rate.	n efficier Cooling P capacity f	ncy, condenser onds. actor, Reserve		
III	Nuclear and Hydro-Electric Power Plant	(07 hrs)	COs Mapped –		
		, í	CO1, CO2		
curve, site power pla	ectric Power Plant: Introduction to hydrology, hydrograph, fl e selection, classification, criteria for turbine selection, comp nt - dams; spillways; surge tank and forebay.	ponents o	of Hydroelectric		
IV	Gas Turbine Power plant	(07 hrs)	COs Mapped –		
	•		CO1, CO2		
Gas turbine power plant: components, general layout of GTPP, open and closed cycle gas turbine plant, Brayton cycle analysis for thermal efficiency, work ratio, maximum & optimun pressure ratio, methods to improve thermal efficiency of GTPP: inter-cooling, reheating regeneration cycle. Combined cycle: Gas and steam combined cycle plant, Cogeneration, introduction to tri generation, steam power plants with process heating, Integrated Gasification Combined Cycle (IGCC) plant, Kalina (Cheng) Cycle.					
V	Renewable Energy Systems	(07 hrs)	COs Mapped –		
			CO1, CO4		
Energy, I Solar the photovolta Wind Ei	tion to various renewable energy technologies: Tidal E Biomass Energy, Hydrogen Energy, etc. rmal and photovoltaic energy: solar thermal plant based on aic systems, applications, economics and technical feasibility. nergy: wind availability, basic components of wind turbin characteristics, wind solar hybrid power plants, Cost econom	flat plate	s, performance		
	Text Books				

- 1. Domkundwar & Arora, Power Plant Engineering, Dhanpat Rai & Sons, New Delhi
- 2. R.K.Rajput, Power Plant Engineering, Laxmi Publications New Delhi
- 3. D. P. Kothari, K. C. Singal and Rakesh Ranjan, Renewable Energy Sources and Emerging Technologies, PHI Learning Pvt. Ltd., Delhi

Reference Books

- 1. E.I.Wakil, Power Plant Engineering, McGraw Hill Publications New Delhi
- 2. P.K.Nag, Power Plant Engineering, McGraw Hill Publications New Delhi.
- 3. R.Yadav, Steam and Gas Turbines, Central Publishing House, Allahabad.
- 4. G.D.Rai, Non-Conventional Energy Sources, Khanna Publishers, Delhi
- 5. S.P.Sukhatme, Solar Energy, Tata McGraw-Hill Publications, New Delhi
- 6. G R Nagpal, Power Plant Engineering , Khanna Publication.

Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation Marks Allotte					
1	Assignments on each Unit	10				
2	Online/Offline Test on Each Unit	10				
	Total	20				

		S	Strer	ngth	of C	CO-I	PO/I	PSO	Ma	pping	5			
		PO's						P	PSO					
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	-	-	-	2	2	-	-	-	-	2	2	2
CO 2	3	3	1	-	-	-	-	-	-	-	-	2	2	-
CO 3	3	3	2	-	-	-	-	-	-	-	-	2	2	-
CO 4	3	3	2	-	-	2	-	-	-	-	-	2	2	2
Average	3	3	2	-	-	-	-	-	-	-	-	2		-
Level	3	3	2	-	-	2	2	-	-	-	-	2	2	2

T. Y. B.Tech. Pattern2022 Semester: VI ((Mechanical Engineering)) MEC223013 : Machine Design Lab (I & II)						
Teaching Scheme:	Teaching Scheme: Credit Scheme: Examination Scheme:					
Practical:02hrs/week	Practical:02hrs/week 01 Termwork: 25Marks Oral : 25Marks					
Prerequisite Courses, if any: - Mechanics of material, Manufacturing process, Engineering Metallurgy, MD-I						

Course	Outcomes: On completion of the course, students will be able to-	
	Course Outcomes	Bloom's Level
CO1	Illustrate the simple machine elements as cotter, knuckle Joints, levers, shafts, keys and couplings under static /eccentric loading conditions.	4-Analyze
CO2	Analyze the power screws for various engineering applications.	4-Analyze
CO3	Categorize the gear box for industrial application by using Spur, Helical, Bevel, Worm gear etc.	4-Analyze
CO4	Select various drives for industrial application	4-Analyze

	List of Laboratory Experiments /Assignments					
Sr.	Term Work	CO				
No.		Mappeo				
Studer	nt shall complete the following activity as a Term Work;					
The Su	ubmission shall consist of completion of Two Design projects and study Assign	nments.				
Oral e	xamination shall be based on the practical undertaken during the semester					
1	Design a Simple Machine Elements : (Cotter Joints/ Knuckle Joint/ Lever etc.,)	CO1				
2	Design of Screw Jack/ C Clamp : (Automobile Application / Industrial Application, etc.,)	CO2				
	Design of Gearbox for following any one problem statements or application					
	1. wind mill application or sluice gate					
3	2. building Elevator					
	3. Industrial Hoist.					
	4. Sugar Industry.					
	5. Automobile drives etc.					

4	Design a Conveyer System for following any one application (Stone Crusher, Industry Pallet Transformation, Thermal power plant(Coal transportation), Sugar Industry (Sugar Bag transportation), Airport Luggage transportation etc.)			
Guide	lines for Laboratory Conduction			
Practio	cal are to be performed under the guidance of concerned faculty member.			
Guide	lines for Student's Lab Journal			
drawin (For sl	esign project shall consist of two full imperial (A1) size sheets involving assembling with a part list and overall dimensions and drawings of individual component neets use software for Project 1 & 3 and sheets should be manually drawn for t 2 & 4)			
specifi	facturing tolerances, surface finish symbols and geometric tolerances should be ted for important surfaces. A design report giving all necessary calculations of the of components and assembly should be submitted in a separate file.	ie		
0	n data book shall be used where ever necessary to achieve selection of standard onents.			
Guide	lines for Termwork Assessment			
	ach project will be assessed for thirty marks based on three rubrics. where \mathbf{R} 1 for timely completion \mathbf{R} 2 for understanding and \mathbf{R} 3 for design repo	nt		

- 2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for design report and sheets where each rubric carries ten marks.
- 3. File should consist of Design Report and Sheets for every project.

	Strength of CO-PO/PSO Mapping													
							PO's						PS	50
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	-
CO 1	3	3	3	2	3	2	-	2	3	3	-	2	2	-
CO 2	3	3	3	2	-	2	-	2	3	3	-	2	2	-
CO 3	3	3	3	2	3	2	-	2	3	3	-	2	2	-
CO 4	3	3	3	2	-	2	-	2	3	3	-	2	2	-
Average	3	3	2	2	3	2	-	2	3	3	-	2	2	-

	Pattern 2022	T. Y. B. Tech. Semester: VI (Mechan	ical Engineering)		
		23014A : Finite Elemen			
Teaching	g Scheme:	Credit Scheme:	Examination Sch	eme:	
Theory :	03 hrs/week	03	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks		
Prerequi	site Courses, if any: -Mech	nanics of materials, Therr	nodynamics, Machi	ne Design	
8. To 9. To 10. To 11. To 12. To	Objectives: understand fundamentals of F understand the 1D structural r understand2D structural mer understand the heat transfer pr understandthe mechanical cor	nember for displacement, st aber for displacement, stress roblems for temperature, the nponent for dynamic condit	ress s ermal stress, heat flux ions	5	
Course C	Dutcomes: On completion of	of the course, students wil	l be able to–		
		Course Outcomes		Bloom's Level	
CO1	On completion of the co Apply fundamentals of FEA			3 (Apply)	
CO2	Analyze the 1D structural me	ember for displacement, stre	ess	4 (Analyze)	
CO3	Analyze the2D structural me	ember for displacement, stre	ess	4 (Analyze)	
CO4	Analyze the heat transfer pro	blems for temperature, ther	mal stress, heat flux	4 (Analyze)	
CO5	Analyzethe mechanical comp	ponent for dynamic condition	ons	4 (Analyze)	
		COURSE CONTENT	'S		
	Fundamentals Concepts of F		(08hrs)	COs Mapped – CO1	
of freedom formulation used in FEA Shape funct	n– Brief History of FEM, Fini a, loads & constraints) Gene a, Advantages and disadvantag A such as direct approach and tions and its properties. Apply	ral FEM procedure, Appl es of FEM. Consistent units energy approach,	ications of FEM in s system. Introduction procedure of FEA fo	various fields, P & h n to different approaches	
Unit II	1D Elements		(07 hrs)	COs Mapped - CO2	
secondary v Formulation Properties of	D element. Displacement funct variables. n of elemental stiffness matrix of stiffness matrix, Boundary s for bar, truss.	x and load vector, Assembl	ly of global stiffness	of element, primary and matrix and load vector,	
Unit III	2D Elen	nents	(07 hrs)	COs Mapped – CO3	
Types of 21 Linear Stra variables, 1	D elements, Formulation of e in Rectangle (LSR), Constant properties of shape function solving for primary variables	nt Strain Triangles (CST), s. Assembly of global st	Pascal's triangle,	ane stress/strain such as primary and secondary	

Unit	1D Steady State Heat Transfer Problems	(07 hrs)	COs Mapped –				
IV			CO4				
Introductio	troduction, Governing differential equation, steady-state heat transfer formulation of 1D element for conduct						
and convec	ction problem, boundary conditions and solving for temper	ature distribution					
Unit V	Unit V Dynamic Analysis (07 hrs) COs Mappe						
			CO5				
Types of d	ynamic analysis, General dynamic equation of motion, poi	int and distributed m	ass, lumped and				
Consistent	mass, Mass matrices formulation of bar and beam elemen	t.	-				
Undamped	-free vibration- Eigenvalue problem, Evaluation of eigenv	values and eigenvect	ors (natural frequencies				
and mode s	shapes).						
	Text Books						
1. A First C	Course in the Finite Element Method, Daryl L. Logan						
2. Concept	s and Applications of Finite Element Analysis, R. D. Cool	k, et al. Wiley, India					
	Reference Books						
1. Chandru	patla T. R. and Belegunda A. D., -Introduction to Finite	Elements in Enginee	ering, Prentice				
Hall India.		-	-				
2. Seshu P.	, -Text book of Finite Element Analysis, PHI Learning	Private Ltd. New De	lhi, 2010.				
3. Bathe K. J., —Finite Element Procedures, Prentice-Hall of India (P) Ltd., New Delhi.							
4. Fagan M	4. Fagan M. J., —Finite Element Analysis, Theory and Practicel, Pearson Education Limited						
5. Kwon Y	. W., Bang H., -Finite Element Method using MATLAB	I, CRC Press, 1997					
6. S. Moav	6. S. Moaveni, —Finite element analysis, theory and application with Ansysl,						

7. Fundamental of Finite Element Analysis, David V. Hutton, Tata McGraw-Hill

8. Gokhale N. S., Deshpande S. S., Bedekar S. V. and Thite A. N., —Practical Finite Element Analysis, Finite to Infinite, Pune

	Strength of CO-PO Mapping													
		РО											PSO	
	1	1 2 3 4 5 6 7 8 9 10 11 12											1	2
CO1	3	3	-	-	3	2	-	-	2	-	-	3	2	2
CO2	3	3	3	-	3	2	-	-	2	-	-	3	2	2
CO3	3	3	3	-	3	2	-	-	2	-	-	3	2	2
CO4	3	3	3	-	3	2	-	-	2	-	-	3	2	2
CO5	3	3	3	-	3	2	-	-	2	-	-	3	2	2
Average	3	3	3	-	3	2	-	-	2	-	-	3	2	2

(Components for Continuous Comprehensive Evaluation of Theory	y Course								
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation Marks Allotted									
1	Assignment on each unit	10								
2	Test (Online/Offline) on each unit	10								
	Total	20								

		Third Year B. Tech.		
	Pattern: 2022	Semester: VI(Mecha	nical Engineering)	
	MEC22301	4B: Renewable Energy	Engineering	
Teachir	ng Scheme:	Credit Scheme:	Examination Sche	eme:
Lecture:	03 hr / week	03	orehensive rks Iarks 0Marks	
Prerequi	site Courses: -Engineering	Thermodynamics, Fluid	Mechanics and Heat	Transfer
Course (Objectives:			
1. T	o understand the basics of re	newable energy sources	and technologies.	
	o design solar thermal con	version systems and so	olar photovoltaic syst	tems for different
-	oplications.			
	o understand wind energy	sources and technologi	es and also to desig	gn a wind energy
	/stems.			
	o study the biomass energy c	-		
	o study the Geothermal, Tid			
6. T	o explain principle and work		ogen energy technolo	-
		Course Outcomes		Bloom's Level
CO1	Understanding of solar syst		itility by applying	3
	principles of solar energy c			-
CO2	Estimate the wind energy p	otential and analyse the	wind energy	3
	conversion System.			
CO3	Design bio-energy based sy	stems for a given utility	by applying	2
	principles of bio-mass to bi	o-energy conversion.		
CO4	Characterize energy conver	sion systems: Geotherm	al, Tidal and Wave	2
	energy, Fuel Cells and Hyd	rogen Energy.		
		COURSE CONTENT	S	
Ι	Solar Radiation and Sola	ar Systems	(08 hrs) 0	COs Mapped –
				CO1
Extra-ter	restrial and terrestrial radiat	ion, Solar radiation mea	suring instruments, E	Estimation of solar
Radiatior	n, solar geometry, Solar Ener	gy Conversion Systems		
Solar th	ermal systems: Basics, Fl	lat plate collectors-liqui	id and air type. The	eory of flat plate

solar water heater, solar dryers, solar stills, Solar ponds, solar cooling and refrigeration, Solar thermal power generation.

Solar Photovoltaic Systems: Principle of photovoltaic conversion of solar energy, Solar cells, Solar PV pumps, Govt. policies. Solar energy storage options: Electrical and Thermal Energy storage options

II	Wind Energy Conversion Systems	(07 hrs)	COs Mapped –
			CO2

History of wind energy and potential, Wind energy in India, Power available in the wind, Wind speed prediction and forecasting, Betz limit, Components of wind energy conversion systems, Horizontal and Vertical axis wind turbine, Wind turbine power and torque characteristics, Tip speed ratio,

III	Biomass Energy	(07 hrs)	COs Mapped –
			CO3

biochemical conversion: anaerobic digestion, ethanol fermentation, biogas production, types of biogas plant, installation, operation and maintenance of biogas plants, factors affecting biogas production, biogas utilization and storage, biogas for motive power generation, design calculations for biogas plants, Biodiesel, the mechanism of trans esterification, fuel characteristics of biodiesel, technical aspects of biodiesel/Ethanol utilization in engine. Biomass gasification system and types, producer gas. Pyrolysis

IV	Geothermal , Tidal and Wave energy	(07hrs)	COs Mapped –
			CO4

Geothermal Energy: structure of earth's interior, geothermal sites, geothermal field and gradients, types of geothermal resources, power generation by liquid dominated and vapor dominated sites, geothermal preheat to conventional plant, utilization of geothermal energy.

Tidal Energy: Tidal energy, tidal characteristics, range, power of tides, site selection types tidal power plant

Wave Energy: factors affecting wave energy, analysis of wave energy, wave energy conversion machines.

V	Fuel Cell and Hydrogen Energy	(07 hrs)	COs Mapped –
			CO4
Fuel cel	s: principle of operation of fuel cell Technical parameters of f	uel cell	hydrogen fuel cell

Fuel cells: principle of operation of fuel cell, Technical parameters of fuel cell, hydrogen fuel cell, Methanol fuel cell, Types fuel cell, performance of fuel cell.

Hydrogen Energy: Benefits of hydrogen Energy, Hydrogen production Technologies,

characteristics and applications of hydrogen, Hydrogen energy Storage, Problems associated with hydrogen energy.

Text Books

- 4. D. P. Kothari, K. C. Singal and Rakesh Ranjan, Renewable Energy Sources and Emerging Technologies, PHI Learning Pvt. Ltd., Delhi.
- Domkundwar & Domkundwar- Solar Energy and Non Conventional Sources of Energy, Dhanpat Rai& Sons, New Delhi.
- 6. R. K. Rajput, Non-Conventional Energy Sources and Utilization, S. Chand Publication.

Reference Books

- 7. G.D.Rai, Non-Conventional Energy Sources, Khanna Publishers, Delhi
- 8. S.P.Sukhatme, Solar Energy, Tata McGraw-Hill Publications, New Delhi
- 9. B. H. Khan, Non-conventional energy resources, Mc Graw Hill publication.

CCE Assessment:

Three assignments (each of 20 marks) including review, calculation, case study and design of system. Two Tests (each of 20 marks) online/ offline

			Stre	engtl	n of (CO-I	PO/P	SO	Map	ping				
		PO's PSO												
CO's	1	2 3 4 5 6 7 8 9 10 11 12 1 2											2	
CO 1	3	3	2	-	-	2	1	-	-	-	-	2	2	2
CO 2	3	3	2	-	-	2	1	-	-	-	-	2	2	1
CO 3	3	3	2	-	-	-	1	-	-	-	-	2	2	2
CO 4	3	2	1	-	-		1	-	-	-	-	2	2	-
Average	Verage 3 3 2 2 1 2 2 2 2													
Level	3	3	2	-	-	2	1	-	-	-	-	2	2	2

III

		Final Year. B.Te Semester: VI (Mechanic C: Computational Fluid	cal Engineering)					
Teachin	g Scheme:	Credit Scheme:	Examination S	cheme:				
Theory	:03 hrs/week	03	Continuous Comprehensive Evaluation:20Marks InSem Exam: 20Marks EndSem Exam: 60Marks					
Engineer	isite Courses, if any: ring Thermodynamics, App s, Heat & Mass Transfer, Co	lied Thermodynamics, I	Fluid Mechanics,					
Course	Outcomes: On completion of	of the course, students wi	ll be able to-					
		Course Outcomes		Bloom's Level				
CO1	Recognize the fundamental p	2-Understand						
CO2	Comprehend the fundament	2-Understand						
CO3	Apply error minimization teo solutions	chniques to assess the accur	racy of numerical	3-Apply				
CO4	Apply the Finite Difference equations	e Method (FDM) to disc	retize differential	3-Apply				
CO5	Pertaining to the conceptu		•	s 3-Apply				
		COURSECONTENT	T S					
UnitI	Introduction to computatio principles of conservation	nal fluid dynamics and	(08 hrs)	COs Mapped - CO1				
Continuity	equation, Navier Stokes Equa	tion, Energy Equation and	Conservation Equa	tions.				
UnitII	I Classification of partial differential equations and hrs) (07 COsMapped - CO1,CO2							
	ical classification of Partial Dif equations, Physical examples	-	-					
Unit	Approximate solutions of diffe	erential equations	(07	COsMapped-				

hrs)

CO1,CO2,CO3

Error Minimization Principles, Functional involving higher order derivatives, Approximate solution of differential equations through variation formulation, Boundary conditions in the variation form: Primary and secondary variables, Essential and natural boundary conditions, Approximate solutions of differential equations, (07 COs Mapped -Uni **Fundamentals of discretization**hrs) CO1, t IV ,CO3,CO4 Discretization principles: Pre-processing, Solution, Post-processing, Finite Element Method, 3 Finite difference method, Well posed boundary value problem, Possible types of boundary conditions, Conservativeness, Boundedness, Transportiveness, Finite volume method (FVM), Illustrative examples: 1-D steady state heat conduction without and with constant source term. COsMapped-UnitV (07 **Finite volume method** CO1.CO2.CO5 hrs) Some Conceptual Basics and Illustrations through 1-D Steady State Diffusion Problems: Physical consistency, Overall balance, FV Discretization of a 1-D steady state diffusion type problem, Composite material with position dependent thermal conductivity, Four basic rules for FV Discretization of 1-D steady state diffusion type problem, Source term linearization, Implementation of boundary conditions **Text Books** 1. Chung, T. J., "Computational Fluid Dynamics", 2nd Ed., 2014, Cambridge University Press. 2. Anderson J. D. (Jr)., "Computational Fluid Dynamics: The basic with applications", 2017, McGraw Hill Education **Reference books** 1. Patankar, S. V., "Numerical Heat Transfer and Fluid Flow", 2017, CRC Press. 2. Versteeg, H. K., Malalasekera, W., "An Introduction to Computational Fluid Dynamics", 2nd Ed., 2007, PHI. 3. Ferziger, J. H. and Peric, M., "Computational Methods for Fluid Dynamics", 3rd Ed., 2002, Springer.

Guidelines	for Continuous Comprehensive Evaluation of Theory Course	
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted
1	Assignments on unit-1, Unit-2, Unit-3, Unit-4, Unit-5	15
2	LearniCo Test on Each Unit	05
	Total	20

		T. Y. B. Tech. Semester: VI (Mechan	8			
	ME	C223014D : Operation I	r			
Teaching	g Scheme:	Credit Scheme:	Examination Sch	eme:		
Theory :	03 hrs/week	03	Continuous Com Evaluation: 20Ma InSem Exam: 20M EndSem Exam: 6	arks Marks		
Prerequi	site Courses, if any: - Engi	neering Mathematics, Theo	ry of probability, Stat	istics		
To famil optimizat To famili applicabl	Objectives: liarize the students with ion functions in an organiza arize the students with vario e in particular scenarios in i	ntion. Dus tools of optimization, ndustry for better manage	, probability, statisti ement of various res	cs and simulation, as		
Course (Dutcomes: On completion of		l be able to–			
		Course Outcomes		Bloom's Level		
CO1	Apply LPP and Decision	3-Apply				
CO2	CO2 Apply the concept of transportation models to optimize available resources					
CO3	Apply the concept of Inve	entory control and replace	ement analysis	3-Apply		
CO4	Evaluate the process para models	meters for queuing theory	y and sequencing	3-Apply		
CO5	Analyze the project mana	gement techniques.		4-Analyze		
	1	COURSE CONTENT	ſS			
Unit I	Introduction: Operation	Research	(08 hrs)	COs Mapped - CO1		
	n: Definition, Evolution and	-				
	, Methodology, Advantages an lution of LPP by Two Phase N					
	anagement Decisions, Decisio					
Unit II	Transportation & Assign		(07hrs)	COs Mapped -		
.		1.60.11.77		CO1, CO2		
	on, Formulation, Basic Metho ing Stone Method, Assignmen	e 1				
Unit	Inventory Control and I		(07hrs)	COs Mapped -		
III			(071115)	CO1, CO3		
Inventory	Control - Deterministic M	odels- Shortage, without	shortage; Probabilist	ic Inventory Models,		
	on to Concept of Service le		- Replacement of I	tems that Deteriorate,		
Unit	ent of Items that Fail Suddenly Queuing Theory and		(07hrs)	COs Mapped -		
IV	Queung Theory and	sequencing mouris	(071115)	COS Wapped - CO1, CO4		
	Theory: Introduction, Basis Str	ucture, Terminology (Kend	al's Notations) and A	/		
	Model M/M/1: /FIFO, M/M/c.					
jobs throu	gh two machines, Processing	of n jobs through three m	achines, Processing of	of two jobs through m		

Machines	, Process	sing of n	jobs thr	ough m l	Machine	S						
Unit V			Project	Manag	gement			(0)	7hrs))s Mapj 01, CO5	L
Network N												
Queuing T								ng. Simu	ulation:	Introduc	tion, Mo	onte-Carl
Simulation	method	, Simula	tion of Iı	nventory		-						
					Т	ext Boo	ks					
1. Prem l	Kumar (Gupta, I	D. S. Hi	ra, Prob	lems in	Operati	ons Res	earch: H	Principle	es and S	olutions	s, S.
Chand, 1	991	-				-			-			
2. J. K. S	harma,	Operati	ons Res	earch: 7	Theory a	and App	lication	, Laxmi	pub. In	dia, 201	0.	
3. Operat	tions Re	esearch,	S. D. S	harma, l	Kedar N	lath Rar	n Nath-	Meerut,	2015.			
4. L.C.Jh				-								
5. Manoł						-						
6. V. K. I	1 '	1	ions Re	search:	Quantit	ative Te	chnique	es for M	anagem	ent, Sul	tan Cha	nd
Publicati	ons, 20	13.										
						rence B						
1. Hillier	F.S., a	nd Liebe	erman C	i.J., Ope	erations	Researc	ch, Eigh	t Editio	n, Mc. 7	Fata Mc	Graw H	ill, India
2011.												
2. Ravino		-									•	
3. Ravino		-	nd Solbe	erg, Ope	erations	Researc	ch Princ	iples an	d Practi	ce, Seco	ond Edit	ion, Mc.
WSE	Wille	2 /				1 4 55	1 D			2010		
4. Operat	tions Re	esearch	- An int	roductic	on, Ham	dy A Ta	aha, Pea	rson Ed	lucation	, 2010		
				Stren	gth of C	CO-PO N	Mapping	<u>y</u>				
					0	P	11 (
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	2	-	-	1	-	-	-	-	-	1	2
CO2	2	2	-	-	1	-	-	-	-	-	1	2
CO3	2	2	-	-	1	-	-	-	-	-	1	2
CO4	2	2	-	_	1		-	-	-	-	1	2
CO5	2	2	-	-	1	-	-	-	-	-	1	2
Average	2	2	-	-	1	-	-	-	-	-	1	2

(Components for Continuous Comprehensive Evaluation of Theory Course										
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted									
1	Assignments on Unit-1, Unit-2, Unit-3, Unit 4 & Unit 5	10									
2	LMS Test	10									
	Total	20									

	Pattern 2022	T. Y. B. Tech. Semester: VI (Mech	anical Engine	ering)		
		A :Computer Integra		-		
Teachin	g Scheme:	Credit Scheme:	Examinat	tion Schen	ne:	
Theory	: 3 hrs/week	03	Insem – 2 End Sem Continuo Evaluatio	– 60 Marl us Compr	ehensive	
	site Courses, if any: -Geor izational Behavior	netric Modeling and	Production Dr	awing, In	dustrial Psychology	
		Course Objective	es			
Learn to i Explore a manufact Explore T	nd the importance of CIM a ntegrate hardware, softwar dvanced manufacturing con turing, group technology, Theoretical concepts of IoT, I	re, and generate CNC ncepts, including flex ndustry 4.0, and clou	c programs fo ible manufact id-based man	turing, cel ufacturin _i		
Course	Outcomes: On completion o		will be able to-	_		
		Course Outcomes			Bloom's Level	
CO1	Understand the Principles	of CIM			2-Understand	
CO2	Apply Data Integration Te	chniques in CIM			3-Apply	
CO3	Demonstrate Proficiency in	n CAM and CNC Prog	ramming		4-Analyze	
CO4	Analyze Computer-Aided	Process Planning (CAl	PP) methodolo	ogies	4-Analyze	
CO5	Analyze Theoretical Conce	1	Ũ	ologies	4 - Synthesize	
		COURSE CONTEN	NTS			
Unit I	Unit 1: Foundations of Cl	[M	(08 hrs)	COs Ma	apped - CO1	
	Need and Evolution of CIM of CIM and Types of Autom Computerized Elements, Ad	ation, Functions in Ma	,	•	,	
Unit II	Data Integration in CIM		(07 hrs)	COs Ma	apped - CO1, CO2	
	CAD-CAM Integration, P Networked Environment, Management, EDM, PDM, I	Networking in Manu	U	· U		
Unit II	I CAM in CIM		(07 hrs)	COs Ma	apped - CO3	
	Introduction to CAM, Coord Milling Machines, CNC P Cycles, Subroutines, Do Loo	art Programming, To	ol and Geom			
Unit IV	Process Planning, Quality	Control, and MRP	(07 hrs)	COs Map	oped – CO4	
	CAPP and Benefits, Logical and its Applications, Comp Inventory, Inspection, MES	1	· · ·	•	· · · · ·	
Unit V	FMS, Cellular Manufactur Factories	ring, and Future Sma	art(07 hrs)		Os Mapped – O5	

Flexible Manufacturing Systems (FMS), FMS Components, Layouts, and Applications Group Technology (GT) and Part Families, Industry 4.0 and Functions, IoT Applications in Manufacturing, Digital Manufacturing in Industry 4.0, Scheduling, Lean Manufacturing

Text Books

- **3.** Automation, Production system & Computer Integrated manufacturing, M. P. Groover Person India, 2007 2nd edition.
- 4. Principles of Computer Integrated Manufacturing, S. Kant Vajpayee, Prentice Hall India
- 5. Harrington J, Computer Integrated Manufacturing Krieger Publications 1979.

Reference Books

1 Weatherall, A., 2013. Computer integrated manufacturing: from fundamentals to

implementation. Butterworth-Heinemann.

- 2. Nanua Singh, Systems Approach to Computer Integrated Design and Manufacturing, John Wiley Publications.
- 3. Jha, N.K. "Handbook of Flexible Manufacturing Systems ", Academic Press Inc., 1991.

	Strength of CO-PO/PSO Mapping														
Strength	РО													PSO	
of COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO 1	3	3	-	-	-	-	3	-	-	-	2	2	-	2	
CO 2	3	3	-	-	-	-	3	-	-	-	2	2	-	2	
CO 3	3	3	3	3	3	-	-	-	2	-	2	2	2	2	
CO 4	3	3	-	-	3	-	-	-	2	-	2	2	2	2	
CO 5	3	3	3	3	-	-	2	-	2	-	2	2	2	2	
Avg	3	3	3	3	3	-	3	-	2	-	2	2	2	2	

G	Guidelines for Continuous Comprehensive Evaluation of Theory Course										
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted									
1	One Assignments on Unit-1, Unit-2, Unit-3, Unit-4, Unit-5	10									
2	Pre insem test and pre end sem test	5									
3	LMS Test	5									
	Total	20									

	Pattern 2022	T. Y. B. Tech. Semester: VI (Mechan	ical Engineering)	
	MEC2	23015B:Automobile En		
Teaching	Scheme:	Credit Scheme:	Examination Sch	ieme:
Theory :3	hrs/week	03	Insem – 20 Mark End Sem – 60 Ma Continuous Com Evaluation: 20M	arks prehensive
Prerequis	ite Courses, if any: -Fund	amentals of Mechanical H	Engineering, Mecha	anism and Machines,
	stems for Mobility.			
		Course Objectives		
pr 2. To 3. To 4. To	o develop a comprehensiv inciples. o comprehend Chassis, Po o analyze Suspension, Bra o explore Automotive Safe o make students conserva	wertrain, and Mobility ke Systems, and Vehicle ety Standards and Emer	Components. e Performance. rging Technologies	5.
Course O	utcomes: On completion o	f the course, students wil	l be able to-	
		Course Outcomes		Bloom's Level
CO1	Explain and Compare aut	tomotive system for the v	ehicle.	2-Understand
CO2	Describe different types of functionalities.	of mobility components a	nd their respective	2-Understand
CO3	Classify vehicle safety sy mitigation and occupant	1	heir roles in risk	2-Understand
CO4	Apply knowledge of susp maintenance tasks.	bension and brake system	s in automobiles fo	r 3-Apply
CO5	Analyze factors impactin methodologies.	g vehicle performance an	d evaluate testing	4-Analyze
		COURSE CONTENT	'S	
Unit I	Introduction		(08hrs)	COs Mapped - CO1
automotiv Chassis a and mater Vehicle I different	ion: History and evoluti e industry. nd Frames: Types, layout als. Powertrain Systems: New types of transmission systems, final drive and differentia	and constructional feature cessity and selection of stems- MT, AT, AMT,	res of chassis and f	rames, components of gear box and
Unit II	Mobility Components		(07hrs)	COs Mapped – CO1,CO2
Wheels a type of t	pes of axles: solid, live, de nd tyres : Wheel design a yres, construction, mate , inflation pressure. system : Types of steering	nd construction, Wheel rials. Factors influencin	alignment and bal ng tyre performar	nce: tread design,

Unit III	Suspension and Brake System	(07hrs)	COs Mapped – CO1,CO4
self levelli: Brake sys	n: Types of Suspension Systems- Independent, ng suspension (active suspension),shock absorbe tems: Drum, disc, mechanical, hydraulic, air ABS, EBD, Electronic stability control (ESC) a	ers (hydraulic and brakes, vacuum,	l air). power assisted brakes,
Unit VI	Automotive Performance & Safety	(07 hrs)	COs Mapped – CO1,CO5
vehicle dy Vehicle Pe Automotiv	ve performance: Performance testing methodo mamics: traction, stability, and control. Road rformance. ve safety: Types of active and passive safe ce and Safety.	performance cu	rves, Factors Affecting
U nit V	Electrical System and Vehicle Maintenance	e (07 hrs)	COs Mapped – CO1,CO3
ystem.	aft, differential, axles, steering system, susp	,,,,,,,,,,	
	Text Books		
	ns Hermann Braess, Ulrich Seiffen, "H EPublications.	andbook of A	utomotive Engineering
SA	ns Hermann Braess, Ulrich Seiffen, "H		0 0
SA 2. Wil	ns Hermann Braess, Ulrich Seiffen, "H EPublications.		0 0
SA 2. Wi 3. SA 4. N.	ns Hermann Braess, Ulrich Seiffen, "H EPublications. lliam H. Crouse., "Automotive Mechanics", Tata E Manuals and Standards. K. Giri, Automobile Mechanics	a McGraw Hill P	ublishing House.
SA 2. Wil 3. SA 4. N. 1 5. P. 5	ns Hermann Braess, Ulrich Seiffen, "H EPublications. Iliam H. Crouse., "Automotive Mechanics", Tata E Manuals and Standards.	a McGraw Hill P ta McGraw Hill F	ublishing House. Publishing House.
SA 2. Wil 3. SA 4. N. 1 5. P. 5	ns Hermann Braess, Ulrich Seiffen, "H EPublications. Iliam H. Crouse., "Automotive Mechanics", Tata E Manuals and Standards. K. Giri, Automobile Mechanics S. Kohali, Automobile Electrical Equipment, Tat	a McGraw Hill P ta McGraw Hill F nd and Company	ublishing House. Publishing House.
SA 2. Wil 3. SA 4. N. 1 5. P. S 6. Nat	ns Hermann Braess, Ulrich Seiffen, "H EPublications. Iliam H. Crouse., "Automotive Mechanics", Tata E Manuals and Standards. K. Giri, Automobile Mechanics S. Kohali, Automobile Electrical Equipment, Tat rang G. B. S, "Automobile Engineering", S. Cha	a McGraw Hill P ta McGraw Hill F nd and Company S	ublishing House. Publishing House.
SA 2. Wil 3. SA 4. N. 1 5. P. S 6. Nau 1. Dr.	ns Hermann Braess, Ulrich Seiffen, "H EPublications. Iliam H. Crouse., "Automotive Mechanics", Tata E Manuals and Standards. K. Giri, Automobile Mechanics S. Kohali, Automobile Electrical Equipment, Tat rang G. B. S, "Automobile Engineering", S. Cha Reference Book	a McGraw Hill P ta McGraw Hill F nd and Company t <mark>s</mark> me 1, Standard P	ublishing House. Publishing House.
SA 2. Wil 3. SA 4. N. 1 5. P. S 6. Nau 1. Dr. 2. Aut 3. R. 1	ns Hermann Braess, Ulrich Seiffen, "H EPublications. Iliam H. Crouse., "Automotive Mechanics", Tata E Manuals and Standards. K. Giri, Automobile Mechanics S. Kohali, Automobile Electrical Equipment, Tat rang G. B. S, "Automobile Engineering", S. Cha Reference Book Kirpal Singh, "Automobile Engineering", Volu	a McGraw Hill P ta McGraw Hill F nd and Company <u>ss</u> me 1, Standard P Acgraw-Hill.	ublishing House. Publishing House. Ltd.
SA 2. Wil 3. SA 4. N. 1 5. P. S 6. Nau 1. Dr. 2. Aut 3. R. 1 Me 4. Chu	ns Hermann Braess, Ulrich Seiffen, "H EPublications. Iliam H. Crouse., "Automotive Mechanics", Tata E Manuals and Standards. K. Giri, Automobile Mechanics S. Kohali, Automobile Electrical Equipment, Tata rang G. B. S, "Automobile Engineering", S. Cha Reference Book Kirpal Singh, "Automobile Engineering", Volu- comobile Mechanics, "Crouse/Anglin", TATA M B. Gupta, Automobile Engineering, Satya Prak	a McGraw Hill P ta McGraw Hill F and and Company <u>ss</u> me 1, Standard P Acgraw-Hill. tashan. Faculty o	ublishing House. Publishing House. Ltd. ublishers distributors.
SA 2. Wil 3. SA 4. N. 1 5. P. S 6. Nau 1. Dr. 2. Aut 3. R. 1 Me 4. Chi Pra	ns Hermann Braess, Ulrich Seiffen, "H EPublications. Iliam H. Crouse., "Automotive Mechanics", Tata E Manuals and Standards. K. Giri, Automobile Mechanics S. Kohali, Automobile Electrical Equipment, Tata rang G. B. S, "Automobile Engineering", S. Cha Reference Book Kirpal Singh, "Automobile Engineering", Volu comobile Mechanics, "Crouse/Anglin", TATA M B. Gupta, Automobile Engineering, Satya Prak chanical Engineering Page 25 of 62	a McGraw Hill P ta McGraw Hill F and and Company ss me 1, Standard P Acgraw-Hill. tashan. Faculty o ehicles: Principle	ublishing House. Publishing House. Ltd. ublishers distributors.

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

	Strength of CO-PO/PSO Mapping														
Strength	РО													PSO	
of COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO 1	3	1	-	-	-	-	-	-	-	-	-	-	-	2	
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	-	2	
CO 3	3	2	2	-	-	2	-	-	2	-	-	-	2	2	
CO 4	3	2	2	-	-	2	2	-	2	-	-	-	2	2	
CO 5	3	2	2	2	-	-	2	-	2	-	-	-	2	2	
Avg	3	2	2	2	-	2	2	-	2	-	-	-	2	2	

	Guidelines for Continuous Comprehensive Evaluation of Theory Course										
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted									
1	One Assignment on each unit	10									
2	Online or Offline Test on Each Unit	10									
	Total	20									

		T. Y. B. Tech. Semester: VI (Mechan luct Design, Innovation,		hip		
Teaching	Scheme	Credit Scheme:	Examination Sche	me:		
Theory :	3 hrs/week	03	Insem – 20 Marks End Sem – 60 Mar Continuous Comp Evaluation: 20Mar	rehensive		
	site Courses, if any: -Enging mamics, Manufacturing Propagation					
	-0	Course Objectives				
 Lea eng Exp prod Sur 	blem-solving skills. rn principles of design thir ineering challenges. blore market trends, consud duct innovation and entrepr vey the feasibility and viab nement processes.	mer needs, and competit reneurship.	or offerings to ident	ify opportunities for		
Course O	utcomes: On completion o	f the course, students wil	l be able to-			
		Course Outcomes		Bloom's Level		
CO1	Describe design thinking a problem-solving skills.			2-Understand		
CO2	Apply design thinking tech	hniques to engineer innov	vative solutions.	3-Apply		
CO3	Analyze market trends for opportunities.	•	ntrepreneurship 4-Analyze			
CO4	Analyze product designs t	hrough prototyping for fe	asibility and viability	· 4-Analyze		
		COURSE CONTENT	'S			
	Unit 1: Introduction to P Innovation, and Entrepre	6		COs Mapped - CO1		
Importance Understand Market Ana Introductio Design for Prototyping Unit II I Fundament Concept Ge Design Opt Ergonomic Material Se	of Product Design, Innovati and Role in Mechanical Ex- ling Design Thinking Proce alysis and Identifying Oppo- n to Intellectual Property R Manufacturing and Assemi <u>g Techniques and Rapid Pro</u> Design Fundamentals and als of Engineering Design eneration and Selection cimization Techniques s and Human Factors in De election for Product Design idation and Testing	ngineering ess ortunities ights (IPR) oly (DFMA) Principles ototyping Concept Development	(07 hrs)	COs Mapped - CO1, CO2		

Sustainal	pility in Product Design		
Unit III	Innovation Strategies and Creativity Techniques	(07 hrs)	COs Mapped – CO3
Understa	nding Innovation and its Types		
Innovatio	on Strategies in Mechanical Engineering		
Creativit	y Techniques and Brainstorming		
	hinking in Practice: Ideation Phase		
Value Pr	oposition and Business Model Canvas		
Lean Star	rtup Methodology		
Unit VI	Entrepreneurship in Engineering	(07 hrs)	COs Mapped – CO4
Introduct	ion to Entrepreneurship in Engineering		
Business	Plan Development		
Financial	Management for Startups		
Marketin	g Strategies for Engineering Ventures		
Sales and	Distribution Channels		
Intellectu	al Property Strategy for Startups		
Unit V	Product Development Lifecycle and Project	ct(07 hrs)	COs Mapped –
	Management		CO4
Overviev	v of Product Development Lifecycle (PDLC)		·
Project N	Ianagement Techniques for Product Development		
Risk Ma	nagement in Product Development		
Quality C	Control and Assurance in Product Design		
Agile Me	ethodology in Product Development		
Scaling U	Jp Production and Manufacturing		
	nch Evaluation and Continuous Improvement		
	Text Books		
1.	Idris Mootee, 2013, Design Thinking for Strategic In	novation: What Th	ney Can't Teach You at
-	Business or Design School, Publisher: Wiley		•
2. '	Tom Kelley, 2001, The Art of Innovation: Lessons in	Creativity from ID	EO, America's Leading
	Design Firm, Publisher: Crown Business	-	-
	Eric Ries, 2011, Lean Startup: How Today's Entr	epreneurs Use Con	ntinuous Innovation to
	Create Radically Successful Businesses, Publisher: C	urrency	
	Reference Books	·	
	eanne Liedtka, 2011, Designing for Growth: A E ublisher: Columbia University Press	Design Thinking To	ool Kit for Managers,
2. D	an Olsen, 2015, The Lean Product Playbook: How to nd Rapid Customer Feedback, Publisher: Wiley	o Innovate with Min	nimum Viable Products
3. H	leidi M. Neck, Christopher P. Neck, Emma L. Mur nd Mindset, Publisher: SAGE Publications, Inc	ray, 2017,Entrepre	eneurship: The Practice
1			

	Strength of CO-PO/PSO Mapping													
Strength	РО												PSO	
of COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

CO 1	3	3	3	-	2	2	-	2	-	-	2	2	2	2
CO 2	3	3	3	-	3	2	-	-	-	3	-	2	2	2
CO 3	3	3	3	-	2	2	-	-	-	-	-	2	2	2
CO 4	3	3	3	-	3	2	-	-	-	-	-	2	2	2
Avg	3	3	3	-	3	2	-	2	-	3	2	2	2	2

	Guidelines for Continuous Comprehensive Evaluationof Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	Assignments on each Unit	10				
2	Online/ offline Test on Each Unit	10				
	Total	20				

T. Y. B. Tech. Pattern 2022 Semester: VI (Mechanical Engineering) MEC223016A : Finite Element Analysis Lab							
Teachir	ng Scheme:	neme:					
Practical :02 hrs/week		01	Term Work : 25 Marks Oral : 25 Marks				
Prerequ	uisite Courses, if any: -Mech	hanics of materials, Ther	modynamics, Mach	ine Design			
17. To	o understand the heat transfer particular of the second seco			X			
Course	Outcomes: On completion of	of the course, students wi	ll be able to-				
Course	Outcomes: On completion of		ll be able to–	Bloom's			
Course	-	Course Outcomes		Bloom's Level			
Course CO1		Course Outcomes rse the learner will be a	able to;				
	On completion of the cou	Course Outcomes rse the learner will be a for finite element formulat	able to; ion	Level 3 (Apply)			
C01	On completion of the cou Apply fundamentals of FEA	Course Outcomes rse the learner will be a for finite element formulat ember for displacement, str	able to; ion ess	Level 3 (Apply) 4 (Analyze)			
CO1 CO2	On completion of the cou Apply fundamentals of FEA Analyze the 1D structural me	Course Outcomes rse the learner will be a for finite element formulat ember for displacement, str ember for displacement, str	able to; ion ess ess	Level 3 (Apply) 4 (Analyze) 4 (Analyze)			
CO1 CO2 CO3	On completion of the cou Apply fundamentals of FEA Analyze the 1D structural me Analyze the2D structural me	Course Outcomes rse the learner will be a for finite element formulat ember for displacement, str ember for displacement, str blems for temperature, the	able to; ion ess ess ess rmal stress, heat flux	Level			

The term work shall consist of record of any eight from following topic using any suitable analysis software

- 1. 1D Bar Element Structural Linear Analysis
- 2. Spring Structural Linear Analysis
- 3. Truss Analysis using 1D Element
- 4. Plate/Shell Element Structural Linear Analysis
- 5. Thermal Analysis Steady state Analysis
- 6. Coupled Analysis- (Structural + Thermal)
- 7. Modal Analysis Spring -Mass system, simply supported/Cantilever beam, etc.
- 8. Analysis of Machine Component using 3D Elements
- 9. Eigen Value Buckling Analysis of Beam

Text Books
1. A First Course in the Finite Element Method, Daryl L. Logan
2. Concepts and Applications of Finite Element Analysis, R. D. Cook, et al. Wiley, India
Reference Books

1. Chandrupatla T. R. and Belegunda A. D., —Introduction to Finite Elements in Engineering, Prentice Hall India.

2. Seshu P., —Text book of Finite Element Analysis, PHI Learning Private Ltd. New Delhi, 2010.

3. Bathe K. J., —Finite Element Procedures, Prentice-Hall of India (P) Ltd., New Delhi.

4. Fagan M. J., —Finite Element Analysis, Theory and Practicel, Pearson Education Limited

5. Kwon Y. W., Bang H., —Finite Element Method using MATLABI, CRC Press, 1997

6. S. Moaveni, —Finite element analysis, theory and application with Ansys,

7. Fundamental of Finite Element Analysis, David V. Hutton, Tata McGraw-Hill

8. Gokhale N. S., Deshpande S. S., Bedekar S. V. and Thite A. N., —Practical Finite Element Analysis, 11. Finite to Infinite, Pune

	Strength of CO-PO Mapping													
						I	0						P	SO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	-	-	3	2	-	-	2	-	-	3	2	2
CO2	3	3	3	-	3	2	-	-	2	-	-	3	2	2
CO3	3	3	3	-	3	2	-	-	2	-	-	3	2	2
CO4	3	3	3	-	3	2	-	-	2	-	-	3	2	2
CO5	3	3	3	-	3	2	-	-	2	-	-	3	2	2
Average	3	3	3	-	3	2	-	-	2	-	-	3	2	2

		T. Y. B. Tech. Semester: VI (Mecha 6B: Renewable Energy					
Teaching	ng Scheme: Credit Scheme: Examination Scheme:						
Practica	l :02 hrs/week	01	Term work : 25 marks Oral : 25 marks				
Prerequi	isite Courses, if any: - Eng	gineering Thermodyna	mics, Fluid Mechan	ics , Heat Transfer			
 To To apj 	Objectives: understand the basics of So design the solar thermal plications.	conversion systems and	d solar photovoltaic	systems for differen			
4. To	understand wind energy sc analyse the liquid bio-fuel	and gasifier system					
Course (Dutcomes: On completion	of the course, students w	vill be able to-				
		Course Outcomes		Bloom's Level			
CO1	Apply the knowledge of s	olar thermal and solar P	V systems	3-apply			
CO2	Understand the wind energy conversion systems and wind energy 2-Understand						
CO3	CO3Understand the liquid bio-fuels and gasifier systems2-Understand						
CO4	Understand the working o	f Eval Call		2-Understand			

List of Laboratory Experiments					
Sr. No.	Laboratory Experiments / Assignments	CO Mapped			
1	Visit to Solar thermal System and it's technical and economic analysis.	CO1			
2	Study and plotting I-V characteristics of PV solar cell.	CO1			
3	Visit to solar PV grid connected system and it's technical and economic analysis.	CO1			
4	Design of solar PV roof top standalone and grid connected system.	CO1			
5	Study of wind energy conversion systems and study of it's case studies.	CO2			
6	Analysis of waste management plant	CO3			
7	Analysis of gasifier systems or Cooking stove or liquid bio-fuels.	CO3			
8	Performance characteristics study of fuel cell.	CO4			

Guidelines for Laboratory Conduction

1. Teacher will brief the given experiment to students its procedure, observations, calculation, and outcome of this experiment.

2.Apparatus and equipment's required for the allotted experiment will be provided by the lab assistant.3.Students will perform the allotted experiment in a group under the supervision of faculty and lab assistant.

4.After performing the experiment students will check their readings, analysis, visit report from the

teacher.

5.After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, setup diagram/layout, working principle, procedure, observations, graphs, calculations-technical and economics and conclusion.

Guidelines for Term work Assessment

Each experiment from lab journal is assessed for thirty marks based on three rubrics. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

T. Y. B. Tech. Pattern 2022 Semester: VI (Mechanical Engineering) MEC223016C : Computational Fluid Dynamics Lab						
Teachin	g Scheme:	Credit Scheme:	Examination Schem	ie:		
Practica	l:02hrs/week	01	Termwork:25Marks Oral :25Marks	S		
Prerequ	isite Courses, if any: -					
Course	Outcomes: On completion or	f the course, students w	ill be able to-			
		Course Outcomes		Bloom's Level		
CO1	Recognize the importance	1-Knowledge				
CO2	Recognize forced convection like sphere, cylinder.	ecognize forced convection heat transfer coefficient over regular bodies ke sphere, cylinder.				
CO3	Assessment of drag coefficient in circular pipe under turbulent flow and 3-Apply bent pipe.					
CO4	Pertain how to handling mo fluid	3-Apply				
CO5	Analyze how to handle power law fluids in CFD. 4-Analyze					

Sr. No.	Laboratory Experiments/Assignments	COMapped
1	Turbulent flow in a circular pipe: generating the friction coefficient versus Reynolds number	C01,C03
2	Flow of a power law non Newtonian fluid over an elliptic cylinder	C01,C05
3	Natural convection over a sphere.	CO1
4	Mixed convection over a sphere.	CO1,CO2
5	Forced convection over a sphere.	CO1,CO2
6	Forced convection over two cylinders in tandem arrangement.	CO1,CO2
7	Calculation of flow and heat transfer in a lid driven cavity.	CO1,
8	Wall effect on a sphere in a cylindrical tube.	CO1,CO4
Guidelin	es for Laboratory Conduction	

Student should also submit a detailed report for all the above laboratory practicals.

All simulation results should be validated with correlations available.

The student is expected to attach the simulation predictions and the literature results when he presents the record.

Guidelines for Student's Lab Journal

Write-up should include title, aim, setup diagram/layout, working principle, procedure, observations, graphs, calculations-technical and economics and conclusion.

Guidelines for Term work Assessment

Each experiment from lab journal is assessed for thirty marks based on three rubrics. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

Teaching	e:			
Practical	ks			
Prerequis	site Courses, if any: -Engin	neering Mathematics, Th	neory of probability, Sta	tistics
To famil optimizati To familia	bjectives: iarize the students with ion functions in an organization arize the students with vario	tion.	n, probability, statistics a	and simulation, a
applicable	e in particular scenarios in i	ndustry for better manag	gement of various resour	ces.
Course O	outcomes: On completion of	f the course, students w	ill be able to-	
		Course Outcomes		Bloom's Level
CO1	Apply LPP and Decision	Theory to solve the prob	olems	3-Apply
CO2	Apply the concept of tran resources	imize available	3-Apply	
CO3	Apply the concept of Inventory control and replacement analysis			
CO4	Evaluate the process para models	3-Apply		
CO5	Analyze the project mana	4-Analyze		
	List of La	boratory Experiments	/ Assignments	
Sr. No.	Practical/Lab to be pe	packages	r using OR/Statistical	CO Mapped
1	To solve Linear Program (i) Unbounded solution (i multiple solutions.			CO1
2	Solution of LPP with sim	plex method and Big –	M method.	CO1
3	Solution of Transportatio	n Problem		CO2
4	Solution of Assignment H	Problem.		CO2
5	Problems based on select	ive inventory classificat	ion (ABC analysis).	CO3
6	To determine the perform			CO4
7	To perform Project scheduling of a given project (Deterministic case- CPM).			CO5
8	To perform Project sched PERT).			CO5
	Guide	lines for Laboratory C	onduction	

6. Students will perform the allotted experiment/assignment in a group (two students in each group)

under the supervision of faculty and lab assistant.

7. After performing the experiment/assignment students will check their readings, calculations from the teacher.

8. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, and diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Term work Assessment

18. Each experiment from lab journal is assessed for thirty marks based on three rubrics.

19. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

Text Books

1. Prem Kumar Gupta, D. S. Hira, Problems in Operations Research: Principles and Solutions, S. Chand, 1991

2. J. K. Sharma, Operations Research: Theory and Application, Laxmi pub. India, 2010.

3. Operations Research, S. D. Sharma, Kedar Nath Ram Nath-Meerut, 2015.

4. L.C.Jhamb, Quantative Techniques Vol. I &II, Everest Publication, 2007.

5. Manohar Mahajan, Operation Research, Dhanpatrai Publication, 2006.

6. V. K. Kapoor, Operations Research: Quantitative Techniques for Management, Sultan Chand Publications, 2013.

Reference Books

1. Hillier F.S., and Lieberman G.J., Operations Research, Eight Edition, Mc. Tata McGraw Hill, India, 2011.

2. Ravindran, -Engineering optimization Methods and Applications, 2nd edition, Wiley, India

3. Ravindran, Phillips and Solberg, Operations Research Principles and Practice, Second Edition, Mc. WSE Willey,

4. Operations Research - An introduction, Hamdy A Taha, Pearson Education, 2010

				Stren	gth of C	CO-PO I	Mapping	g				
						Р	0					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	2	-	-	1	-	-	-	-	-	1	2
CO2	2	2	-	-	1	-	-	-	-	-	1	2
CO3	2	2	-	-	1	-	-	-	-	-	1	2
CO4	2	2	-	-	1	-	-	-	-	-	1	2
CO5	2	2	-	-	1	-	-	-	-	-	1	2
Average	2	2	-	-	1	-	-	-	-	-	1	2

	Pattorn 20	T. Y. B. Tech. 22 Semester: VI (Mechanical	Fnginooring	r)		
		IEC223017 :Machine Intellig		5)		
Teaching Sc		Credit Scheme:	Examinati	on Sche	eme:	
Theory:03h	rs/week	03	Continuous Comprehensive Evaluation:20Marks In Sem Exam: 20 Marks End SemExam:60 Marks			
Prerequisite	Courses:-Engineer	ing Mathematics, Linear Algeb	ora, Probabili	ity, Basi	c Statistics	
 APPI APPI APPI DEM essen 	ERSTAND the func LY Feature Extraction LY fundamental of constracted ONSTRATE the abilitial steps, emphasized	lamentals of Artificial Intellige on and Selection techniques to classification and regression algo bility to develop machine learn ing practical application in med of reinforced and deep learning	process datas orithms. ning models chanical engi	ets. by outli neering	ning and executing contexts.	
Course Outo	comes: on completion	on of the course, students will b	be able to-			
		Course Outcomes			Bloom's Level	
CO1	APPLY fundamental principles of Artificial Intelligence and 2-Understanding Machine Learning.					
CO2	problems using M			_	2-Understanding	
CO3	APPLY feature e the given dataset	extraction and selection technic	ues to prepro	ocess	3-Apply	
CO4		E classification and regression nical engineering, enabling the le solutions			3-Apply	
CO5		hine learning models, to a nanical engineering by following.			4-Analyze	
		COURSECONTEN	TS	-		
Unit I	Introduction	to AI & ML	(08 hrs)	COs	Mapped -CO1	
learning Basi and manipula Ethical consi Introductior	cs of AI: Reasoning ation. Approaches to derations in AI, Soc to Machine Learn	and history of AI, Comparison of g, Knowledge representation, P o AI: Cybernetics and brain sim- cietal Impact and Responsible A hing. earning, Unsupervised learning	lanning, Lean Iulation, Sym AI	rning, Po Ibolic, S	erception, Motion Sub-symbolic,	
Unit II	Feature Engi	neering	(07 hrs)	Cos N	/Iapped –CO3	
backward me	ection: Filter Methods, feature Rank	hod, Wrapper Method, Emb ing techniques, Decision tree features, Principal Compon		ods, Gi	reedy forward &	
Statistical fea	atures and PCA)					

2021.

Unit III	Machine Learning Algorithms(07 hrs)COsMapped -CO4							
Classification	Decision tree- Entropy reduction and information	on gain, Ranc	lom Forest, Naive Bayes,					
Support vector	machine. (Numerical based on Decision tree using	ng IG and Ba	ys theorem only)					
Regression: L	ogistic Regression, K-Means, K-Nearest Neigl	nbor (KNN),	Time series forecasting					
Algorithms (A	RIMA, SARIMA, LSTM)							
Unit IV	Development of Machine Learning Model	(07 hrs)	COs Mapped –CO5					
Problem identif	ication: classification, clustering, regression, ranking	. Steps in ML	modeling, Data Collection,					
Data pre-proces	sing, Model Selection, Model training (Training, Test	ting, K-fold Cr	oss Validation), parameters					
for Model eval	uation of classification and regression algorithms	(confusion ma	atrix, Accuracy, Precision,					
Recall, True pos	sitive, false positive etc.), Hyper parameter Tuning. I	ntroduction to	Artificial Neural Network,					
Convolution Ne	ural Network.							
Unit V	Introduction to Emerging Technologies	(07 hrs)	COs Mapped –CO2					
Characteristics	of reinforced learning Algorithms: Value Based	, Policy Base	d, Model Based; Positive					
vs Negative R	einforced Learning Models, Markov Decision Pr	ocess, Deep	Learning, Introduction to					
digital twin (D	efinition, Components, Characteristics, Applicati	ons) and basi	cs of Transfer Learning.					
Application of	Artificial Intelligence and Machine Learning							
	Text Books							
1. B Joshi, Mach	ine Learning and Artificial Intelligence, Springer, 20	20.						
	ni and Prachi Joshi, "Artificial Intelligence – Building		stems", PHI learning Pvt.					
Ltd., ISBN – 9	978-81-203-5046-5, 2015							
	Reference Books							
1. Stuart Russell Pearson, 2003.	and Peter Norvig (1995), "Artificial Intelligence: A N	Modern Appro	ach," Third edition,					
	ar, Nayyar, Emerging Trends and Applications of Ma							
	mizdeh, Talwalkar, Foundations of Machine Learning							
4. Kumar, Zinda 2021	ni, Davim, Artificial Intelligence in Mechanical and I	ndustrial Engi	neering, CRC Press,					

				Strengt	h of CO	D-PO N	Aappin	g						
	PO													
	1	2	3	4	5	6	7	8	9	10	11	12	PS	PS
													01	02
CO1	3	3	2	-	-	-	-	2	-	2	-	-	2	2
CO2	3	3	2	2	-	-	-	2	-	2	-	-	2	2
CO3	3	3	2	2	-	-	-	2	-	2	-	-	2	2
CO4	3	3	2	2	-	-	-	2	-	2	-	-	2	2
CO5	3	3	2	2	-	-	-	2	-	2	-	-	2	2
Averag e	3	3	2	2	-	-	-	2	-	2	-	-	2	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted					
1	Assignment on each unit	10					
2	Test (Online/Offline) on each unit	10					
		20					

	Pattern 2022	T. Y. B. Tech. Semester: VI (Mechan	ical Engineering)		
		223018 : Financial Mar			
Teaching	Credit Scheme: Examination Scheme				
Theory: 2	Continuous Com Evaluation: 50Ma	-			
Prerequi	site Courses, if any: -Funda	amentals of Statistics, Ba	asics of finance		
		Course Objectives			
5. Te	o introduce the concepts of eco	onomics & finance in indus	stry.		
6. Te	o understand cost analysis and	pricing			
7. Te	o acquire knowledge on basi	ic financial management	aspects and develop	the skills to analyze	
fi	nancial statements				
8. To	o understand the budgetary pro	ocess and control.			
9. To	o introduce the entrepreneurial	financial aspects.			
Course O	Dutcomes: On completion o	f the course, students will	ll be able to-		
		Course Outcomes		Bloom's Leve	
CO1	UNDERSTAND the busine	ess environment, concepts of	of economics and	2-Understand	
COI	demand-supply scenario.			2-Onderstand	
CO2	UNDERSTAND accounting	g systems and analyze fina	ncial statements using	2-Understand	
02	ratio analysis			2-Onderstand	
CO3	APPLY the concepts of cos	ting and pricing to evaluate	e the pricing of	3-Apply	
005	mechanical components.			5 rippiy	
CO4	SELECT and PREPARE th		et and understand the	3-Apply	
004	controlling aspects of budge				
CO5	DEMONSTRATE understa	nding of financing decision	ns of new ventures and	l 4-Analyze	
000	performance			1 1 11 11 120	
		COURSE CONTENT	ſS		
Unit I	Introduction to Econ	omics	(04hrs)	Cos Mapped – CO1	
Concepts, Business (Business F Demand a Elasticity	s: Significance of Economic Importance of National Inco Cycle, Features and Phases of Economist, Multidisciplinary me and Supply: Elasticity, Type of Demand, Factors affecting forecasting: Characteristics of	ome, Inflation, Money Su Business Cycle. Nature an ature of Business Econom s of Elasticity, Law of De g Elasticity of Demand, E	pply in Inflation, Fac nd Scope of Business ics emand, Measurement clasticity of Demand i	etors of Production, Economics, Role of and Significance of in decision making,	
2 children I		2004 Demand Porocusting		Cos Mapped –	
Unit II	Costs and Cost Accounti	ing	(05hrs)	CO1,CO3	
Costs: Sta	ndard cost, estimated cost, Fir	st cost, Fixed cost, Variab	le cost, Incremental co	,	
	marginal cost, Cost curves, B	-			
	ion of breakeven chart, mar	• • •			
-	Cost Output Decision and Estir		-		
Cost Acco	ounting: Objectives of cost ad	ccounting, elements of cos	t: material cost, labor	cost, and expenses,	

apportionmen	t and absorption, Different Models of Depreciation. N	vullierical oli costili	-
Unit III	Financial Accounting	(5hrs)	Cos Mapped – CO1,CO2
principles, po Expenses, Ga Trial Balance Liabilities Ba Ratio Analys	Cost accounting & Management accounting, Varior stulates & meaning of accounting standards, Accourt ins & Losses, Types of accounts & their rules, Jou , Finalizations, Preparation of Trading & Profit & I lance sheet and related concepts – Profit & Loss S is, Cash flow analysis, Funds flow analysis, Comp of financial statements, Concept of Ratio Analysis, F	ting cycle, Capital rnal Entries Create Loss account, Unde Statement and relat parative financial s	and revenue, Revenue, ledger, Preparation of erstanding of Assets & ed concepts, Financial tatements, Analysis &
Unit VI	Budget and Budgetary Control	(05hrs)	Cos Mapped – CO1,CO4
and flexible t Planning, Imp	ontrol: objectives, merits and limitations, Budget a budgets, Installation of Budgetary Control System, 2 bact of Taxation and Inflation on Financial Manageme	Zero base budgeting ent	-
Unit V	Entrepreneurial Finance	(05 hrs)	CO1,CO5
Business Ang Sourcing, Dea	Funds for Entrepreneurs and Start Ups: Entrepr ources of Funds, Early-Stage Sources of Funds- I gels, Mezzanine Funds, Venture Capitals, Private al Negotiation, Deal Agreement, Term Sheet Decisions for Start Ups: Time Value of Money,	ncubators, Accelera Equity, LBO, Fu	ators, Crowd Funding, nding Process – Deal
Business Ang Sourcing, Dea Investment I Budgeting Pro Rate, Certaint Valuation an Influencing V	ources of Funds, Early-Stage Sources of Funds- I gels, Mezzanine Funds, Venture Capitals, Private Il Negotiation, Deal Agreement, Term Sheet	ncubators, Accelera Equity, LBO, Fur Types of Investme pital Budgeting – R cenario Analysis Ioney and Post Mo	ators, Crowd Funding, nding Process – Deal ent Decisions, Capital Lisk Adjusted Discount ney Valuation, Factors
Business Ang Sourcing, Dea Investment I Budgeting Pro Rate, Certaint Valuation an Influencing V	ources of Funds, Early-Stage Sources of Funds- I gels, Mezzanine Funds, Venture Capitals, Private al Negotiation, Deal Agreement, Term Sheet Decisions for Start Ups: Time Value of Money, pcess – Investment Evaluation, Risk Analysis in Ca y Equivalent, Decision Tree, Sensitivity Analysis, Sc d Measurement of Financial Performance: Pre M aluation, Valuation Methods, Dilution and Valuation	ncubators, Accelera Equity, LBO, Fur Types of Investme pital Budgeting – R cenario Analysis Ioney and Post Mo	ators, Crowd Funding, nding Process – Deal ent Decisions, Capital Lisk Adjusted Discount ney Valuation, Factors
Business Ang Sourcing, Dea Investment I Budgeting Pro Rate, Certaint Valuation an Influencing V Evaluation, H 4. Hay, Evide 5. Lall, 6. Scher (Hou 7. Finan	ources of Funds, Early-Stage Sources of Funds- I gels, Mezzanine Funds, Venture Capitals, Private al Negotiation, Deal Agreement, Term Sheet Decisions for Start Ups: Time Value of Money, peess – Investment Evaluation, Risk Analysis in Ca y Equivalent, Decision Tree, Sensitivity Analysis, Sc d Measurement of Financial Performance: Pre N aluation, Valuation Methods, Dilution and Valuation arvesting-Exit Strategies	ncubators, Accelera Equity, LBO, Fur Types of Investme pital Budgeting – R cenario Analysis Ioney and Post Mo n of Equity, Metrics conomics and Or ss), 1991. s (Cheltenham: Ec re and Economic	ators, Crowd Funding, nding Process – Deal ent Decisions, Capital tisk Adjusted Discount ney Valuation, Factors s used for Performance ganization: Theory and Iward Elgar), 2001. Performance, 3 rd Edition ing House] 4.Chandra
Business Ang Sourcing, Dea Investment I Budgeting Pro Rate, Certaint Valuation an Influencing V Evaluation, H 4. Hay, Evide 5. Lall, 6. Scher (Hou 7. Finan Prasa	ources of Funds, Early-Stage Sources of Funds- I gels, Mezzanine Funds, Venture Capitals, Private al Negotiation, Deal Agreement, Term Sheet Decisions for Start Ups: Time Value of Money, beess – Investment Evaluation, Risk Analysis in Ca y Equivalent, Decision Tree, Sensitivity Analysis, Sc d Measurement of Financial Performance: Pre M aluation, Valuation Methods, Dilution and Valuation arvesting-Exit Strategies Text Books Donald A. and Derek J. Morris. Industrial E ence, 2 nd Edition (Oxford: Oxford University Pre Sanjaya. Competitiveness, Technology and Skill rer, F. M. and D. Ross. Industrial Market Structu ghton: Mifflin), 1990 acial Accounting", Dr. Kaustubh Sontakke [I	ncubators, Accelera Equity, LBO, Fur Types of Investme pital Budgeting – R cenario Analysis Ioney and Post Mo n of Equity, Metrics conomics and Or ss), 1991. s (Cheltenham: Ec re and Economic	ators, Crowd Funding, nding Process – Deal ent Decisions, Capital tisk Adjusted Discount ney Valuation, Factors s used for Performance ganization: Theory and Iward Elgar), 2001. Performance, 3 rd Editio ing House] 4.Chandra
Business Ang Sourcing, Dea Investment I Budgeting Pro Rate, Certaint Valuation an Influencing V Evaluation, H 4. Hay, Evide 5. Lall, 6. Schen (Hou, 7. Finan Prasa Hill.	ources of Funds, Early-Stage Sources of Funds- I gels, Mezzanine Funds, Venture Capitals, Private al Negotiation, Deal Agreement, Term Sheet Decisions for Start Ups: Time Value of Money, Decess – Investment Evaluation, Risk Analysis in Ca- y Equivalent, Decision Tree, Sensitivity Analysis, Sc d Measurement of Financial Performance: Pre M aluation, Valuation Methods, Dilution and Valuation arvesting-Exit Strategies Text Books Donald A. and Derek J. Morris. Industrial E ence, 2 nd Edition (Oxford: Oxford University Pre Sanjaya. Competitiveness, Technology and Skill rer, F. M. and D. Ross. Industrial Market Structu ghton: Mifflin), 1990 cial Accounting", Dr. Kaustubh Sontakke [I nna (2004). Financial Management: Theory ar	ncubators, Accelera Equity, LBO, Fur Types of Investme pital Budgeting – R senario Analysis Ioney and Post Mo n of Equity, Metrics conomics and Or ss), 1991. s (Cheltenham: Ec re and Economic T Himalaya Publish nd Practice. New	ators, Crowd Funding, nding Process – Deal ent Decisions, Capital tisk Adjusted Discount ney Valuation, Factors s used for Performance ganization: Theory and lward Elgar), 2001. Performance, 3 rd Editio ing House] 4.Chandra Delhi: TATA McGrav
Business Ang Sourcing, Dea Investment I Budgeting Pro Rate, Certaint Valuation and Influencing V Evaluation, H 4. Hay, Evide 5. Lall, 6. Scher (Hou 7. Finan Prasa Hill.	ources of Funds, Early-Stage Sources of Funds- I gels, Mezzanine Funds, Venture Capitals, Private al Negotiation, Deal Agreement, Term Sheet Decisions for Start Ups: Time Value of Money, pocess – Investment Evaluation, Risk Analysis in Ca y Equivalent, Decision Tree, Sensitivity Analysis, Sc d Measurement of Financial Performance: Pre M aluation, Valuation Methods, Dilution and Valuation arvesting-Exit Strategies Text Books Donald A. and Derek J. Morris. Industrial E ence, 2 nd Edition (Oxford: Oxford University Pre Sanjaya. Competitiveness, Technology and Skill rer, F. M. and D. Ross. Industrial Market Structu ghton: Mifflin), 1990 cial Accounting", Dr. Kaustubh Sontakke [I nna (2004). Financial Management: Theory ar	ncubators, Accelera Equity, LBO, Fur Types of Investme pital Budgeting – R cenario Analysis Ioney and Post Mo n of Equity, Metrics conomics and Or ss), 1991. s (Cheltenham: Ec re and Economic Himalaya Publish nd Practice. New	ators, Crowd Funding, nding Process – Deal ent Decisions, Capital Lisk Adjusted Discount ney Valuation, Factors s used for Performance ganization: Theory and ward Elgar), 2001. Performance, 3 rd Editio ing House] 4.Chandra Delhi: TATA McGrav
Business Ang Sourcing, Dea Investment I Budgeting Pro Rate, Certaint Valuation an Influencing V Evaluation, H 4. Hay, Evide 5. Lall, 6. Scher (Hou, 7. Finan Prasa Hill. 1. Accou 2. Breat McGr	ources of Funds, Early-Stage Sources of Funds- I gels, Mezzanine Funds, Venture Capitals, Private al Negotiation, Deal Agreement, Term Sheet Decisions for Start Ups: Time Value of Money, beess – Investment Evaluation, Risk Analysis in Ca- y Equivalent, Decision Tree, Sensitivity Analysis, Sc d Measurement of Financial Performance: Pre M aluation, Valuation Methods, Dilution and Valuation arvesting-Exit Strategies Text Books Donald A. and Derek J. Morris. Industrial E ence, 2 nd Edition (Oxford: Oxford University Pre Sanjaya. Competitiveness, Technology and Skill rer, F. M. and D. Ross. Industrial Market Structu ghton: Mifflin), 1990 cial Accounting'', Dr. Kaustubh Sontakke [I nna (2004). Financial Management: Theory ar <u>Reference Books</u> unting Theory & Practice Prof Jawahar Lal [Himalays ley, Richard A. and Myers, Stewart C. (1988). "Pr	ncubators, Accelera Equity, LBO, Fur Types of Investme pital Budgeting – R cenario Analysis Ioney and Post Mo n of Equity, Metrics conomics and Or ss), 1991. s (Cheltenham: Ec re and Economic Himalaya Publish nd Practice. New	ators, Crowd Funding, nding Process – Deal ent Decisions, Capital Lisk Adjusted Discount ney Valuation, Factors s used for Performance rganization: Theory an Iward Elgar), 2001. Performance, 3 rd Edition ing House] 4.Chandra Delhi: TATA McGrav

5. Mechanical Estimating and Costing, T. R. Banga and S. C. Sharma, Khanna Publishers, Delhi

				Stre	ngth o	f CO-I	PO/PS	O Map	ping					
Strength						1	PO						PSO	
of Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	-	-	-	-	-	-	-	-	-	-	3	3	-	-
CO 2	-	-	-	-	-	-	-	-	-	-	3	3	-	-
CO 3	-	-	-	-	-	-	-	-	-	-	3	3	-	-
CO 4	-	-	-	-	-	-	-	-	-	-	3	3	-	-
CO 5	-	-	-	-	-	-	-	-	-	-	3	3	-	-
Avg	-	-	-	-	-	-	-	-	-	-	3	3	-	-

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted					
1	One LMS Test on each Unit (10 marks) Total 50 marks will be converted into 25 marks	25					
2	Test- I (25 marks) and Test-II (25 marks) Total marks will be converted into 20 marks	20					
3	Certification course using any Mooc's platform	05					
	Total	50					

		T. Y. B. Tech Semester: VI (Mechan Measurement and Autor	8				
Teaching	Scheme:	Credit Scheme:	me:				
	01 hrs / week 02 hrs / week	01 01	s 5 Marks				
Engineering		f linear measurement,	Physics, Fundamen	ntals of Mechanica			
Course Ob	jectives:						
• To c	develop essential skills for o	calibrating and testing ins	truments.				
	apply basics of measurer rpretation and expertise in d	Ŭ	0 0	ta, analysis, and			
• To c	demonstratevarious robotic	configurations using indu	ustrial robot				
	select appropriate hydrauli	0 0		specified system			
	irements, performance crit		•				
-	-		-				
	summarize troubleshooting		or identifying and re	esolving common			
1SSU	es encountered in fluid pow	/er systems					
				1			
		Course Outcomes		Bloom's Level			
CO1	Selection of measurem collection and its analysi	ent methods and standa s.	ards, carryout data	2-Understanding			
CO2	of Gauges.	olerances, geometric tole	-	3- Apply			
CO3	Demonstrate of various	robotic configurations us	ing industrial robot	3- Apply			
CO4	Construct Industrial circuits using suitable hydraulic and pneumatic components 3- Apply						
CO5	Design an industrial flui	d power system		5 - Evaluate			
		COURSE CONTENT	S	•			
The studer	nt shall complete the follow	ving activity as a Term W	ork,				

- Demonstrate and compute linear and angular measurements employing tools such as 1. Vernier Caliper, Screw Gauge, Dial Gauge, Height Gauge, Bevel Protector, etc. Analyze measurement errors using OER software, Minitab, or Excel sheets.
- 2. Determine Parameters of screw thread using floating carriage micrometer.
- Determine the geometry and dimensions of a given composite object or a single-point tool 3. using an Optical Projector or Tool Maker's Microscope. Evaluate and distinguish its practical utility in real-life applications.
- 4. Measurement of the any one characteristics from the following using any suitable measurement system,
 - a. Surface roughness

- b. Gear tooth Parameter
- c. Verification of composite geometry.
- 5. Limit Gauges: Concepts, uses and applications of Go –No Go Gauges, Taylor's principle and Design of gauges (Numerical and student activity)
- 6. Demonstration of various robotic configurations using industrial robot
- 7. Demonstrate industrial circuits on Hydraulic trainers
- 8. Demonstrate industrial circuits on Pneumatic trainers
- 9. Design an industrial fluid power system to address a specified problem by selecting components from manufacturer catalogs.
- 10. Exploring Industrial Automation Systems: Site Visit.

Important Note:

Industry visit for advanced in measurement and automation to provide exposure to students.

Text Books

- 1. Jain R.K., Engineering Metrology, Khanna Publication.
- 2. I.C.Gupta, Engineering Metrology, Dhanpath Rai.
- 3. Bewoor A. K. and Kulkarni V. A., Metrology and Measurements, McGraw hill Publication.
- 4. Esposito A, Fluid Power with application, Prentice Hall
- 5. Majumdar S.R, Oil Hydraulic system- Principle and maintenance ,Tata McGraw Hill
- 6. Majumdar S.R, Pneumatics Systems Principles and Maintenance ,Tata McGraw Hill
- 7. Stewart H. L, Hydraulics and Pneumatics, Taraporewala Publication

Reference Books

- 1. Narayana K.L., Engineering Metrology.
- 2. Galyer J.F & Shotbolt C.R., Metrology for engineers
- 3. Judge A.W., Engineering Precision Measurements, Chapman and Hall
- 4. ASTME, Handbook of Industrial Metrology, Prentice Hall of India Ltd.
- 5. Connie Dotson, Fundamentals of Dimensional Metrology, Thamson Publn. 4th Edition.
- 6. Pipenger J.J, Industrial Hydraulics, McGraw Hill
- 7. Pinches, Industrial Fluid Power, Prentice Hall
- 8. ISO 1219, Fluid Systems and components, Graphic Symbols
- 9. Fundamentals of Pneumatics, Vol I, II and III. FESTO
- 10. Fundamentals of fluid power control, John Watton Cambridge University press
- 11. Introduction to Fluid power, Thomson Prentcie Hall
- 12. Hydraulic Control Systems Herbert E. Merritt John Wiley and Sons, Inc

Codes / Handbooks

Francis T. Farago, Mark A. Curtis, Handbook of dimensional measurement

E- resources

- 1. nptel.ac.in/courses/112106179
- 2. <u>www.nptelvideos.in/2012/12/mechanical-measurements-and-metrology.html</u>
- 3. https://nptel.ac.in/courses/112/107/112107242/
- 4. freevideolectures.com > Mechanical > IIT Madras
- 5. https://nptel.ac.in/courses/112/106/112106139/
- 6. <u>https://archive.nptel.ac.in/courses/112/106/112106175/#</u>
- 7. https://archive.nptel.ac.in/courses/112/106/112106300/

		Strength of CO-PO/PSO Mapping												
		РО										PS	0	
Strength of CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	-	3	-	-	-	-	2	2	1	2	2	1
CO 2	3	2	-	3	3	-	-	-	2	2	1	2	2	1
CO 3	3	2	-	3	2	-	-	-	2	2	1	2	2	2
CO 4	3	2	-	3	2	-	-	2	2	2	1	2	2	2
CO 5	3	2	3	3	2	-	-	3	2	2	1	2	2	2

Gui	Guidelines for Teamwork Assessment								
Continuous Assessment Policy									
(Term work marks of 25 will be awarded based on the following policy)									
Each laboratory assignment wil	l be assessed f	For 30 Marks according to the following rubrics:							
R1- Timely completion of assig	nments (10 M	arks)							
R2- Understanding of assignme	ent (10 Marks)								
R3 – Presentation/Clarity of jou	•								
For all 10 Experiments, total man	rks of 300 will	be converted into 25 Marks.							
Description	Weightage	Evaluation criteria							
R1-Timely completion of	10 Marks	Each experiment/assignment will get 10 marks							
assignments		for timely submission.							
		Late submission will be valued as 5 in totality.							
		Fail to submit will be valued as 0 in totality							
R2- Understanding of	10 Marks	Understanding of assignments is based on oral							
assignment.		questions based on assignment.							
R3 – Presentation/Clarity of	10 Marks	Completed sheet with proper dimensioning, line							
Drawing Sheets		work carries 10 marks.							

		T. Y. B. Tech ester: VI (Mec C223020 : Sem	hanical Engineering inar
Teach	ing Scheme:	Credit Scheme:	Examination Scheme:
Practi	cal:2 hrs./week	1	TermWork : 50Marks
Prerec	uisite Courses:		
	 specialization. Analyze the technical specialization. Evaluate the implication innovations. Demonstrate the abilities and develop competence. 	al and practions of these of the section of the sec	eal-world scenarios related to the cal challenges within their cours challenges on industry practices an interpret and analyze technical issue entation, the student is expected to
		Course Ou	tcomes
1	<i>Applying</i> problem-solving adaptability and creativity in		real-world scenarios, demonstratin ve solutions.
2	Illustrate technical and prac	ctical issues rele	vant to their specialization.
	<i>Comparing</i> the potential	impact of the	se challenges on various sectors of
3	segments within the industry	-	

Course Overview:

This course is designed to enhance the intellectual and professional development of third-year mechanical engineering students by providing them with an opportunity to explore and present on advanced topics relevant to the field. This seminar aims to foster critical thinking, research skills, and effective communication abilities among the students.

Selection of Seminar Topic: (Week 1)

Choose topics that align with current trends, emerging technologies, and challenges in the field of mechanical engineering.

Encourage diversity in topic selection to cover a broad spectrum of sub-disciplines within mechanical engineering, such as thermodynamics, materials science, manufacturing, robotics, fluid mechanics, and sustainable design.

Allocate sufficient time for students to conduct in-depth research on their chosen seminar topic.

Encourage the use of reputable academic sources, journals, and research papers for information gathering.

Emphasize the importance of critical analysis and synthesis of information to form well-supported arguments.

Guidance for the Presentation: (Week 5)

Provide guidance on effective presentation techniques, including clear slides, proper use of visual aids, and engaging delivery.

Encourage students to practice their presentations to ensure they adhere to time limits and effectively convey their message.

Highlight the importance of maintaining eye contact, using confident body language, and responding to audience questions with clarity.

Stage I Presentation: (Week 6)

Follow the guidelines for the presentation

Stage I presentation slides should include introduction, literature review and concept.

Stage I presentation to be delivered to the seminar guide.

Report Preparation: (Week 7 to 9)

The students should get draft copy of the report checked from the allotted seminar guide.

Students are expected to maintain a high standard of originality, with a permissible similarity threshold limited to 10%.

Stage II Presentation: (Week 10)

Stage II presentation slides should be as per format and structure provided.

Stage II presentation to be delivered in front of the internal panel.

Report & PPT Editing: (Week 11 to 12)

Report and PPT should be modified as per the suggestions/corrections given by the internal panel.

Final Presentation:

The final presentation/viva will be assessed by a committee including an expert (preferably from industry with minimum 5 years' experience) and an internal panel. The internal panel will consist of the seminar guide and two subject experts, approved by the HOD and the principal of the institute.

Format and Structure for Seminar Report Writing:

Introduction: Provide a clear and concise introduction to the chosen topic, highlighting its relevance and significance in the field of mechanical engineering.

Literature Review: Summarize key findings from relevant literature and discuss the existing knowledge base on the selected topic.

Methodology (if applicable): Outline any experimental methods, simulations, or data analysis techniques employed in the research.

Results and Discussion: Present and analyze the findings, addressing any challenges or limitations encountered during the research process.

Conclusions: Summarize the key takeaways and contributions of the seminar, along with potential avenues for future research.

Q&A Session: Allow time for questions and discussions, promoting interaction and engagement with the audience.