

## K.K.Wagh Institute of Engineering Education and Research, Nasik (Autonomous w.e.f. A.Y.2022-23) Details of Course Structure: S.Y. B.Tech Electrical Engineering

## • Summary of Credits and Total Marks for U.G.Programme:

| Semester | S.Y. B.Tech                           |             |  |  |  |  |  |  |
|----------|---------------------------------------|-------------|--|--|--|--|--|--|
|          | <b>Total Credits</b><br>(TH+PR/OR/TU) | Total Marks |  |  |  |  |  |  |
| III      | 22                                    | 750         |  |  |  |  |  |  |
| IV       | 20                                    | 700         |  |  |  |  |  |  |
| Total    | 42                                    | 1450        |  |  |  |  |  |  |

### • Description of various Courses:

| Type of Course | Description                                   | Type of Course | Description                                  |  |  |
|----------------|-----------------------------------------------|----------------|----------------------------------------------|--|--|
| ESC            | Engineering Science Course - Workshop -       | DCC            | Department Core Course                       |  |  |
| ESC            | Drawing- Fundamentals of different branches   | Dec            |                                              |  |  |
| BSC            | Basic Science Courses                         | DEC            | Department Elective Course                   |  |  |
| LICM           | Liberal arts, Humanities, Social Sciences and | OEC            | Open Elective Courses of other technical or  |  |  |
|                | Management courses                            | UEC            | emerging areas /Courses designed by Industry |  |  |
| PSI            | Project work, Seminar, Internship, PBL        | IMC            | Induction and Mandatory Courses              |  |  |
| NC/AC          | Non Credit Courses /Audit Courses             | ASM            | Additional Specialized / MOOCs               |  |  |



## K.K.Wagh Institute of Engineering Education and Research, Nasik (Autonomous w.e.f. A.Y.2022-23) Details of Course Structure: S.Y. B.Tech Electrical Engineering

|           |        |                                         |           |                   |            | SEM                                | -III   |     |       |    |        |           |        |         |           |       |
|-----------|--------|-----------------------------------------|-----------|-------------------|------------|------------------------------------|--------|-----|-------|----|--------|-----------|--------|---------|-----------|-------|
| Course    | Course | Title of the Course                     | Teac<br>H | hing Sc<br>rs./We | heme<br>ek | <b>Evaluation Scheme and Marks</b> |        |     |       |    |        |           |        | Credits |           |       |
| Code      | Туре   |                                         | ТН        | TU                | PR         | INSEM                              | ENDSEM | CCE | TU/TW | PR | O<br>R | Tota<br>l | T<br>H | T<br>U  | PR/O<br>R | Total |
| SMH222001 | BSC    | Applied Mathematics-<br>III             | 3         | 1                 |            | 20                                 | 60     | 20  | 25    |    |        | 125       | 3      | 1       |           | 4     |
| ELE222002 | DCC    | Analog and Digital<br>Circuits          | 3         |                   |            | 20                                 | 60     | 20  |       |    |        | 100       | 3      |         |           | 3     |
| ELE222003 | DCC    | Measurement and<br>Instrumentation      | 3         |                   |            | 20                                 | 60     | 20  |       |    |        | 100       | 3      |         |           | 3     |
| ELE222004 | ESC    | Electrical Engineering<br>Materials     | 3         |                   |            | 20                                 | 60     | 20  |       |    |        | 100       | 3      |         |           | 3     |
| ELE222005 | DCC    | Transformer and<br>Induction Machines   | 3         |                   |            | 20                                 | 60     | 20  |       |    |        | 100       | 3      |         |           | 3     |
| ELE222006 | LHSM   | Engineering Ethics                      | 1         |                   |            |                                    |        |     | 25    |    |        | 25        | 1      |         |           | 1     |
| ELE222007 | DCC    | Measurement and<br>Machines Lab         |           |                   | 4          |                                    |        |     | 25    | 50 |        | 75        |        |         | 2         | 2     |
| ELE222008 | DCC    | Analog and Digital<br>Circuits Lab      |           |                   | 2          |                                    |        |     | 25    | 25 |        | 50        |        |         | 1         | 1     |
| ELE222009 | ESC    | Electrical Engineering<br>Materials Lab |           |                   | 2          |                                    |        |     | 25    |    | 25     | 50        |        |         | 1         | 1     |
| ELE222010 | PSI    | Python for Numerical<br>Methods         |           |                   | 2          |                                    |        |     | 25    |    |        | 25        |        |         | 1         | 1     |
|           |        | Total                                   | 16        | 1                 | 10         | 100                                | 300    | 100 | 150   | 75 | 25     | 750       | 16     | 1       | 5         | 22    |



## K.K.Wagh Institute of Engineering Education and Research, Nasik (Autonomous w.e.f. A.Y.2022-23) Details of Course Structure: S.Y. B.Tech Electrical Engineering

|           | SEM-IV         |                                             |           |                              |    |                             |        |     |       |    |         |           |        |        |           |       |
|-----------|----------------|---------------------------------------------|-----------|------------------------------|----|-----------------------------|--------|-----|-------|----|---------|-----------|--------|--------|-----------|-------|
| Course    | Course<br>Type | Title of the Course                         | Teac<br>H | Teaching Scheme<br>Hrs./Week |    | Evaluation Scheme and Marks |        |     |       |    | Credits |           |        |        |           |       |
| Code      |                |                                             | ТН        | TU                           | PR | INSEM                       | ENDSEM | CCE | TU/TW | PR | O<br>R  | Tota<br>l | T<br>H | T<br>U | PR/O<br>R | Total |
| ELE222011 | DCC            | Electrical Network<br>Analysis              | 3         |                              |    | 20                          | 60     | 20  |       |    |         | 100       | 3      |        |           | 3     |
| ELE222012 | DCC            | Microcontroller and<br>Embedded Systems     | 3         |                              |    | 20                          | 60     | 20  |       |    |         | 100       | 3      |        |           | 3     |
| ELE222013 | DCC            | Power Electronics                           | 3         |                              |    | 20                          | 60     | 20  |       |    |         | 100       | 3      |        |           | 3     |
| ELE222014 | DCC            | Power System<br>Engineering                 | 3         |                              |    | 20                          | 60     | 20  |       |    |         | 100       | 3      |        |           | 3     |
| ELE222015 | LHSM           | Design Thinking for<br>Academic Project     | 3         |                              |    | 20                          | 60     | 20  |       |    |         | 100       | 3      |        |           | 3     |
| ELE222016 | AC             | Solar PV System                             | 1         |                              |    |                             |        |     |       |    |         |           |        |        |           |       |
| ELE222017 | DCC            | Power Electronics Lab                       |           |                              | 4  |                             |        |     | 25    | 50 |         | 75        |        |        | 2         | 2     |
| ELE222018 | DCC            | Electrical Network<br>Analysis Lab          |           |                              | 2  |                             |        |     | 25    |    | 25      | 50        |        |        | 1         | 1     |
| ELE222019 | DCC            | Microcontroller and<br>Embedded Systems Lab |           |                              | 2  |                             |        |     | 25    |    | 25      | 50        |        |        | 1         | 1     |
| ELE222020 | PSI            | Project Based Learning                      |           |                              | 2  |                             |        |     | 25    |    |         | 25        |        |        | 1         | 1     |
|           |                | Total                                       | 16        | 0                            | 10 | 100                         | 300    | 100 | 100   | 50 | 50      | 700       | 15     | 0      | 5         | 20    |



| S. Y. B. Tech.<br>Pattern 2022 Semester: III (Electrical Engineering)<br>SMH222601: Applied Mathematics-III |                                                 |                             |                         |                          |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------|-------------------------|--------------------------|--|--|--|--|--|--|
| Teaching                                                                                                    | scheme:                                         | Credit Scheme:              | <b>Examination Sche</b> | me:                      |  |  |  |  |  |  |
| Theory:                                                                                                     | 3hrs/week                                       | TH: 3                       | <b>Continuous Comp</b>  | prehensive               |  |  |  |  |  |  |
| Tutorial                                                                                                    | 1hr/week                                        | <b>TU: 1</b>                | Evaluation:             | 20 Marks                 |  |  |  |  |  |  |
|                                                                                                             |                                                 |                             | InSem Exam:             | 20 Marks                 |  |  |  |  |  |  |
|                                                                                                             |                                                 |                             | EndSem Exam:            | 60 Marks                 |  |  |  |  |  |  |
| Prereaui                                                                                                    | site Courses: - Higher Seco                     | ondary Mathematics          | Tutorial / Termwo       | ork: 25 wharks           |  |  |  |  |  |  |
| C                                                                                                           |                                                 |                             |                         |                          |  |  |  |  |  |  |
| Course C                                                                                                    | <b>D</b> bjectives: The objectives (            | of the course are to        | a in Ondinamy diffana   | ntial aquations          |  |  |  |  |  |  |
| I. Make t                                                                                                   |                                                 | in concepts and technique   | Coloration and Option   |                          |  |  |  |  |  |  |
| Laplace the                                                                                                 | ransform, Fourier transform                     | and Z-transform, vector     | Calculus, and Optim     | nization                 |  |  |  |  |  |  |
| 2. Introdu                                                                                                  | ice the techniques to unders                    | tand advanced-level math    | nematics and its appli  | cations that would       |  |  |  |  |  |  |
| enhance a                                                                                                   | inalytical thinking power, u                    | seful in their disciplines. |                         |                          |  |  |  |  |  |  |
| Course C                                                                                                    | <b>Dutcomes:</b> On completion of               | of the course, students wil | l be able to-           |                          |  |  |  |  |  |  |
|                                                                                                             |                                                 |                             | Bloom's Level           |                          |  |  |  |  |  |  |
| CO1                                                                                                         | Define L.T, F.T, Z.T, L.I                       | D.E, and Vector calculus,   | and prove their         | 1-Remember               |  |  |  |  |  |  |
|                                                                                                             | Properties.                                     |                             | -                       |                          |  |  |  |  |  |  |
| CO2                                                                                                         | Identify methods or techni                      | ques to solve particular ty | ypes of                 | 2-Understand             |  |  |  |  |  |  |
|                                                                                                             | mathematical problems.                          |                             |                         |                          |  |  |  |  |  |  |
| CO3                                                                                                         | Solve electrical engineering                    | ng problems using approp    | oriate transforms       | 3- Apply                 |  |  |  |  |  |  |
|                                                                                                             | and techniques                                  | 1 1100 1                    |                         | 4 4 1                    |  |  |  |  |  |  |
| CO4                                                                                                         | Analyze the Real life prob                      | lem using different mathe   | ematical                | 4- Analyze               |  |  |  |  |  |  |
|                                                                                                             | transforms.                                     | COURSE CONTEN               | тс                      |                          |  |  |  |  |  |  |
|                                                                                                             |                                                 | COURSE CONTEN               | 15                      |                          |  |  |  |  |  |  |
| Unit I                                                                                                      | Linear Differential Equati                      | ons with Constant           | (8hrs+2hrs              | CO1, CO2,                |  |  |  |  |  |  |
|                                                                                                             | Coefficient                                     |                             | <b>Tutorial</b> )       | CO3,CO4                  |  |  |  |  |  |  |
|                                                                                                             | 1 1 1 60                                        | · ·                         |                         |                          |  |  |  |  |  |  |
| LDE of nul                                                                                                  | n order with constant coeffi                    | cients, Method of Variati   | ion of Parameters, Ca   | auchy's and Legendre's   |  |  |  |  |  |  |
| Unit II                                                                                                     | Laplace Tr                                      | ansform                     | (8hrs+2hrs              | CO1. CO2.                |  |  |  |  |  |  |
| 0                                                                                                           | Lupiace II                                      |                             | Tutorial)               | CO3,CO4                  |  |  |  |  |  |  |
| Laplace T                                                                                                   | ransform: Definition of L7                      | F, Inverse LT, Properties   | and theorems, LT of     | standard functions, LT   |  |  |  |  |  |  |
| of some sp                                                                                                  | ecial functions viz. Periodic                   | c, Unit Step, Unit Impul    | se. Applications of L   | T for Solving Linear     |  |  |  |  |  |  |
| differential equations and Electric circuits by Laplace transform.                                          |                                                 |                             |                         |                          |  |  |  |  |  |  |
| Unit                                                                                                        | Unit Fourier Fransform (8hrs+2hrs CO1, CO2, CO4 |                             |                         |                          |  |  |  |  |  |  |
| III<br>Fourier 7                                                                                            | ransform (FT). Comple                           | x exponential form of       | Fourier series Fou      | rier integral Complex    |  |  |  |  |  |  |
| exponentie                                                                                                  | I form of Fourier series F                      | Fourier integral theorem    | Fourier Sine and Co     | osine integrals. Fourier |  |  |  |  |  |  |
| transform.                                                                                                  | Fourier Sine and Cosine t                       | ransforms and their inve    | rses, Application to    | square, triangular, saw  |  |  |  |  |  |  |
| tooth wave                                                                                                  |                                                 |                             | · • • •                 |                          |  |  |  |  |  |  |

| Unit | Z Transform | (8hrs+2hrs        | CO1, CO2, |
|------|-------------|-------------------|-----------|
| IV   |             | <b>Tutorial</b> ) | CO3,CO4   |

**Z** - **Transform** (**ZT**): Introduction, Definition, Standard properties, ZT of standard sequences and their inverses using long division, residual, and partial fraction methods. Introduction to FIR and IIR system, Solution of difference equations

| Unit V | Vector Calculus | (8hrs+2hrs        | CO1, CO2, |  |
|--------|-----------------|-------------------|-----------|--|
|        |                 | <b>Tutorial</b> ) | CO3,CO4   |  |

Physical interpretation of Vector differentiation, Vector differential operator, Gradient, Divergence and Curl, Directional derivative, Solenoidal, Irrigational, and Conservative fields, Scalar potential, and Vector identities.

Line, Surface, and Volume integrals, Work-done, Green's Lemma, Gauss's Divergence theorem, Stoke's theorem, Applications to problems in Electromagnetic fields.

## Text Books

1. B.V. Ramana, "Higher Engineering Mathematics", Tata McGraw-Hill.

2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publication, Delhi.

3. Peter V. O'Neil, "Advanced Engineering Mathematics", Cengage Learning

#### **Reference Books**

1. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley Eastern Ltd.

2. P. N. Wartikar and J. N. Wartikar, "Applied Mathematics" (Volumes I and II), Pune Vidyarthi Griha Prakashan, Pune.

3. M. D. Greenberg, "Advanced Engineering Mathematics", 2<sup>nd</sup> Edition, Pearson Education

|         | <b>Guidelines for Continuous Comprehensive Evaluation of Theory Course</b> |                   |  |  |  |  |  |  |  |  |  |
|---------|----------------------------------------------------------------------------|-------------------|--|--|--|--|--|--|--|--|--|
| Sr. No. | Components for Continuous Comprehensive Evaluation                         | Marks<br>Allotted |  |  |  |  |  |  |  |  |  |
| 1       | Assignment 1 (Based on Units I and II) (Deadline: before Insem)            | 5                 |  |  |  |  |  |  |  |  |  |
| 2       | Assignment 2 (Based on Units III and IV) (Deadline: before Endsem)         | 5                 |  |  |  |  |  |  |  |  |  |
| 3       | LearniCo (Best 5 sessions out of Minimum 10 sessions)                      | 5                 |  |  |  |  |  |  |  |  |  |
| 4       | Class Test (Before Endsem on Units III, IV, V)                             | 5                 |  |  |  |  |  |  |  |  |  |

| List of Tutorial Assignments |                                                                                                                                                   |                      |  |  |  |  |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|--|
| Sr. No.                      | Title of Assignment                                                                                                                               | COs<br>Mannad        |  |  |  |  |  |  |
| 1.                           | 1. Solution of first and second-order ODE for electrical networks using different techniques.                                                     |                      |  |  |  |  |  |  |
| 2.                           | 2. Representation and solution of O.D.E obtained in tutorial 1 in Laplace domain and verification of result using MATLAB.                         |                      |  |  |  |  |  |  |
| 3.                           | <ul> <li>Obtain the FT of the following waveforms.</li> <li>1) Distorted sine wave</li> <li>2) Square wave</li> <li>3) Triangular wave</li> </ul> | CO1, CO2,<br>CO3,CO4 |  |  |  |  |  |  |
| 4.                           | Calculation of power using Fourier transform, voltage, and current using MATLAB.                                                                  | CO1, CO2,<br>CO3,CO4 |  |  |  |  |  |  |
| 5.                           | Representation of difference equation in Z-transform and impulse/step response of the same.                                                       | CO1, CO2,<br>CO3,CO4 |  |  |  |  |  |  |
| 6.                           | Apply Curl and Divergence of vector in an electromagnetic field.                                                                                  | CO1, CO2,<br>CO3,CO4 |  |  |  |  |  |  |

|         | <b>Guidelines for Tutorial / Termwork Assessment</b>  |                   |  |  |  |  |  |  |  |
|---------|-------------------------------------------------------|-------------------|--|--|--|--|--|--|--|
| Sr. No. | <b>Components for Tutorial / Termwork Assessment</b>  | Marks<br>Allotted |  |  |  |  |  |  |  |
| 1       | Assignment on Computational software                  | 5                 |  |  |  |  |  |  |  |
| 2       | Tutorial (Each tutorial carries 15 marks)             | 15                |  |  |  |  |  |  |  |
| 3       | Attendance (Above 95 %: 5 Marks, below 75% : 0 Marks) | 5                 |  |  |  |  |  |  |  |

|     | Strength of CO-PO-PSO Mapping |   |   |   |   |   |   |   |   |    |    |    |    |   |
|-----|-------------------------------|---|---|---|---|---|---|---|---|----|----|----|----|---|
|     | РО                            |   |   |   |   |   |   |   |   |    |    | PS | 50 |   |
|     | 1                             | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1  | 2 |
| CO1 | 3                             | 3 |   |   |   |   |   |   |   |    |    |    |    |   |
| CO2 | 3                             | 3 | 3 |   |   |   |   |   | 3 | 3  |    |    |    |   |
| CO3 | 3                             | 3 | 3 | 2 |   |   |   |   | 3 | 3  |    |    |    | 2 |
| CO4 | 3                             | 3 | 3 | 2 | 1 |   |   |   | 3 | 3  |    | 1  |    | 2 |



| S. Y. B. Tech.<br>Pattern 2022-Semester: III (Electrical Engineering)<br>ELE222002: Analog and Digital Circuits         |                                                                                                                                                                                  |                                                                                                                                     |                                                                        |               |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------|--|--|--|--|--|
| Teachin                                                                                                                 | eaching Scheme: Credit Scheme: Examination Scheme:                                                                                                                               |                                                                                                                                     |                                                                        |               |  |  |  |  |  |
| Theory: 3 hrs/weekTh-3Continuous Comprehensive<br>Evaluation: 20 Marks<br>InSem Exam: 20 Marks<br>EndSem Exam: 60 Marks |                                                                                                                                                                                  |                                                                                                                                     |                                                                        |               |  |  |  |  |  |
| Prerequ                                                                                                                 | isite Courses: Fundamentals                                                                                                                                                      | of Electronics Engineer                                                                                                             | ing                                                                    |               |  |  |  |  |  |
| Course1. Intro2. Expl3. EmpCourse                                                                                       | <b>Objectives:</b> The objectives of<br>aduce the applications of analo<br>ain the concepts of Linear and<br>ower students to design the di<br><b>Outcomes:</b> On completion of | the course are to<br>g and digital IC circuits<br>nonlinear applications<br>gital circuits for the give<br>the course, students wil | to the students<br>of OPAMP.<br>en problem statement.<br>l be able to– |               |  |  |  |  |  |
|                                                                                                                         | Cours                                                                                                                                                                            | e Outcomes                                                                                                                          |                                                                        | Bloom's Level |  |  |  |  |  |
| CO1                                                                                                                     | understand different digital m                                                                                                                                                   | emories and programm                                                                                                                | able logic families                                                    | 2. Understand |  |  |  |  |  |
| CO2                                                                                                                     | Describe linear and nonlinear related graphs                                                                                                                                     | P with derivations and                                                                                                              | <ol> <li>Understand</li> <li>Apply</li> </ol>                          |               |  |  |  |  |  |
| CO3                                                                                                                     | CO3 Design different combinational and sequential digital circuits using K- 6-Create Map.                                                                                        |                                                                                                                                     |                                                                        |               |  |  |  |  |  |
| <b>CO4</b>                                                                                                              | Design analog circuits based                                                                                                                                                     | on OPAMP for a given                                                                                                                | problem.                                                               | 6-Create      |  |  |  |  |  |

| COURSE CONTENTS                     | COs mapped |         |
|-------------------------------------|------------|---------|
| Unit I Linear Applications of OPAMP | 8 hrs.     | CO2,CO4 |

Ideal and Practical characteristics of OPAMP, Inverting and non-inverting amplifier, differential amplifier, instrumentation amplifier, integrator, differentiator, active filter, voltage regulator, V-I and I-V converters.

| Unit II                                                                                         | Nonlinear applications of OPAMP                                                                  | 8 hrs.                     | CO2,CO4          |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------|------------------|--|--|--|--|--|--|
| Zero cross                                                                                      | Zero crossing detector, Design of First Order Filters, Peak Detector, Instrumentation Amplifier, |                            |                  |  |  |  |  |  |  |
| Oscillators (Wein bridge and Phase shift), Square, Triangular, and Saw Tooth Waveform Generator |                                                                                                  |                            |                  |  |  |  |  |  |  |
| Unit III                                                                                        | D/A and A/D converters                                                                           | 8 hrs.                     | CO2,CO4          |  |  |  |  |  |  |
| Digital to                                                                                      | Analog converters: Weighted resistor/converter, R-2                                              | 2R Ladder D/A converte     | er, examples of  |  |  |  |  |  |  |
| D/A conv                                                                                        | erter, sample and hold circuit                                                                   |                            |                  |  |  |  |  |  |  |
| Analog to                                                                                       | Digital converter: Dual slope A/D Conversion, Suc                                                | cessive Approximation      | A/D Conversion,  |  |  |  |  |  |  |
| V to F, an                                                                                      | d F to V converter.                                                                              |                            |                  |  |  |  |  |  |  |
| Unit IV                                                                                         | Design of combinational logic circuit                                                            | 8 hrs.                     | CO3              |  |  |  |  |  |  |
| The standa                                                                                      | rd representation of logic functions, Karnaugh map: s                                            | tructure for two, three, a | nd four, SOP and |  |  |  |  |  |  |
| POS form                                                                                        | reduction of Boolean expressions by K-map. Design of                                             | of combinational circuits  | using Boolean    |  |  |  |  |  |  |
| expressions                                                                                     | s and K-maps, encoders, decoders, and a digital comp                                             | arator.                    |                  |  |  |  |  |  |  |
| Unit V                                                                                          | Design of sequential circuit                                                                     | 8 hrs.                     | CO1,CO3          |  |  |  |  |  |  |
| Shift regist                                                                                    | Shift registers, Introduction to sequential circuit Design of asynchronous counters Up and down  |                            |                  |  |  |  |  |  |  |
| synchronou                                                                                      | is counters using K-map, N modulo counters,                                                      |                            |                  |  |  |  |  |  |  |

Digital memories: RAM, ROM, EPROM; digital logic families: PAL, PLA, FPGA

**Text Books** 

- 1. Jaico and Charles H. Roth, "Fundamentals of Logic Design," Jr. Fourth Edition, Jaico Publishing House.
- James, "Operational Amplifier and Linear Integrated Circuits Theory and Application," Jaico 2. Publishing House.

### **Reference Books**

- Thomas Floyd and R.P. Jain, "Digital Fundamentals", 8th edition, Pearson Education.
   P. Jain, "Modern Digital Electronics", 5<sup>th</sup> edition, Tata McGraw Hill, New Delhi.
- 3. Gaikwad R., "Operational Amplifier", 4th Edition, PHI New Delhi.

|         | Guidelines for Continuous Comprehensive Evaluation of Theory Course |   |  |  |  |  |  |
|---------|---------------------------------------------------------------------|---|--|--|--|--|--|
| Sr. No. | Sr. No. Components for Continuous Comprehensive Evaluation          |   |  |  |  |  |  |
| 1       | Assignment 1 (Based on Units I and II) (Deadline: before Insem)     | 5 |  |  |  |  |  |
| 2       | Assignment 2 (Based on Units III and IV) (Deadline: before Endsem)  | 5 |  |  |  |  |  |
| 3.      | LearniCo (Best 5 sessions out of Minimum 10 sessions)               | 5 |  |  |  |  |  |
| 4.      | Mini project                                                        | 5 |  |  |  |  |  |

|     | Strength of CO-PO-PSO Mapping |   |   |   |   |   |    |   |   |    |    |    |    |    |
|-----|-------------------------------|---|---|---|---|---|----|---|---|----|----|----|----|----|
| CO  |                               |   |   |   |   |   | PO |   |   |    |    |    | PS | 00 |
|     | 1                             | 2 | 3 | 4 | 5 | 6 | 7  | 8 | 9 | 10 | 11 | 12 | 1  | 2  |
| CO1 | 3                             | 3 | 3 |   |   |   |    |   |   |    |    |    |    |    |
| CO2 | 3                             | 3 | 3 |   | 3 |   |    |   |   |    |    |    | 3  |    |
| CO3 | 3                             | 3 | 3 | 2 | 3 |   |    | 1 | 2 | 2  | -  | 2  | 3  |    |
| CO4 | 3                             | 3 | 3 | 2 | 3 |   |    |   | 2 | 2  |    | 2  | 3  |    |



|               | Pattern 2022                                        | S. Y. B. Tech.<br>Semester: III (Electric | cal Engineering)                                                                 |                                 |
|---------------|-----------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------|---------------------------------|
|               | ELE22200                                            | 3: Measurement and Ins                    | strumentation                                                                    |                                 |
| Teaching      | g Scheme:                                           | Credit Scheme:                            | Examination Schem                                                                | ne:                             |
| Theory:       | 3 hrs/week                                          | TH-3                                      | Continuous Compre<br>Evaluation: 20 Mar<br>InSem Exam: 20 M<br>EndSem Exam: 60 D | ehensive<br>ks<br>arks<br>Marks |
| Prerequi      | site Courses:- Fundamenta                           | ls of Electrical Engineering              | ng, Fundamentals of E                                                            | Electronics                     |
| Engineer      | ing, Applied Physics                                |                                           |                                                                                  |                                 |
| Course (      | <b>bjectives:</b> The objectives of the principle   | of the course are to                      | rical and physical qua                                                           | ntities                         |
| constr        | uction, and operating principle                     | ples of electrical instrume               | ents.                                                                            | nuties,                         |
| 2. Select     | the proper instrument and r                         | nethods for measurement                   | •                                                                                |                                 |
| Course (      | <b>Dutcomes:</b> On completion of                   | f the course, students wil                | 1 be able to-                                                                    |                                 |
|               |                                                     | Course Outcomes                           |                                                                                  | Bloom's Level                   |
| CO1           | Describe the working prin                           | nciples of various measur                 | ing instruments.                                                                 | 1-Remember                      |
| CO2           | Explain the construction a                          | and working of measuring                  | g instruments and                                                                | 2-Understand                    |
| CO3           | Calculate power energy                              | on.<br>and circuit parameters us          | ing various                                                                      | 3 Apply                         |
| COS           | measurement techniques.                             | and circuit parameters us                 | sing various                                                                     | 5-Арргу                         |
| CO4           | Select appropriate measure                          | ring methods and transdu                  | cers for the                                                                     | 3-Apply                         |
|               | measurement of electrical                           | and physical quantities.                  |                                                                                  |                                 |
|               |                                                     | COURSE CONTENT                            | Ϋ́S                                                                              |                                 |
| Unit I        | Measuring Instrumer                                 | nts and Instrument                        | (8hrs)                                                                           | COs Mapped -                    |
|               | Transfo                                             | rmer                                      |                                                                                  | CO1                             |
| Introduct     | ion, classification, static and                     | dynamic characteristics                   | of measuring instrume                                                            | ents, deflecting,               |
| Controllin    | g and damping system, erro                          | ors.                                      | coil moving iron and                                                             | dynama matar                    |
| type instr    | ig monuments. Ermeiple and                          |                                           | con, moving non, and                                                             | uynanio meter-                  |
| Instrume      | nt Transformer: Use of instr                        | ument transformers, ratio                 | s, basic constructional                                                          | features of C.T.                |
| and P.T.,     | ratio and phase angle errors                        | , reduction of errors, and                | applications in measu                                                            | rement.                         |
| Unit II       | Measurement of Po                                   | wer and Energy                            | (8hrs)                                                                           | COs Mapped -<br>CO1, CO3        |
| Measure       | nent of Power: Torque                               | equation, errors and                      | their compensation,                                                              | advantages, and                 |
| disadvan      | tages of dynamometer type                           | wattmeter, low power f                    | factor wattmeter, poly                                                           | y-phase wattmeter.              |
| Measurer      | nent of power by one, two &                         | & three-wattmeter method                  | ds.                                                                              |                                 |
| Measuren      | nent of Energy: Constru                             | ction, working princip                    | le, torque equation                                                              | of single phase                 |
| conventio     | onal (induction type) energy                        | meter. TOD meter.                         |                                                                                  |                                 |
| Unit          | Measurement of Resista                              | ince, Inductance, and                     | (8hrs)                                                                           | COs Mapped -                    |
| III<br>Maaree | Capacit                                             | totopo Drideo V-1-' '                     | Double Detter                                                                    | UU2, UU4                        |
| method        | nent of resistance: Whea<br>Farth Tester and Maggar | isione Briage, Kelvin's                   | s Double Bridge, A                                                               | mmeter-voltmeter                |
| methou, I     | Darui i csici anu megger.                           |                                           |                                                                                  |                                 |

Measurement of inductance, Capacitance: Maxwell's Bridge, Anderson Bridge, Schering Bridge, Wien Bridge, Applications and Limitations.

| Unit | Electronic Instruments | (8hrs) | COs Mapped - |
|------|------------------------|--------|--------------|
| IV   |                        |        | CO1, CO3     |

Signal Conditioning and Data Acquisition: Amplification, ADC and DAC, S/H Circuits, Data Acquisition: Single and Multi Chanel, Data Logging,

Electronic Instruments: Block diagram and operation of digital ammeter and voltmeter, Digital multimeters, Block diagram and operation of single phase and three phase static energy meter, Calibration of static energy meter. Digital Storage Oscilloscope

| Unit V | Instrumentation | (8hrs) | COs Mapped - |
|--------|-----------------|--------|--------------|
|        |                 |        | CO3, CO4     |

Instrumentation: Introduction, classification, types: resistive, inductive, capacitive transducers, basic requirements for transducers. Measurement of Temperature, Linear and Angular Displacement, Pressure, Flow, and Level Measurement.

Intelligent Sensors: General Structure of smart sensors and their components, Characteristics of smart sensors and applications.

#### **Text Books**

- 1. A. K. Sawhney, "A Course in Electrical and Electronic Measurements and Instrumentation", 17th Edition, Dhanpat Rai & Co.
- 2. B. C. Nakra and K. K. Chaudhari, "Instrumentation Measurement and Analysis", 4th Edition, McGraw Hill Education India Private Limited
- 3. Melville Bigham Stout, "Basic Electrical Measurements", 3<sup>rd</sup> Edition, Literary Licensing, LLC
- 4. D. Patranabhis, "Sensors and Transducers", 2<sup>nd</sup> Edition, PHI Publications

## **Reference Books**

1. E. W. Golding and F. C. Widdies, "Electrical Measurements and Measuring Instruments", 5<sup>th</sup> Edition, Reem Publications.

- Rajendra Prasad, "Electronic Measurements and Instrumentation", 2<sup>nd</sup> Edition, Khanna Publishers.
   Arun K. Ghosh, "Introduction to Measurements and Instrumentation", 4<sup>th</sup> Edition, PHI Publication.

4. M. M. S. Anand, "Electronics Instruments and Instrumentation Technology", 3<sup>rd</sup> Edition, PHI

- 5. D. A. Bell, "Electronic Instrumentation and Measurements", 3<sup>rd</sup> Edition, Oxford University Press
- 6. S. Gupta, J. P. Gupta, "PC Interfacing for Data Acquisition and Process Control", 2<sup>nd</sup> Edition, Instrument Society of America

|         | Guidelines for Continuous Comprehensive Evaluation of Theory Course |   |  |  |  |  |  |  |
|---------|---------------------------------------------------------------------|---|--|--|--|--|--|--|
| Sr. No. | Io.         Components for Continuous Comprehensive Evaluation      |   |  |  |  |  |  |  |
| 1       | Assignment 1 (Based on Units I and II) (Deadline: before Insem)     | 5 |  |  |  |  |  |  |
| 2       | Assignment 2 (Based on Units III and IV) (Deadline: before Endsem)  | 5 |  |  |  |  |  |  |
| 3.      | LearniCo (Best 5 sessions out of Minimum 10 sessions)               | 5 |  |  |  |  |  |  |
| 4.      | Class test (Before Endsem)                                          | 5 |  |  |  |  |  |  |

|     | Strength of CO-PO-PSO Mapping |   |   |   |   |    |   |   |   |    |    |    |    |    |
|-----|-------------------------------|---|---|---|---|----|---|---|---|----|----|----|----|----|
|     |                               |   |   |   |   | PO | ) |   |   |    |    |    | PS | 50 |
|     | 1                             | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9 | 10 | 11 | 12 | 1  | 2  |
| CO1 | 3                             | 3 | - | - | - | -  | - | - | - | -  | -  | -  | -  | -  |
| CO2 | 3                             | 3 | 3 | - | - | -  | - | - | - | -  | -  | -  | 3  | -  |
| CO3 | 3                             | 3 | 3 | 1 | - | -  | - | - | - | -  | -  | 1  | 3  | -  |
| CO4 | 3                             | 3 | 3 | 1 | - | -  | - | - | - | -  | -  | 1  | 3  | -  |



|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S. Y. B. Tech.                                                |                             |                       |  |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------|-----------------------|--|--|
| Pattern 2022 Semester: III (Electrical Engineering) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                             |                       |  |  |
| <b>T</b>                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 222004: Electrical Engineering                                | Materials                   |                       |  |  |
| Teaching                                            | Scheme:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Credit Scheme:                                                | Examination Sc              | heme:                 |  |  |
| Theory: 3                                           | hrs/week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TH- 3                                                         | Continuous Con              | nprehensive           |  |  |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               | <b>Evaluation: 20 Marks</b> |                       |  |  |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               | InSem Exam:                 | 20 Marks              |  |  |
| Prerequis                                           | ite Courses: Fundame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | entals of Electrical Engineering                              | Applied Physics             | ou Marks              |  |  |
| Trerequis                                           | ne courses: i undanic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               | Applied I liysles, I        | applied Chemistry     |  |  |
| Course O                                            | <b>bjectives:</b> The objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ves of the course are to                                      |                             |                       |  |  |
| 1.  Imp<br>2  Exp                                   | art knowledge of phys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | various electrical components w                               | with appropriate ar         | nlications            |  |  |
|                                                     | utcomes: On completi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ion of the course students will b                             | a shla to                   | prications.           |  |  |
| Course O                                            | utcomes. On completi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |                             |                       |  |  |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Course Outcomes                                               |                             | Bloom's Level         |  |  |
| CO1                                                 | Define various termin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nologies used in engineering mat                              | terials                     | 1-Remember            |  |  |
| CO2                                                 | Understand the signification of the signification o | ficance of different materials for                            | various                     | 2-Understand          |  |  |
| <b>CO1</b>                                          | components and appl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ications                                                      |                             | 2 4 1                 |  |  |
| 03                                                  | conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | avior of the material under vario                             | us operating                | 3- Apply              |  |  |
| CO4                                                 | Analyze the propertie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | es of electrical engineering mater                            | rial used in                | 4- Analyze            |  |  |
|                                                     | different electrical eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | uipment and appliances.                                       |                             | 5                     |  |  |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COURSE CONTENTS                                               |                             |                       |  |  |
| Unit I                                              | Introduction to Elec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ctrical Materials                                             | 8 hrs.                      | CO1                   |  |  |
| Importance                                          | e of materials, Clas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ssification of electrical materi                              | ials, Scope of e            | electrical materials, |  |  |
| Requireme                                           | ent of Electrical Engi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | neering materials, Operational                                | requirements of             | electrical materials, |  |  |
| I ypes of e                                         | ngineering materials, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Levels of material structure. Feri<br>Rubbers, and Thermosets | romagnetic semico           | onductors,            |  |  |
| Unit II                                             | Dielectric Propertie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s of Insulating Materials                                     | 8 hrs.                      | CO1. CO3              |  |  |
| Parameters                                          | s of Dielectric materia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | al [Dielectric constant, Dipole 1                             | moment. Polarizat           | ion. Polarizability]. |  |  |
| Introductio                                         | on to Polar and Non-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Polar dielectric materials. Mec                               | chanisms of Pola            | arizations- Clausius  |  |  |
| Mossotti E                                          | Equation, Piezo-Electri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ic, Pyro-Electric and Ferro-Elect                             | tric Materials, Die         | lectric loss and loss |  |  |
| tangent, C                                          | oncept of the negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tan delta, insulating materials for                           | or supercapacitor.          |                       |  |  |
| Unit III                                            | Dielectric Breakdov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vn and Testing of Materials                                   | 8 hrs.                      | CO2                   |  |  |
| A) Dielectr                                         | ic Breakdown:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               |                             |                       |  |  |
| Introduction                                        | n, Concept of Primar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | y and Secondary Ionization of Strength Eastern offseting Bree | f Gases (descript           | ive treatment only),  |  |  |
| Gaseous die                                         | electric materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stiength, Factors affecting Brea                              | kuowii Suenguis             | or sona, Liquia, and  |  |  |
| B) Testing                                          | g of Materials: Exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lanation of following with ob                                 | ojectives, equipmo          | ent required, circuit |  |  |
| diagrams, a                                         | nd observations to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | taken.                                                        | 5 / 1 1                     | 1                     |  |  |
| 1. Measure                                          | ment of dielectric loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tangent (tan $\delta$ ) by Schering Brid                      | dge-IS 13585-1994           | 4.                    |  |  |
| 2. Measure                                          | ment of dielectric stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ngth of solid insulating material                             | -IS 2584.                   |                       |  |  |
| 3. Measure                                          | ment of dielectric stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ngth of liquid insulating materia.                            | l -15 6/98.<br>ial          |                       |  |  |
| Unit IV                                             | Magnetic Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and Conducting Materials                                      | 8 hrs.                      | CO1. CO3              |  |  |
| Magnetic                                            | Materials Introduc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ction Parameters of Magneti                                   | ic material [Peri           | neability Magnetic    |  |  |
| Susceptibi                                          | lity, Magnetization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Classification of Magnetic Mat                                | erials, Diamagnet           | ism, Paramagnetism.   |  |  |
| r -= 01                                             | <i>, , , , , , , , , , , , , , , , , , , </i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                               | ,                           | ,,                    |  |  |

Ferromagnetism, Ferri-magnetism, Ferro-magnetic behavior below Critical Temperature, Spontaneous Magnetization, Anti-ferromagnetism, Ferrites, Applications of Ferromagnetic Materials, Magnetic materials for Electric Devices such as Transformer Core, Core of Rotating Machines, Soft Magnetic Materials, Hard Magnetic Materials, materials used for Superconducting magnetic energy storage (SMES). High-density Magnetic materials.

**Conducting Materials:** Copper, Aluminum and its applications, Materials of High and Low Resistivity-Constantan, Nickel-Chromium Alloy, Tungsten, Kanthal, Silver and Silver alloys, characteristics of Copper Alloys (Brass & Bronze), Electrical Carbon Materials. Materials used for Lamp Filaments, Solders, Metals, and Alloys for different types of Thermal Bimetal and thermocouples. Introduction of High density conducting materials.

| Unit V | Advances and Application of Materials in | 8 hrs. | CO3, CO4 |  |
|--------|------------------------------------------|--------|----------|--|
|        | Electrical Engineering                   |        |          |  |

Superconductivity and Superconducting Materials, Semiconductor materials used for Solar PV (Types, Efficiency of Solar PV), Materials used in Batteries, Optical Communications (Optical Fibre), Composite Material, and Fuel Cells.

#### **Text Books**

- 1. S.P. Seth, "A Course in Electrical Engineering Materials", Dhanpat Rai and Sons publication.
- 2. R. K. Rajput, "A Textbook of Electrical Engineering Materials" Laxmi Publications (P) Ltd.
- 3. K. B. Raina and S. K. Bhattacharya, "Electrical Engineering Materials", S. K. Kataria Sons.
- 4. P.K. Palanisamy, "Material Science for Electrical Engineering", Scitech Pub. Pvt. Ltd., Chennai (India).

#### **Reference Books**

- 1. D. M. Tagare, "Electrical Power Capacitors-Design & Manufacture", Tata McGraw Hill Publication.
- 2. S. P. Chalotra and B. K. Bhattacharya, "Electrical Engineering Materials", Khanna Publishers, Nath Market.
- 3. C. S. Indulkar and S. Thiruvengadam, "Electrical Engineering Materials", S. Chand and Company Ltd.
- 4. Kamraju and Naidu, "High Voltage Engineering", Tata McGraw Hill Publication.
- 5. James F. Shackelford & M. K. Muralidhara, "Introduction to Material Science for Engineering", Sixth Edition, Pearson Education.
- 6. IEEMA Ratner, "Insulation Technology Course Material", Pearson Education.
- 7. Traugott Fischer, "Materials Science for Engineering Students", Elsevier Publications.
- 8. Rakesh Das Begamudre, "Energy Conversion Systems", New Age International Publishers.

|         | Guidelines for Continuous Comprehensive Evaluation of Theory Course |   |  |  |  |  |  |
|---------|---------------------------------------------------------------------|---|--|--|--|--|--|
| Sr. No. | Sr. No. Components for Continuous Comprehensive Evaluation          |   |  |  |  |  |  |
| 1       | Assignment 1 (Based on Units I and II) (Deadline: before Insem)     | 5 |  |  |  |  |  |
| 2       | Assignment 2 (Based on Units III and IV) (Deadline: before Endsem)  | 5 |  |  |  |  |  |
| 3.      | LearniCo (Best 5 sessions out of Minimum 10 sessions)               | 5 |  |  |  |  |  |
| 4.      | Group Presentations                                                 | 5 |  |  |  |  |  |

|          |   | Strength of CO-PO-PSO Mapping |   |   |   |   |   |   |   |    |    |     |   |   |
|----------|---|-------------------------------|---|---|---|---|---|---|---|----|----|-----|---|---|
| Strength |   | PO                            |   |   |   |   |   |   |   |    | PS | PSO |   |   |
| of       | 1 | 2                             | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12  | 1 | 2 |
| CO 1     | 3 |                               |   |   |   |   |   |   |   |    |    |     |   |   |
| CO 2     | 3 | 2                             |   |   |   |   |   |   |   |    |    |     |   |   |
| CO 3     | 3 | 2                             |   | 2 |   |   |   |   | 2 | 2  |    | 2   |   |   |
| CO 4     | 3 | 2                             |   | 2 |   |   |   |   | 2 | 2  |    | 2   |   |   |



| S. Y. B. Tech.<br>Pattern 2020 Semester: III (Electrical Engineering)                            |                                                                                                                                              |                             |                    |                    |          |  |  |  |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|--------------------|----------|--|--|--|
|                                                                                                  | ELE222005:                                                                                                                                   | Transformers and Indu       | iction Machines    |                    |          |  |  |  |
| Teaching                                                                                         | Scheme:                                                                                                                                      | Credit Scheme:              | Examination S      | cheme:             |          |  |  |  |
| Theory: 3                                                                                        | hrs./week                                                                                                                                    | TH: 3                       | Continuous Co      | ous Comprehensive  |          |  |  |  |
|                                                                                                  | Marks<br>O Morks                                                                                                                             |                             |                    |                    |          |  |  |  |
|                                                                                                  | EndSem Exam: 60 Marks                                                                                                                        |                             |                    |                    |          |  |  |  |
| Prerequis                                                                                        | Prerequisite Courses: Fundamentals of Electrical Engineering                                                                                 |                             |                    |                    |          |  |  |  |
| Course O                                                                                         | bjectives: The objectives of                                                                                                                 | of the course are to        |                    |                    |          |  |  |  |
| 1. Underst                                                                                       | tand the parameters of the e                                                                                                                 | equivalent circuit, and its | determination by   | conducting vari    | ious     |  |  |  |
| tests and a                                                                                      | inalyses of the transformer                                                                                                                  | at various loads.           | 1                  |                    |          |  |  |  |
| 2. Underst                                                                                       | tand the vector groups, para                                                                                                                 | allel operations, and load  | sharing of transfe | ormers.            | e to     |  |  |  |
| evaluate tl                                                                                      | he performance of three-ph                                                                                                                   | ase induction motors        | ficult parameters  | , and its analysis | \$ 10    |  |  |  |
| 4. Study th                                                                                      | ne construction, working pr                                                                                                                  | rinciple, and performance   | of a single-phase  | e induction moto   | or.      |  |  |  |
| Course O                                                                                         | utcomes: On completion o                                                                                                                     | of the course, students wil | l be able to –     |                    |          |  |  |  |
|                                                                                                  |                                                                                                                                              | Bloom's                     | Bloom's Level      |                    |          |  |  |  |
| C01                                                                                              | State construction and working principle of transformer and induction 1-Remember machines.                                                   |                             |                    |                    |          |  |  |  |
| CO2                                                                                              | Explain various characteristics and torque speed relations of electrical 2-Understand machines.                                              |                             |                    |                    |          |  |  |  |
| CO3                                                                                              | Calculate equivalent circu                                                                                                                   | uit parameters of the give  | n machines         | 3-Apply            |          |  |  |  |
| CO4                                                                                              | Analyze the performance standards.                                                                                                           | e parameters of machine     | es and compare v   | with 4-Analyze     | e        |  |  |  |
| CO5                                                                                              | Select machines for appro                                                                                                                    | opriate applications.       |                    | 4-Analyze          | e        |  |  |  |
|                                                                                                  |                                                                                                                                              | COURSE CONTENT              | 'S                 |                    |          |  |  |  |
| Unit I                                                                                           | Single Phase Transforme                                                                                                                      | rs:                         | 8 hi               | rs. CO1, CO        | )3,      |  |  |  |
|                                                                                                  |                                                                                                                                              |                             |                    | <u>CO4</u>         | <u> </u> |  |  |  |
| Transform                                                                                        | iers on no-load and on-l                                                                                                                     | oad, equivalent circuits.   | Tests to detern    | nine equivalent    | circuit  |  |  |  |
| transform                                                                                        | er ratings. Polarity test. D                                                                                                                 | etermination of voltage     | regulation Conn    | ections for three  | e-phase  |  |  |  |
| operation                                                                                        | – star/star delta/delta, sta                                                                                                                 | r/delta, delta/star, zigzag | star, and V/V.     | Tastings as per    | Indian   |  |  |  |
| Standards                                                                                        | •                                                                                                                                            |                             |                    | <b>C</b> 1         |          |  |  |  |
| Unit II                                                                                          | Unit IIThree-Phase Transformers:8 hrs                                                                                                        |                             |                    |                    |          |  |  |  |
| Phase con                                                                                        | version and parallel oper                                                                                                                    | ation of Three Phase Tr     | ansformers         |                    |          |  |  |  |
| Scott connection for three-phase to two-phase conversion, vector groups. Magnetizing current in  |                                                                                                                                              |                             |                    |                    |          |  |  |  |
| transformers                                                                                     |                                                                                                                                              |                             |                    |                    |          |  |  |  |
| phase trans                                                                                      | <b>Transformer Testing:</b> Polarity Test, Back-to-Back Test (Sumpher Test) on single phase and three phase transformer Induction Regulators |                             |                    |                    |          |  |  |  |
| Special Transformers: Welding Transformers, Converter Transformers, Transformer behavior on non- |                                                                                                                                              |                             |                    |                    |          |  |  |  |
| sinusoidal s                                                                                     | inusoidal supply (K-rated transformer)                                                                                                       |                             |                    |                    |          |  |  |  |

| Unit<br>III       | Three-Phase Induction Motor: Part-A8                                   | hrs.      | CO2, CO3,<br>CO4, CO5 |
|-------------------|------------------------------------------------------------------------|-----------|-----------------------|
| Construc          | tion, the principle of working, losses and efficiency, phasor diagram  | ns, equiv | valent circuit.       |
| Analysis          | of equivalent circuit, torque-slip and power-slip characteristics. Tes | sts to de | termine the           |
| equivaler         | nt circuit parameters, circle diagram.                                 |           |                       |
| Unit              | Three-Phase Induction Motor: Part-B8                                   | hrs.      | CO2, CO3,             |
| IV                |                                                                        |           | CO4, CO5              |
| Staring o         | f Induction motor, speed control of IM. Induction generators., Con     | nparisoi  | n between SCIM        |
| and SRI           | A, Selection of motors based on application based. (NEMA standar       | d)        |                       |
| Unit V            | Single Phase Induction Motor8                                          | hrs.      | CO2, CO3,<br>CO4, CO5 |
| Construc          | tion of single phase induction motor, double field revolving theor     | ry. Equi  | valent circuit and    |
| torque-sl         | ip characteristics based on double-revolving field theory, Tests to    | determi   | ine the parameters    |
| of equiv          | alent circuit and calculation of performance characteristics of the    | motor.    | Methods of self-      |
| starting.         | Types of single-phase induction motors: Split-phase motors (Re         | esistor   | split-phase motor,    |
| Capacito          | r-start motor, Capacitor start and capacitor run the motor, and per    | manent    | capacitor motor).     |
| Compari           | son of 1-phase induction motor with 3-phase induction motor.           |           |                       |
| Text Boo          | ks                                                                     |           |                       |
| 1. Dr. P.S        | . Bimbhra, "Electrical Machinery" Khanna Publications.                 |           |                       |
| <b>2.</b> Dr. P.S | . Bimbhra, "Generalized theory of Electrical Machinery" Khanna P       | ublicati  | ons.                  |
| 3. Nagrat         | n and Kothari, "Electrical Machines" 2nd Ed. Tata McGraw Hill.         |           |                       |
| 4. Chenn          | K Krishna Reddy, "Electrical Machines- I and II" SciTech Publication   | ions (In  | dia) Pvt. Ltd.        |
| Chenn.            |                                                                        |           |                       |
| 5. Edward         | Hughes, "Electrical Technology" ELBS, Pearson Education.               |           |                       |
| <b>6.</b> Smaraj  | it Ghosh, "Electrical Machines" Pearson Education, New Delhi.          |           |                       |
| Referen           | e Books                                                                |           |                       |
| 1. M.G. S         | ay, "Performance and Design of AC. Machines", CBS Publishers and       | nd Distr  | ibutors.              |
| 2. Charle         | I Hubert, "Electrical Machines Theory, Application, and Control",      | Pearson   | n Education, New      |
| Delhi, Sec        | ond Edition.                                                           |           | ,                     |
| <b>3.</b> A.E. Fi | tzgerald, Charles Kingsley, Stephen D. Umans, "Electrical Machine      | es", Tata | a McGraw              |
|                   | Guidelines for Continuous Comprehensive Evaluation of T                | heory (   | Course                |
| Sr. ]             | No. Components for Continuous Comprehensive Evaluation                 | ation     | Marks<br>Allotted     |
| 1                 | Assignment 1 (Based on Units I and II) (Deadline: before Inse          | em)       | 5                     |
| 2                 | Assignment 2 (Based on Units III and IV) (Deadline: before             | Endsem    | ı) 5                  |
| 3                 | LearniCo (Best 5 sessions out of Minimum 10 sessions)                  |           | 5                     |

| 2  | Assignment 2 (Based on Units III and IV) (Deadline: before Endsem) |
|----|--------------------------------------------------------------------|
| 3. | LearniCo (Best 5 sessions out of Minimum 10 sessions)              |
| 4. | Class test (Before Endsem)                                         |

|     |    |   | S | Streng | th of ( | CO-P | O-PSC | ) Map | oping |    |    |    |   |   |
|-----|----|---|---|--------|---------|------|-------|-------|-------|----|----|----|---|---|
|     | PO |   |   |        |         |      |       |       |       | PS | 50 |    |   |   |
|     | 1  | 2 | 3 | 4      | 5       | 6    | 7     | 8     | 9     | 10 | 11 | 12 | 1 | 2 |
| CO1 | 3  | 3 | - | -      | -       | -    | -     | -     | -     | -  | -  | -  | - | - |
| CO2 | 3  | 3 | 3 | -      | -       | -    | -     | -     | -     | -  | -  | -  | - | - |
| CO3 | 3  | 3 | 3 | -      | -       | -    | -     | -     | -     | -  | -  | -  | 2 | - |
| CO4 | 3  | 3 | 3 | 1      | -       | -    | -     | -     | -     | -  | -  | 1  | 2 | - |
| CO5 | 3  | 3 | 3 | 1      | -       | -    | -     | -     | -     | -  | -  | 1  | 2 | - |



|                                                                               | Pa                                                                                                                                                                                                                                            | S. Y. B. Tech.<br>ttern 2022 Semester: III (Electrical Enginee<br>ELE222014: Engineering Ethics                                                                                                                                                                                | ering)                                                                     |                                                                                     |  |  |  |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
| Teaching                                                                      | g Scheme:                                                                                                                                                                                                                                     | Credit Scheme:                                                                                                                                                                                                                                                                 | Examinat                                                                   | ion Scheme:                                                                         |  |  |  |
| Theory:                                                                       | 1hrs/week                                                                                                                                                                                                                                     | TH-1                                                                                                                                                                                                                                                                           | Term work                                                                  | x-25 Marks                                                                          |  |  |  |
| Course (<br>1. Pre<br>2. He<br>3. Ev                                          | <b>Dbjectives:</b> The oppare students for lp them to think e aluate the existing                                                                                                                                                             | bjectives of the course are to<br>their professional responsibilities as Engineers<br>thically about the problem situations that are co<br>gethical standards for engineering practice.                                                                                        | ommon in E                                                                 | ngineering                                                                          |  |  |  |
| Course                                                                        | Jutcomes: On co                                                                                                                                                                                                                               | Course Outcomes                                                                                                                                                                                                                                                                |                                                                            | Bloom's Loval                                                                       |  |  |  |
| <u> </u>                                                                      | Define verieve t                                                                                                                                                                                                                              | course outcomes                                                                                                                                                                                                                                                                |                                                                            | 1 Demember                                                                          |  |  |  |
|                                                                               |                                                                                                                                                                                                                                               | erms related to engineering etmcs.                                                                                                                                                                                                                                             |                                                                            |                                                                                     |  |  |  |
| CO2                                                                           | Elaborate on sat<br>IPR, and enviror                                                                                                                                                                                                          | ety, rights, and responsibilities related to the wo                                                                                                                                                                                                                            | orkplace,                                                                  | 2-Understand                                                                        |  |  |  |
| CO3                                                                           | Evaluate the diff                                                                                                                                                                                                                             | erent situations ethically in engineering proble                                                                                                                                                                                                                               | ems.                                                                       | 5- Evaluate                                                                         |  |  |  |
|                                                                               | COURSE CONTENTS                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                |                                                                            |                                                                                     |  |  |  |
| Unit I                                                                        |                                                                                                                                                                                                                                               | Engineering Ethics                                                                                                                                                                                                                                                             | 06hrs                                                                      | CO1, CO3                                                                            |  |  |  |
| moral issu<br>theory, Co<br>interest, C                                       | es, Types of inconsensus and Cor<br>ustoms and Relig                                                                                                                                                                                          | uiry, Moral dilemmas, Moral Autonomy, Ko<br>troversy, Models of professional roles, Theo<br>ton, Uses of Ethical Theories.                                                                                                                                                     | ohlberg's the                                                              | eory, Gilligan's ight action, Self-                                                 |  |  |  |
| Unit II                                                                       | Sa                                                                                                                                                                                                                                            | fety, Rights, and Responsibilities                                                                                                                                                                                                                                             | 08 hrs                                                                     | CO1, CO2,<br>CO3                                                                    |  |  |  |
| Safety and<br>for Autho<br>Profession<br>Multinatio<br>as Manage<br>Code of C | Risk, Assessme<br>rity, Collective<br>al Rights, Employ<br>nal Corporations,<br>ers, Consulting E<br>onduct, and Corpo                                                                                                                        | nt of Safety and Risk, Risk Benefit Analysis a<br>Bargaining, Confidentiality, Conflicts of In<br>yee Rights, Intellectual Property Rights (IPR),<br>Environmental Ethics, Computer Ethics, Wea<br>ngineers, Engineers as Expert Witnesses and<br>orate Social Responsibility. | and Reducin<br>terest, Occu<br>Discriminati<br>apons develo<br>Advisors, M | g Risk – Respect<br>apational Crime,<br>on<br>opment engineers<br>loral Leadership, |  |  |  |
|                                                                               |                                                                                                                                                                                                                                               | TextBooks                                                                                                                                                                                                                                                                      |                                                                            |                                                                                     |  |  |  |
| 1. Mi<br>De<br>2. Go<br>Inc                                                   | <ol> <li>Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", Tata McGraw Hill, New Delhi, 2003.</li> <li>Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India New Delhi, 2004</li> </ol> |                                                                                                                                                                                                                                                                                |                                                                            |                                                                                     |  |  |  |
|                                                                               |                                                                                                                                                                                                                                               | <b>Reference Books</b>                                                                                                                                                                                                                                                         |                                                                            |                                                                                     |  |  |  |
| 1. Ch<br>2. Ch<br>and<br>3. Ed<br>Ox                                          | arles B. Fledderm<br>arles E. Harris, N<br>l Cases", Cengage<br>mund G Seebauer<br>ford University P                                                                                                                                          | ann, "Engineering Ethics", Pearson Prentice H<br>lichael S. Pritchard, and Michael J. Rabins, "H<br>e Learning, 2009.<br>and Robert L Barry, "Fundamentals of Ethics<br>ress, Oxford, 2001.                                                                                    | lall, New Jer<br>Engineering<br>for Scientis                               | rsey, 2004.<br>Ethics – Concepts<br>ts and Engineers",                              |  |  |  |

|         | Guidelines for Termwork                               |                   |
|---------|-------------------------------------------------------|-------------------|
| Sr. No. | Components for Termwork                               | Marks<br>Allotted |
| 1       | Assignment 1 (Based on Unit I)                        | 5                 |
| 2       | Assignment 2 (Based on Unit II)                       | 5                 |
| 3.      | LearniCo (Best 5 sessions out of Minimum 10 sessions) | 5                 |
| 4.      | Case studies                                          | 5                 |

|     | Strength of CO-PO-PSO Mapping |   |   |   |   |   |   |   |   |    |    |    |   |   |
|-----|-------------------------------|---|---|---|---|---|---|---|---|----|----|----|---|---|
|     | PO                            |   |   |   |   |   |   |   |   | PS | 50 |    |   |   |
|     | 1                             | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 |
| CO1 |                               |   |   |   |   |   |   | 3 |   |    |    |    |   |   |
| CO2 |                               |   |   |   |   | 3 |   | 3 |   |    |    | 3  |   |   |
| CO3 |                               |   | 1 |   |   | 3 |   | 3 |   |    |    | 3  |   |   |



| S. Y. B. Tech.<br>Pattern 2022 Semester: III (Electrical Engineering)<br>ELE222007: Measurement and Machines Lab |                                                                                                   |                                                                                        |                                                            |                     |  |  |  |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------|--|--|--|
| Teaching                                                                                                         | aching Scheme:Credit Scheme:Examination Scheme:                                                   |                                                                                        |                                                            |                     |  |  |  |
| Practical: 4 hrs/week     PR: 2     Termwork: 25 Marks       Practical: 50 Mark                                  |                                                                                                   |                                                                                        |                                                            |                     |  |  |  |
| Prerequis                                                                                                        | ite Courses, if any: - Fund                                                                       | lamentals of Electrical En                                                             | ngineering, Fundamen                                       | tals of Electronics |  |  |  |
| Engineerin                                                                                                       | ng, Applied Physics                                                                               | f the course one to                                                                    |                                                            |                     |  |  |  |
| <ol> <li>2. Provide</li> <li>3. Provide</li> <li>Course O</li> </ol>                                             | entation.<br>e exposure to experimental<br>e exposure to experimental<br>utcomes: On completion o | skills in electrical and ph<br>skills in transformer and<br>f the course, students wil | ysical parameter meas<br>induction motor.<br>l be able to– | surement.           |  |  |  |
|                                                                                                                  |                                                                                                   | Course Outcomes                                                                        |                                                            | Bloom's Level       |  |  |  |
| CO1                                                                                                              | Use measuring instrumen techniques for the measur                                                 | ts, transducers, and vario<br>rement of electrical and p                               | us measuring<br>hysical quantities.                        | 3-Apply             |  |  |  |
| CO2                                                                                                              | Perform speed control and                                                                         | d load test of three phase                                                             | induction motor.                                           | 3-Apply             |  |  |  |
| CO3                                                                                                              | Perform experiment in the group, write a lab report, and present it<br>effectively 3-Apply        |                                                                                        |                                                            |                     |  |  |  |
| CO4                                                                                                              | Perform parallel operation                                                                        | Perform parallel operation of transformers and justify load sharing. 4-Analyse         |                                                            |                     |  |  |  |
| CO5                                                                                                              | Evaluate performance par<br>with experimentation.                                                 | rameters of transformer a                                                              | nd induction motor                                         | 4-Analyse           |  |  |  |

## Part A: Measurement Lab

Perform any eight experiments from 1 to 13. An industrial visit is compulsory.

|         | List of Laboratory Experiments                                                                                         |           |
|---------|------------------------------------------------------------------------------------------------------------------------|-----------|
| Sr. No. | Laboratory Experiments                                                                                                 | CO Mapped |
| 1       | Measurement of current, voltage, and power using instrument transformer (CT & PT).                                     | CO1, CO3  |
| 2       | Measurement of Power and Power Factor of a three-phase circuit by the two-wattmeter method.                            | CO1, CO3  |
| 3       | Measurement of reactive power by one-wattmeter method with all possible connections of current coil and pressure coil. | CO1, CO3  |
| 4       | To calibrate a single / three-phase Energy Meter by comparing it with a Substandard meter.                             | CO1, CO3  |
| 5       | To measure unknown inductance using Anderson Bridge.                                                                   | CO1, CO3  |
| 6       | To measure unknown capacitance using Schering Bridge.                                                                  | CO1, CO3  |
| 7       | To measure the low resistance by using Kelvin Double Bridge Method.                                                    | CO1, CO3  |
| 8       | To study and plot the characteristic of LVDT.                                                                          | CO1, CO3  |
| 9       | Measurement of voltage, current, time period, frequency, and phase angle using CRO.                                    | CO1, CO3  |

| 10 | Measurement of soil resistivity using four pin Wenner method.          | CO1, CO3 |
|----|------------------------------------------------------------------------|----------|
| 11 | Study of programmable LCR meter; Measure L, C, R, Q, dissipation       | CO1, CO3 |
|    | factor, and power factor of the given component.                       |          |
|    | Study of Digital Storage Oscilloscope:                                 | CO1, CO3 |
| 12 | a) Different modes in DSO such as Roll, Average, and Peak detection.   |          |
| 12 | b) Capture transients.                                                 |          |
|    | c) Various MATH operations.                                            |          |
|    | Detailed study of online Energy Monitoring System, various parameters, | CO1, CO3 |
| 13 | EMS software capabilities, trending with IOT applications.             |          |
|    | Demonstration of EMS system by inviting experts.                       |          |
| 14 | Industrial Visit Deport (Compulsory)                                   | CO1, CO3 |
|    | industrial visit Report (Compulsory).                                  |          |

## Part B: Machine Lab

Perform any eight experiments from 1 to 10. An industrial visit is compulsory.

|                                                                                                                       | List of Laboratory Experiments                                                                                                                                                                                 |                  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|--|
| Sr. No.                                                                                                               | Laboratory Experiments                                                                                                                                                                                         | COs<br>Mapped    |  |  |  |  |  |  |
| 1                                                                                                                     | <ul><li>O.C. and S.C. test on single-phase Transformer.</li><li>a. Determination of equivalent circuit parameters from the test data.</li><li>b. Determination of voltage regulation and efficiency.</li></ul> | CO1, CO3,<br>CO5 |  |  |  |  |  |  |
| 2                                                                                                                     | Parallel operation of two single-phase transformers and study of their load sharing under various conditions of voltage ratios and leakage impedance.                                                          | CO1, CO3,<br>CO4 |  |  |  |  |  |  |
| 3                                                                                                                     | Polarity test on single phase and three phase transformer.                                                                                                                                                     | CO1, CO3,<br>CO4 |  |  |  |  |  |  |
| 4                                                                                                                     | Study of Back-to-Back Test (Sumpner Test) on single phase transformer.                                                                                                                                         | CO1, CO3,<br>CO5 |  |  |  |  |  |  |
| 5                                                                                                                     | To determine the phase conversion - Scott connection for three-phase to two-phase conversion.                                                                                                                  | CO1, CO3         |  |  |  |  |  |  |
| 6                                                                                                                     | Load test on a 3-phase induction motor.                                                                                                                                                                        | CO1, CO3,<br>CO5 |  |  |  |  |  |  |
| 7                                                                                                                     | Determination of parameters of equivalent circuit and performance analyses of IM.                                                                                                                              | CO1, CO3,<br>CO5 |  |  |  |  |  |  |
| 8                                                                                                                     | Speed control of 3-phase IM by pole changing (SCIM).                                                                                                                                                           | CO1, CO2,<br>CO3 |  |  |  |  |  |  |
| 9                                                                                                                     | Speed control of 3-phase IM by rotor resistance (SRIM).                                                                                                                                                        | CO1, CO2,<br>CO3 |  |  |  |  |  |  |
| 10                                                                                                                    | Determination of equivalent circuit parameters of single-phase IM.                                                                                                                                             | CO1, CO3,<br>CO5 |  |  |  |  |  |  |
| 11                                                                                                                    | Industrial Visit Report (Compulsory).                                                                                                                                                                          | CO3              |  |  |  |  |  |  |
|                                                                                                                       | Guidelines for Laboratory Conduction                                                                                                                                                                           |                  |  |  |  |  |  |  |
| . The teacher will brief the given experiment to students for its procedure, observations, calculations, and outcome. |                                                                                                                                                                                                                |                  |  |  |  |  |  |  |

2. Apparatus and equipment required for the allotted experiment will be provided by the lab technician using SOP.

3. Students will perform the allotted experiment in a group (2-3 students in each group) under the supervision of faculty and lab technician.

- 4. After performing the experiment students will check their readings and calculations from the teacher.
- 5. After checking they have to write the conclusion on the final results.

#### Guidelines for Student's Lab Journal

The write-up should include a title, aim and apparatus, circuit or block diagram, waveforms, brief theory, procedure, observations, graphs, calculations, conclusion, and questions, if any.

## **Guidelines for Termwork Assessment**

- 1. Each experiment from the lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding, and R-3 for presentation/journal writing where each rubric carries ten marks.

|     | Strength of CO-PO-PSO Mapping |   |   |   |   |   |   |   |   |    |    |    |   |     |  |
|-----|-------------------------------|---|---|---|---|---|---|---|---|----|----|----|---|-----|--|
|     | PO                            |   |   |   |   |   |   |   |   |    |    |    |   | PSO |  |
|     | 1                             | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2   |  |
| CO1 | 2                             | 2 | 2 |   |   |   |   |   |   |    |    | 2  | 2 |     |  |
| CO2 |                               |   |   |   |   |   |   |   | 1 | 1  |    |    |   |     |  |
| CO3 | 2                             | 2 | 2 |   |   |   |   |   |   |    |    | 2  | 2 |     |  |
| CO4 | 2                             | 2 | 2 |   |   |   |   |   |   |    |    | 2  | 2 |     |  |
| CO5 | 2                             | 2 | 2 |   |   |   |   |   |   |    |    | 2  | 2 |     |  |



| S. Y. B. Tech.<br>Pattern 2022 Semester: III (Electrical Engineering)<br>ELE232008: Analog and Digital Circuits Lab                                                               |                                                                                                          |                                          |                      |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|--|--|--|--|--|--|--|--|
| Teaching Scheme:                                                                                                                                                                  | Credit Scheme:                                                                                           | Examination Schen                        | ne:                  |  |  |  |  |  |  |  |  |
| Practical: 2 hrs/week                                                                                                                                                             | PR-1                                                                                                     | Termwork: 25 Marks<br>Practical: 25 Mark |                      |  |  |  |  |  |  |  |  |
| Prerequisite Courses: Fundamenta                                                                                                                                                  | ll of Electronics Engineer                                                                               | ring Lab                                 |                      |  |  |  |  |  |  |  |  |
| <ol> <li>Provide hands-on experience</li> <li>Inculcate design skills to c<br/>circuits.</li> <li>Impart software and hardware</li> <li>Course Outcomes: On completion</li> </ol> | in analog and digital circ<br>construct applications of<br>e design skills.<br>of the course, students w | uit design.<br>F OPAMP, combinatio       | onal and sequential  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                   | Course Outcomes                                                                                          |                                          | Bloom's Level        |  |  |  |  |  |  |  |  |
| CO1 Apply and analyze applic configuration.                                                                                                                                       | ations of OPAMP in a cl                                                                                  | osed and open loop                       | 3-Apply<br>4-Analyze |  |  |  |  |  |  |  |  |
| CO2 Perform experiment in th effectively                                                                                                                                          | Perform experiment in the group, write a lab report, and present it<br>effectively 3-Apply               |                                          |                      |  |  |  |  |  |  |  |  |
| CO3 Design and implement co                                                                                                                                                       | ombinational and sequent                                                                                 | ial circuits.                            | 5-Create             |  |  |  |  |  |  |  |  |
| CO4 Design uncontrolled recti                                                                                                                                                     | fiers with given specifica                                                                               | tions                                    | 5-Create             |  |  |  |  |  |  |  |  |

|            | List of Laboratory Experiments                                                                                                                                                                                                                                 |               |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Sr.<br>No. | Laboratory Experiments<br>(Perform any three from 1 to 5, perform any three from 8 to 11, 6 and 7<br>are compulsory)                                                                                                                                           | COs<br>Mapped |
| 1.         | Find the phase angle difference between the same frequency signal using ZCD and AND gate. (Hardware)                                                                                                                                                           | CO1, CO2      |
| 2.         | Design of comparator for given reference voltage. (Hardware)                                                                                                                                                                                                   | CO1, CO2      |
| 3.         | Design sine, and triangular wave generator. (Hardware)                                                                                                                                                                                                         | CO1, CO2      |
| 4.         | Design first-order high pass and low pass filters using OPAMP in any open-source software for given specifications. (Software)                                                                                                                                 | CO1, CO2      |
| 5.         | Measurement of CMRR of 3 OPAMP Instrumentation amplifiers.<br>(Hardware)                                                                                                                                                                                       | CO1, CO2      |
| 6.         | Design of single phase bridge rectifier with output voltage and specified<br>ripple. (this lab should be designed for each student, perform in<br>simulation and demonstrate with hardware in the laboratory with design<br>documents) (Software and Hardware) | CO2, CO4      |
| 7.         | Implementation of A/D and D/A Converters                                                                                                                                                                                                                       | CO1, CO2      |
| 8.         | Design of logical circuit for the display of decimal numbers on a seven-<br>segment display. (Hardware)                                                                                                                                                        | CO2, CO3      |
| 9.         | Design a three-bit full adder using any open-source software. (Software)                                                                                                                                                                                       | CO2, CO3      |

| 10.                                                                                                                    | Design a logical circuit to convert code from one numbering system to another (Software/Hardware)                                             | CO2, CO3        |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|--|--|--|
| 11.                                                                                                                    | Design a digital clock or stopwatch using a decade counter.(IC74192) (Hardware)                                                               | CO2, CO3        |  |  |  |  |  |  |  |  |  |
| Guidelines for Laboratory Conduction                                                                                   |                                                                                                                                               |                 |  |  |  |  |  |  |  |  |  |
| 1. The teacher will brief the given experiment to students for its procedure, observations, calculations, and outcome. |                                                                                                                                               |                 |  |  |  |  |  |  |  |  |  |
| 2. App<br>tech                                                                                                         | 2. Apparatus and equipment required for the allotted experiment will be provided by the lab technician using SOP.                             |                 |  |  |  |  |  |  |  |  |  |
| 3. Stud<br>the s                                                                                                       | 3. Students will perform the allotted experiment in a group (2-3 students in each group) under the supervision of faculty and lab technician. |                 |  |  |  |  |  |  |  |  |  |
| 4. Afte                                                                                                                | r performing the experiment students will check their readings and calcula her.                                                               | tions from the  |  |  |  |  |  |  |  |  |  |
| 5. Afte                                                                                                                | r checking they have to write the conclusion on the final results.                                                                            |                 |  |  |  |  |  |  |  |  |  |
|                                                                                                                        | <b>Guidelines for Student's Lab Journal</b>                                                                                                   |                 |  |  |  |  |  |  |  |  |  |
| The write-                                                                                                             | up should include a title, aim and apparatus, circuit or block diagram, wa                                                                    | veforms, brief  |  |  |  |  |  |  |  |  |  |
| theory, pro                                                                                                            | ocedure, observations, graphs, calculations, conclusion, and questions, if any                                                                |                 |  |  |  |  |  |  |  |  |  |
| Guidelines for TermWork Assessment                                                                                     |                                                                                                                                               |                 |  |  |  |  |  |  |  |  |  |
| 1. Each e                                                                                                              | xperiment from the lab journal is assessed for thirty marks based on three ru                                                                 | brics.          |  |  |  |  |  |  |  |  |  |
| 2. Rubric                                                                                                              | R-1 for timely completion, R-2 for understanding, and R-3 for present                                                                         | ntation/journal |  |  |  |  |  |  |  |  |  |
| writing                                                                                                                | where each rubric carries ten marks.                                                                                                          |                 |  |  |  |  |  |  |  |  |  |

|     | Strength of CO-PO-PSO Mapping |    |   |   |   |   |   |   |   |    |    |    |   |     |  |
|-----|-------------------------------|----|---|---|---|---|---|---|---|----|----|----|---|-----|--|
|     |                               | PO |   |   |   |   |   |   |   |    |    |    |   | PSO |  |
|     | 1                             | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2   |  |
| CO1 | 2                             | 2  | 2 | 2 | 2 |   |   |   |   |    |    | 1  |   | 2-  |  |
| CO2 |                               |    |   |   |   |   |   |   | 1 | 1  |    |    |   |     |  |
| CO3 | 2                             | 2  | 2 | 2 | 2 |   |   |   |   |    |    | 1  |   | 2   |  |
| CO4 | 2                             | 2  | 2 | 2 | 2 |   |   |   |   |    |    | 1  |   | 2   |  |



|                                                 | S. Y. B. Tech.                     |                             |                        |                   |  |  |  |  |  |  |  |  |
|-------------------------------------------------|------------------------------------|-----------------------------|------------------------|-------------------|--|--|--|--|--|--|--|--|
|                                                 | Pattern 2022                       | Semester: III (Electr       | ical Engineering)      |                   |  |  |  |  |  |  |  |  |
| ELE222009: Electrical Engineering Materials Lab |                                    |                             |                        |                   |  |  |  |  |  |  |  |  |
| Teaching                                        | Scheme:                            | Credit Scheme:              | Examination Schen      | ne:               |  |  |  |  |  |  |  |  |
| Drastiaal                                       | 2 hug/mool                         | OP 1                        | Townsyowly 25 May      | ulta              |  |  |  |  |  |  |  |  |
| Practical:                                      | 2 hrs/week                         | OR-1                        | Termwork: 25 Mai       | rks               |  |  |  |  |  |  |  |  |
|                                                 |                                    |                             | Oral: 25 Ma            | rks               |  |  |  |  |  |  |  |  |
| Prerequis                                       | site Courses: Fundamental          | s of Electrical Engineering | ng, Applied Physics, A | pplied Chemistry. |  |  |  |  |  |  |  |  |
| Course O                                        | bjectives: The objectives of       | of the course are to        |                        |                   |  |  |  |  |  |  |  |  |
| 1. Imp                                          | art knowledge of the physi         | cal properties of Electric  | al Engineering Materi  | als               |  |  |  |  |  |  |  |  |
| 2. Intro                                        | oduce the materials used in        | various electrical comp     | onents                 |                   |  |  |  |  |  |  |  |  |
| Course O                                        | utcomes: On completion of          | of the course, students wi  | ll be able to          |                   |  |  |  |  |  |  |  |  |
|                                                 |                                    | Course Outcomes             |                        | Bloom's Level     |  |  |  |  |  |  |  |  |
| CO1                                             | Perform testing of variou standard | naterials as per IS         | 3-Apply                |                   |  |  |  |  |  |  |  |  |
|                                                 | Interpret and analyze the          | ting of materials           | 4-Analyze              |                   |  |  |  |  |  |  |  |  |
| CO2                                             | through experimentation.           |                             |                        |                   |  |  |  |  |  |  |  |  |
| CO2                                             | Perform experiment in th           | e group, write a lab repo   | rt, and present it     | 4- Apply          |  |  |  |  |  |  |  |  |
| 003                                             | effectively                        |                             | -                      |                   |  |  |  |  |  |  |  |  |

|         | List of Laboratory Experiments                                                                         |               |  |  |  |  |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|--|--|--|--|--|
|         | (All experiments are compulsory)                                                                       |               |  |  |  |  |  |  |  |  |  |
| Sr. No. | Laboratory Experiments                                                                                 | COs Mapped    |  |  |  |  |  |  |  |  |  |
| 1.      | To measure the dielectric strength of solid insulating materials.                                      | CO1, CO2, CO3 |  |  |  |  |  |  |  |  |  |
| 2.      | To measure the dielectric strength of liquid-insulating materials                                      | CO1, CO2, CO3 |  |  |  |  |  |  |  |  |  |
| 3.      | To measure the dielectric strength of gaseous insulating materials using Sphere Gap-Unit.              | CO1, CO2, CO3 |  |  |  |  |  |  |  |  |  |
| 4.      | To obtain the Hysteresis Loop of the Ferro-Magnetic Material.                                          | CO1, CO2, CO3 |  |  |  |  |  |  |  |  |  |
| 5.      | To understand the principle of thermocouples and to obtain characteristics of different thermocouples. | CO1, CO2, CO3 |  |  |  |  |  |  |  |  |  |
| 6.      | To measure the Insulation Resistance and kVAr capacity of the power capacitor.                         | CO1, CO2, CO3 |  |  |  |  |  |  |  |  |  |
| 7.      | To measure the Resistivity of High Resistive Alloys.                                                   | CO1, CO2, CO3 |  |  |  |  |  |  |  |  |  |
| 8.      | Testing of resins and polymers.                                                                        | CO1, CO2, CO3 |  |  |  |  |  |  |  |  |  |
| 9.      | Industrial Visit (Compulsory)                                                                          | CO1, CO2, CO3 |  |  |  |  |  |  |  |  |  |

## **Guidelines for Laboratory Conduction**

1. The teacher will brief the given experiment to students for its procedure, observations, calculations, and outcome.

2. Apparatus and equipment required for the allotted experiment will be provided by the lab technician using SOP.

3. Students will perform the allotted experiment in a group (2-3 students in each group) under the supervision of faculty and lab technician.

4. After performing the experiment students will check their readings and calculations from the teacher.

5. After checking they have to write the conclusion on the final results.

### **Guidelines for Student's Lab Journal**

The write-up should include a title, aim and apparatus, circuit or block diagram, waveforms, brief theory, procedure, observations, graphs, calculations, conclusion, and questions, if any.

#### **Guidelines for Termwork Assessment**

1. Each experiment from the lab journal is assessed for thirty marks based on three rubrics.

2. Rubric R-1 for timely completion, R-2 for understanding, and R-3 for presentation/journal writing where each rubric carries ten marks.

| Strength of CO-PO-PSO Mapping |   |    |   |   |   |   |   |   |   |    |    |    |   |     |  |
|-------------------------------|---|----|---|---|---|---|---|---|---|----|----|----|---|-----|--|
|                               |   | РО |   |   |   |   |   |   |   |    |    |    |   | PSO |  |
|                               | 1 | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2   |  |
| CO1                           |   | 2  | 2 |   |   |   |   |   |   |    |    |    |   |     |  |
| CO2                           | 1 | 2  | 2 | 1 |   |   |   |   |   |    |    | 1  |   |     |  |
| CO3                           |   |    |   |   |   |   |   |   | 1 | 1  |    |    |   |     |  |



|                                                  | S. Y. B. Tech.<br>Pattern 2022 Semester: III (Electrical Engineering)<br>ELE222010: Python for Numerical Methods                                                          |                                                                                                                        |                             |               |  |  |  |  |  |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|--|--|--|--|--|--|--|
| Teaching                                         | Scheme:                                                                                                                                                                   | Credit Scheme:                                                                                                         | Examination Schem           | ie:           |  |  |  |  |  |  |  |
| Practical:                                       | 2 hrs/week                                                                                                                                                                | TW-1                                                                                                                   | Termwork: 25 Marks          |               |  |  |  |  |  |  |  |
| Prerequis                                        | Prerequisite Courses: Applied Mathematics-III, Computer Programming                                                                                                       |                                                                                                                        |                             |               |  |  |  |  |  |  |  |
| Course O 1) Develo 2) Develo 3) Inculca Course O | <b>bjectives:</b> The objectives of<br>op analytical skills using nu-<br>op critical thinking to solve<br>ate programming skills usin<br><b>utcomes:</b> On completion of | of the course are to<br>imerical methods.<br>a complex engineering<br>ng Python language.<br>If the course, students w | problem.<br>ill be able to– |               |  |  |  |  |  |  |  |
|                                                  |                                                                                                                                                                           | <b>Course Outcomes</b>                                                                                                 |                             | Bloom's Level |  |  |  |  |  |  |  |
| CO1                                              | Choose the correct nur definition.                                                                                                                                        | nerical method depend                                                                                                  | ling on the problem         | 2-Understand  |  |  |  |  |  |  |  |
| CO2                                              | Solve the given complex                                                                                                                                                   | problem using selected                                                                                                 | numerical methods.          | 3-Analyze     |  |  |  |  |  |  |  |
| CO3                                              | Develop an algorithm and                                                                                                                                                  | 4. Apply                                                                                                               |                             |               |  |  |  |  |  |  |  |
| CO4                                              | Write programs for num representation.                                                                                                                                    | erical methods using H                                                                                                 | Python with graphical       | 5. Create     |  |  |  |  |  |  |  |

| Sr. No. | Laboratory Experiments                                                                                                                                                                                                                                                                                                                                                                                                          | COs<br>Mapped         |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 1       | <ul> <li>Develop an algorithm, draw a flow chart, and write a program to implement the following:</li> <li>(a) for loop and while loop application in Descarte's rule of the sign.</li> <li>(b) if-else and functions application in Intermediate value theorem.</li> <li>(c) 2DArray formation application in matrix data entry, transposition, and printing matrix.</li> </ul>                                                | CO1, CO2,<br>CO3, CO4 |
| 2       | Develop an algorithm, draw a flow chart, and write a program to implement the Birge-Vieta method.                                                                                                                                                                                                                                                                                                                               | CO1, CO2,<br>CO3, CO4 |
| 3       | Develop an algorithm, draw a flow chart, and write a program to<br>implement the Bisection/Regula falsi /Newton-Raphson method (single<br>variable) in the following applications (formulate problem statement in any<br>one of the following areas (but not limited to))<br>(a) Finding critical clearing angle in power system stability (give equation<br>directly)<br>(b) Relation between voltage and current in solar PV. | CO1, CO2,<br>CO3, CO4 |
| 4       | Develop an algorithm, draw a flow chart, and write a program to<br>implement curve fitting using a least square approximation in the following<br>applications (formulate problem statement in any one of the following<br>areas (but not limited to))                                                                                                                                                                          | CO1, CO2,<br>CO3, CO4 |

|            | (a) Voltage across capacitor during charging.                             |                    |
|------------|---------------------------------------------------------------------------|--------------------|
|            | (b) Relate temperature and resistance in the thermocouple.                |                    |
|            | (c) Current through inductor during excitation.                           |                    |
|            | Develop an algorithm, draw a flow chart, and write a program to apply     |                    |
|            | Newton's forward/backward interpolation method in the following           |                    |
|            | applications (formulate problem statement in any one of the following     | CO1 CO2            |
| 5          | areas (but not limited to))                                               | CO3, CO4           |
|            | (a) Voltage across capacitor during charging                              | 000,001            |
|            | (b) Relation of speed and armature voltage in DC motor.                   |                    |
|            | (c) Relation of breakdown voltage and thickness of insulation             |                    |
|            | Develop an algorithm, draw a flow chart, and write a program to apply     |                    |
|            | Newton's divided difference/Lagrange's interpolation method in the        |                    |
|            | following applications (formulate problem statement in any one of the     |                    |
| 6          | following areas (but not limited to))                                     | CO1, CO2,          |
| 0          | (a) Power transfer equation to find power at a particular angle           | CO3, CO4           |
|            | (b) Transformer efficiency at particular nower factor)                    |                    |
|            | (c) Growth of electricity consumption in India (year Vs Per capital       |                    |
|            | electrical consumption).                                                  |                    |
|            | Develop an algorithm, draw a flow chart, and write a program to           | CO1. CO2.          |
|            | implement the trapezoidal/ Simpson (1/3)rd rule in the following          | CO3, CO4           |
|            | applications (formulate problem statement in any one of the following     | ,                  |
| 7          | areas (but not limited to))                                               |                    |
| /          | (a) RMS/Average value of given waveform.                                  |                    |
|            | (b) Finding current through first-order circuit (RL series)               |                    |
|            | (c) kWh consumption from the load curve                                   |                    |
|            | (d) Magnetic field intensity in overhead transmission line                |                    |
|            | Develop an algorithm, draw a flow chart, and write a program to           | CO1, CO2,          |
|            | implement Gauss elimination/Jordan in the following applications          | CO3, a CO4         |
| 8          | (formulate problem statement in any one of the following areas (but not   |                    |
|            | (a) Electrical network using KVI                                          |                    |
|            | (a) Electrical network using KVL                                          |                    |
|            | Develop an algorithm draw a flow chart and write a program to             | CO1 CO2            |
|            | implement Gauss Jacobi/Seidel in the following applications (formulate    | CO1, CO2, CO3, CO4 |
| 9          | problem statement in any one of the following areas (but not limited to)) | 005,001            |
|            | (a) Electrical network using KVL                                          |                    |
|            | (b) Electrical Network using KCaL                                         |                    |
|            | Develop an algorithm, draw a flow chart, and write a program to           | CO1, CO2,          |
|            | implement Modified Euler's/4th order RK method in the following           | CO3, CO4           |
|            | applications (formulate problem statement in any one of the following     |                    |
| 10         | areas (but not limited to)                                                |                    |
|            | (a) Response of RC series circuit with DC                                 |                    |
|            | (b) Response of RL circuit with DC                                        |                    |
|            | (c) Deflection angle in MI-type instrument                                |                    |
|            | Guidelines for Laboratory Conduction                                      |                    |
| The Instru | ctor Manual should contain the following related to every program         |                    |
| • Th       | eory related to the method                                                |                    |
| • Al       | gorithm and Flowchart of the method                                       |                    |
| • 'I'h     | ree to four different sets of problem statements for the numerical method |                    |

- Solve numerical using the appropriate method
- Ten questions based on method and related Python commands
- Expected Output

## Guidelines for Student's Lab Journal

The student's Lab Journal should contain the following related to every experiment:

- Theory related to the method
- Algorithm and Flowchart of the method
- Three to four different sets of problem statements for the numerical method
- Solve numerical using the appropriate method
- Ten questions based on method and related Python commands

#### **Guidelines for Termwork Assessment**

- 1. Each experiment from the lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding, and R-3 for presentation/journal writing where each rubric carries ten marks.

|     | Strength of CO-PO-PSO Mapping |    |   |   |   |   |   |   |   |    |    |    |   |     |  |
|-----|-------------------------------|----|---|---|---|---|---|---|---|----|----|----|---|-----|--|
|     |                               | PO |   |   |   |   |   |   |   |    |    |    |   | PSO |  |
|     | 1                             | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2   |  |
| CO1 | 3                             | 3  |   |   |   |   |   |   |   |    |    |    |   |     |  |
| CO2 | 3                             | 3  | 3 |   |   |   |   |   |   |    |    |    |   |     |  |
| CO3 | 3                             | 3  | 3 | 2 | 2 | - |   |   | 2 | 2  |    | 2  | - | -   |  |
| CO4 |                               |    |   | 2 | 2 |   |   |   | 2 | 2  |    | 2  |   |     |  |



|                                                   |                                                                                              | S. Y. B. Tech.                                          |                                                    |                                    |  |  |  |
|---------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|------------------------------------|--|--|--|
| Pattern 2022 Semester: IV(Electrical Engineering) |                                                                                              |                                                         |                                                    |                                    |  |  |  |
|                                                   | ELE22                                                                                        | 2011: Electrical Netwo                                  | rk Analysis                                        |                                    |  |  |  |
| Teaching                                          | Scheme:                                                                                      | Credit Scheme:                                          | Examination Schem                                  | ie:                                |  |  |  |
| Theory: 3                                         | hrs/week                                                                                     | TH-3                                                    | <b>Continuous</b> Comprel                          | nensive                            |  |  |  |
| -                                                 |                                                                                              |                                                         | Evaluation: 20 Mark                                | S                                  |  |  |  |
|                                                   |                                                                                              |                                                         | InSem Exam: 20 Ma                                  | rks                                |  |  |  |
| -                                                 | ~ ~ ~ ~                                                                                      |                                                         | EndSem Exam: 60 N                                  | larks                              |  |  |  |
| Prerequis                                         | ite Courses: Fundamental                                                                     | s of Electrical Engineerin                              | ng, Applied Mathemati                              | cs, and Applied                    |  |  |  |
| Physics.                                          | hightimes: The objectives of                                                                 | f the course are to                                     |                                                    |                                    |  |  |  |
| 1 Impart t                                        | be mathematical skills ann                                                                   | lied to Electrical networl                              | ZS                                                 |                                    |  |  |  |
| 2 Provide                                         | an overview of the behavi                                                                    | or of the steady state and                              | transient states in RL(                            | <sup>-</sup> circuits              |  |  |  |
| 3. Develor                                        | an ability to design conce                                                                   | of of the steady state and opts for different filters.  |                                                    | en curto.                          |  |  |  |
| Course O                                          | utcomes: On completion c                                                                     | f the course, students wi                               | ll be able to-                                     |                                    |  |  |  |
|                                                   | -                                                                                            |                                                         | Bloom's Level                                      |                                    |  |  |  |
| CO1                                               | Define different laws and                                                                    | 1-Remember                                              |                                                    |                                    |  |  |  |
| CO2                                               | Apply theorems and Lapl                                                                      | ace transform for solving                               | g electrical network                               | 3-Apply                            |  |  |  |
|                                                   | problems.                                                                                    |                                                         |                                                    |                                    |  |  |  |
| CO3                                               | Analyze transient response                                                                   | se and steady state of AC                               | /DC electrical                                     | 4-Analyze                          |  |  |  |
|                                                   | circuits in time and Lapla                                                                   | ce domain.                                              |                                                    |                                    |  |  |  |
| CO4                                               | Design the low pass and l specification.                                                     | nigh pass filters based on                              | the given                                          | 4- Analyze                         |  |  |  |
| CO5                                               | Evaluate the different par                                                                   | ameters in two-port netw                                | vorks.                                             | 5-Evaluate                         |  |  |  |
|                                                   |                                                                                              | COURSE CONTENT                                          | ГS                                                 |                                    |  |  |  |
| Unit I                                            | Basis Circuit Analysis                                                                       |                                                         | (8hrs)                                             | CO1,CO2                            |  |  |  |
| Types of s                                        | ources, the concept of sour                                                                  | ce transformation, voltag                               | ge and current divider,                            | mesh and super                     |  |  |  |
| mesh-anal                                         | ysis in AC and DC circuit,                                                                   | nodal and super nodal and                               | nalysis AC and DC circ                             | cuit. Concept of                   |  |  |  |
| dot conver                                        | ntion, magnetic coupled cir                                                                  | cuit, and duality of netw                               | orks.                                              |                                    |  |  |  |
| Unit II                                           | Network Theorem for A                                                                        | C and DC Networks                                       | (8hrs)                                             | CO1,CO2                            |  |  |  |
| Superpositi                                       | on, Thevenin, Norton, M                                                                      | aximum Power Transfe                                    | er, Reciprocity, and M                             | Aillman Theorems.                  |  |  |  |
| Graph Theo                                        | ory: Incidence, tie set, and                                                                 | cut set matrix.                                         | 1                                                  |                                    |  |  |  |
| Unit III                                          | Transients in Electrical N                                                                   | Networks                                                | (8hrs)                                             | CO3                                |  |  |  |
| Concept of                                        | the transient and steady-s                                                                   | tate response of passive                                | element, transient resp                            | ponse of R-L, R-C,                 |  |  |  |
| and R-L-C                                         | network in the time doma                                                                     | ain, with source and sou                                | rce free responses, tin                            | ne constants steady                |  |  |  |
| state and tra                                     | ansient state response.                                                                      |                                                         |                                                    | 004                                |  |  |  |
| Unit IV                                           | Transient Analysis in S-                                                                     | domain and Filters                                      | (8hrs)                                             | CO4                                |  |  |  |
| Laplace transeries and p                          | nsform representation of R<br>parallel R-L, R-C, and R-L-<br>av pass filters, design of filt | , L, C in S-domain, appli<br>C circuits (Source free, S | cation of Laplace Tran<br>Source driven). Filters: | sform to solve<br>First order high |  |  |  |
| Unit V                                            | Two Port Network                                                                             |                                                         | (8hrs)                                             | CO5                                |  |  |  |

Two port networks, various two-port network parameters, and their interrelationships. Network Functions & Responses: Concept of complex frequency, driving point, and transfer functions for one port and two port network, poles & zeros of network functions, Restriction on Pole and Zero locations of network function. Impulse response and complete response. Time domain behavior form a pole-zero plot.

#### **Text Books**

- 1. M. E. Van Valkenberg, "Network Analysis", Third Edition, Prentice Hall of India Publication.
- 2. W. H. Hayt. Jr. and J. E. Kemmerly, "Engineering Circuit Analysis", Fifth Edition, Tata-McGraw Hill Edition.
- 3. Desoer and Kuh, "Basic circuit theory", Tata McGraw Hill Edition.
- 4. Joseph A Edminster, "Theory and Problems of Electric Circuits", Shaum Series.
- 5. G. K. Mittal, "Network Analysis and Synthesis", Khanna Publication.

## **Reference Books**

- 1. D. Roy Choudhury, "Networks and systems" New Age International Publishers.
- 2. A Sudhakar and Shaymmohan S Palli, "Circuit & Network Analysis and Synthesis", TMH Publication.
- 3. Abhijit Chakraborty, "Circuit Theory", DhanpatRai and Company.
- 4. Ravish R Singh, "Network Analysis and synthesis", McGraw Hill Education (India).

|         | Guidelines for Continuous Comprehensive Evaluation of Theory Course |                   |  |  |  |  |  |  |  |
|---------|---------------------------------------------------------------------|-------------------|--|--|--|--|--|--|--|
| Sr. No. | <b>Components for Continuous Comprehensive Evaluation</b>           | Marks<br>Allotted |  |  |  |  |  |  |  |
| 1       | Assignment 1 (Based on Units I and II) (Deadline: before Insem)     | 5                 |  |  |  |  |  |  |  |
| 2       | Assignment 2 (Based on Units III and IV) (Deadline: before Endsem)  | 5                 |  |  |  |  |  |  |  |
| 3.      | LearniCo (Best 5 sessions out of Minimum 10 sessions)               | 5                 |  |  |  |  |  |  |  |
| 4.      | Class test based on units III to V                                  | 5                 |  |  |  |  |  |  |  |

|     | Strength of CO-PO-PSO Mapping |   |   |   |   |   |   |   |   |    |    |    |   |   |
|-----|-------------------------------|---|---|---|---|---|---|---|---|----|----|----|---|---|
|     | PO                            |   |   |   |   |   |   |   |   | PS | 50 |    |   |   |
|     | 1                             | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 |
| CO1 | 3                             | 3 |   |   |   |   |   |   |   |    |    |    |   |   |
| CO2 | 3                             | 3 | 3 | 3 |   |   |   |   |   |    |    |    |   |   |
| CO3 | 3                             | 3 | 3 | 3 |   |   |   |   |   |    |    |    | 2 | 2 |
| CO4 | 3                             | 3 | 3 | 3 |   |   |   |   |   |    |    |    | 2 | 2 |
| CO5 | 3                             | 3 | 3 | 3 |   |   |   |   |   |    |    |    | 2 | 2 |



|                                                                 | S. Y. B. Tech.<br>Pattern 2022 Semester: IV (Electrical Engineering)<br>ELE222012: Microcontroller and Embedded Systems                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |                                                                             |                                          |  |  |  |  |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------|--|--|--|--|
| Teaching                                                        | g Scheme:                                                                                                                                                                                                                                                                                                                                                                                                                                            | Credit Scheme:                                                                                                       | Examination Sche                                                            | me:                                      |  |  |  |  |
| Theory:                                                         | 3 hrs/week                                                                                                                                                                                                                                                                                                                                                                                                                                           | TH: 3                                                                                                                | Continuous Comp<br>Evaluation: 20 Ma<br>InSem Exam: 20 N<br>EndSem Exam: 60 | )rehensive<br>arks<br>Marks<br>0 Marks   |  |  |  |  |
| Prerequi                                                        | site Courses: Analog and I                                                                                                                                                                                                                                                                                                                                                                                                                           | Digital Circuits                                                                                                     |                                                                             |                                          |  |  |  |  |
| Course (<br>1. Expl<br>system<br>2. Intro<br>3. Prov<br>using 8 | <ul> <li>Course Objectives: The objectives of the course are to <ol> <li>Explore the architecture, software, and hardware features of the microcontroller and embedded system.</li> <li>Introduce students to the protocol for serial communication and times in microcontroller systems.</li> <li>Provide students with concepts of interfacing and circuit development for simple applications using 8051 and ARM processors.</li> </ol></li></ul> |                                                                                                                      |                                                                             |                                          |  |  |  |  |
| Course (                                                        | <b>Dutcomes:</b> On completion of                                                                                                                                                                                                                                                                                                                                                                                                                    | of the course, students wil                                                                                          | l be able to-                                                               |                                          |  |  |  |  |
|                                                                 | Course Outcomes Bloom's Lev                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                      |                                                                             |                                          |  |  |  |  |
| CO1                                                             | Describe the architectur microcontroller and embe                                                                                                                                                                                                                                                                                                                                                                                                    | Describe the architecture, hardware, and software features of the 2-Understand microcontroller and embedded systems. |                                                                             |                                          |  |  |  |  |
| CO2                                                             | Write assembly language                                                                                                                                                                                                                                                                                                                                                                                                                              | 3- Apply                                                                                                             |                                                                             |                                          |  |  |  |  |
| CO3                                                             | Use operating modes of I/O ports, Timers/Counters, control registers, 3- Apply and various types of interrupts of 8051 and STM32F103.                                                                                                                                                                                                                                                                                                                |                                                                                                                      |                                                                             |                                          |  |  |  |  |
| CO4                                                             | Design circuits using ST time.                                                                                                                                                                                                                                                                                                                                                                                                                       | M32F103 and 8051 micr                                                                                                | cocontroller in real-                                                       | 6 -Create                                |  |  |  |  |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COURSE CONTENT                                                                                                       | Ϋ́S                                                                         |                                          |  |  |  |  |
| Unit I                                                          | Introduction to M                                                                                                                                                                                                                                                                                                                                                                                                                                    | licrocontrollers                                                                                                     | 8 hrs                                                                       | COs Mapped -<br>CO1, CO2,<br>CO3         |  |  |  |  |
| Features<br>special further                                     | of MCS51, its architecture,<br>unction registers in MCS5<br>s.                                                                                                                                                                                                                                                                                                                                                                                       | pin diagram, memory or<br>1, Parallel I/O interrupt                                                                  | ganization, external r<br>ports, serial commu                               | nemory interfacing, nication, timer, and |  |  |  |  |
| Unit II                                                         | Addressing modes an<br>assembly pro                                                                                                                                                                                                                                                                                                                                                                                                                  | nd Instructions set,<br>gramming                                                                                     | 8 hrs                                                                       | COs Mapped -<br>CO1, CO2                 |  |  |  |  |
| Addressing ass                                                  | ng modes of 8051, Arithme embly language.                                                                                                                                                                                                                                                                                                                                                                                                            | tic, logical, Boolean, and                                                                                           | Program instructions                                                        | s of 8051, programs                      |  |  |  |  |
| Unit<br>III                                                     | Introduction to em                                                                                                                                                                                                                                                                                                                                                                                                                                   | bedded systems                                                                                                       | 8 hrs                                                                       | COs Mapped<br>-CO1, CO2,<br>CO3          |  |  |  |  |
| Understa<br>systems,<br>ARM pro                                 | nding an embedded system<br>introduction to ARM (RIS)<br>ocessor, program status regis                                                                                                                                                                                                                                                                                                                                                               | n, its design metrics and<br>C) processor, an overvie-<br>ster, and comparison betw                                  | challenges, technolo<br>w of its architecture,<br>veen CISC and RISC        | bgies for embedded<br>different modes of |  |  |  |  |
| Unit<br>IV                                                      | Instruction Set and Prog<br>Proces                                                                                                                                                                                                                                                                                                                                                                                                                   | gramming using ARM                                                                                                   | ARM8 hrsCOs MappedCO1, CO2                                                  |                                          |  |  |  |  |

Data transfer instruction – Arithmetic instruction - Logical Instruction, Multiply instruction, Branch instruction, Load/Store instruction, Swap instruction, Solving a simple equation, generation of the square waveform, Memory operations.

| Unit V | Real-world interfacing | 8 hrs | COs Mapped<br>– CO4 |
|--------|------------------------|-------|---------------------|
|        |                        |       |                     |

Interfacing with simple devices such as LCD, keyboard, motor control, sensors (temperature, voltage and current, etc.), LED 7 segment display, DTMF decoder, analog-digital converter, global system for mobile communication, etc. with 8051 microcontroller and STM32F103 ARM processor.

**Text Books** 

1. Andrew N Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide, Morgan Kaufmann Publishers, 1<sup>st</sup> Edition, 2004.

2. Mohammad Ali Mazidi, Janice Gillispie Mazidi, "The 8051 Microcontroller and Embedded, Pearson Education India Publisher, 2<sup>nd</sup> Edition, 2006.

3. Mazidi, Mazidi, and McKinley, "The 8051 microcontroller and Embedded systems", Pearson Publication, 2<sup>nd</sup> Edition, 2006.

## **Reference Books**

1. Kenneth J. Ayla, "The 8051 Microcontroller", Thomson learning, 3rd Edition, 2010.

2. D Karuna Sagar, "Microcontroller 8051", Oxford: Alpha Science, 2011.

3. P.V Guruprasad, "Arm Architecture System on Chip and More", Apress, 2013.

|         | Guidelines for Continuous Comprehensive Evaluation of Theory Course |                   |  |  |  |  |  |  |  |
|---------|---------------------------------------------------------------------|-------------------|--|--|--|--|--|--|--|
| Sr. No. | <b>Components for Continuous Comprehensive Evaluation</b>           | Marks<br>Allotted |  |  |  |  |  |  |  |
| 1       | Assignment 1 (Based on Units I and II) (Deadline: before Insem)     | 5                 |  |  |  |  |  |  |  |
| 2       | Assignment 2 (Based on Units III and IV) (Deadline: before Endsem)  | 5                 |  |  |  |  |  |  |  |
| 3.      | LearniCo (Best 5 sessions out of Minimum 10 sessions)               | 5                 |  |  |  |  |  |  |  |
| 4.      | Mini project                                                        | 5                 |  |  |  |  |  |  |  |

|     | Strength of CO-PO-PSO Mapping |    |   |   |   |  |  |   |   |  |  |    |    |   |
|-----|-------------------------------|----|---|---|---|--|--|---|---|--|--|----|----|---|
|     |                               | PO |   |   |   |  |  |   |   |  |  | PS | 50 |   |
|     | 1 2 3 4 5 6 7 8 9 10 11 12    |    |   |   |   |  |  | 1 | 2 |  |  |    |    |   |
| CO1 | 3                             | 3  |   |   |   |  |  |   |   |  |  |    |    |   |
| CO2 | 3                             | 3  | 3 |   | 3 |  |  |   |   |  |  |    |    |   |
| CO3 | 3                             | 3  | 3 | 1 | 3 |  |  |   |   |  |  | 1  |    | 1 |
| CO4 | 3                             | 3  | 3 | 1 | 3 |  |  |   |   |  |  | 1  |    | 1 |



| S. Y. B. Tech.<br>Pattern 2022 Semester: IV (Electrical Engineering) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     |                                                                            |                                                                          |  |  |  |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|--|
|                                                                      | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LE222013: Power Elect                                                                                               | ronics                                                                     |                                                                          |  |  |  |  |  |
| Teaching                                                             | Scheme:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Credit Scheme:                                                                                                      | Examination Sc                                                             | heme:                                                                    |  |  |  |  |  |
| Theory: 3                                                            | Bhrs/week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TH-3                                                                                                                | Continuous Con                                                             | nprehensive                                                              |  |  |  |  |  |
| · ·                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                     | Evaluation: 20 N                                                           | Marks                                                                    |  |  |  |  |  |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | InSem Exam: 20 Marks                                                                                                |                                                                            |                                                                          |  |  |  |  |  |
|                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                     | EndSem Exam:                                                               | 60 Marks                                                                 |  |  |  |  |  |
| Prerequis                                                            | Prerequisite Courses: Analog and Digital Circuits, Applied Mathematics III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                     |                                                                            |                                                                          |  |  |  |  |  |
| Course O<br>1. Introdu                                               | <b>bjectives:</b> The objectives of uce different power semicor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of the course are to nductor devices                                                                                |                                                                            |                                                                          |  |  |  |  |  |
| 2. Introd                                                            | uce different converter top                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ologies, their operation, a                                                                                         | nd applications.                                                           |                                                                          |  |  |  |  |  |
| Course O                                                             | utcomes: On completion of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f the course, students wil                                                                                          | ll be able to-                                                             |                                                                          |  |  |  |  |  |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Course Outcomes                                                                                                     |                                                                            | Bloom's Level                                                            |  |  |  |  |  |
| CO1                                                                  | Select switching devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | for a given power conver                                                                                            | ter                                                                        | 2-Understand                                                             |  |  |  |  |  |
| CO2                                                                  | Draw circuit diagrams an different loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Draw circuit diagrams and waveforms for converter circuits with different loads 3- Apply                            |                                                                            |                                                                          |  |  |  |  |  |
| CO3                                                                  | Analyze the operation and performance of power electronics4- Analyzeconverters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                     |                                                                            |                                                                          |  |  |  |  |  |
| CO4                                                                  | Design simple power electronics converter circuits 6- Create                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                     |                                                                            |                                                                          |  |  |  |  |  |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COURSE CONTENT                                                                                                      | S                                                                          |                                                                          |  |  |  |  |  |
| Unit I                                                               | Power Semiconductor D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | evices                                                                                                              | (8 hrs.)                                                                   | CO1, CO2                                                                 |  |  |  |  |  |
| Concept<br>semicondu<br>IGBTs-Pri<br>commutat                        | of power electronics, suctor switches: power dio<br>inciples of operation, chan<br>ion (class C&D).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cope, and applications,<br>les, power transistors, S<br>acteristics, Thyristor rat                                  | , types of powe<br>CRs, TRIAC, GT<br>ings, protection, g                   | er converters, power<br>O, power MOSFETs,<br>gate drive circuits and     |  |  |  |  |  |
| Unit II                                                              | Controlled Rectifiers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                     | (8 hrs.)                                                                   | CO1, CO2                                                                 |  |  |  |  |  |
| Introduction<br>converter<br>and RLE<br>load and s                   | on to the uncontrolled and<br>with R, RL, and RLE load<br>load, Principles of three-p<br>ource inductances, Introdu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l controlled rectifier, Pri<br>, Principles of single-pha<br>hase fully-controlled con<br>ction to dual converters. | inciples of single-<br>use half-controlled<br>overter operation v          | phase fully-controlled<br>converter with R, RL<br>with R load, Effect of |  |  |  |  |  |
| Unit III                                                             | <b>DC-DC Converters</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                     | (8 hrs.)                                                                   | CO3,CO4                                                                  |  |  |  |  |  |
| Step-down<br>Switched                                                | n and step-up chopper, con<br>mode regulators- Buck, Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | trol strategy, Introduction ost, Buck-Boost regulato                                                                | n to types of chopp<br>r, Introduction to H                                | ers-A, B, C, D, and E,<br>Resonant Converters.                           |  |  |  |  |  |
| Unit IV                                                              | DC-AC converters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                   | (8 hrs.)                                                                   | CO3, CO4                                                                 |  |  |  |  |  |
| Single-pha<br>Voltage an<br>sinusoidal<br>Unit V                     | ase and three-phase voltage<br>nd harmonic Control, PWM<br>PWM, Introduction to Mu<br>AC-AC converters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | source inverters (both 1)<br>I techniques: Multiple PV<br>Itilevel Converter, Curren                                | 80 and 120 degrees<br>VM, Sinusoidal PV<br>nt source inverter.<br>(8 hrs.) | s conduction mode),<br>WM, modified                                      |  |  |  |  |  |
| Single and                                                           | Onit v     AC-AC converters     (8 nrs.)     CO2, CO3       Single and three phase controllors, phase control, DWM AC voltage controllors, phase controllors |                                                                                                                     |                                                                            |                                                                          |  |  |  |  |  |
| control an                                                           | Single and three-phase controllers, phase control, PWM AC voltage controller, Principle of ON-OFF control and cyclo-converters, Introduction to Matrix converters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                     |                                                                            |                                                                          |  |  |  |  |  |

#### **Text Books**

- 1. Muhammad H. Rashid, "Power Electronics Circuits, Devices and Applications", Pearson, 4th Edition, 2018.
- 2. Ned Mohan, Tore M. Undeland, William P. Robbins, "Power Electronics", John Wiley & Sons Publications, 3rd Edition, 2006.

## **Reference Books**

- 1. P.S.Bimbhra, "Power Electronics", Khanna Publishers, 6th Edition, 2016
- 2. Vedam Subramaniam, "Power Electronics", New Age International (P) Ltd Publishers, 2001.

|         | Guidelines for Continuous Comprehensive Evaluation of Theory Course |                   |  |  |  |  |  |  |  |
|---------|---------------------------------------------------------------------|-------------------|--|--|--|--|--|--|--|
| Sr. No. | <b>Components for Continuous Comprehensive Evaluation</b>           | Marks<br>Allotted |  |  |  |  |  |  |  |
| 1       | Assignment 01 (Based on Units I and II) (Deadline: before Insem)    | 5                 |  |  |  |  |  |  |  |
| 2       | Assignment 02 (Based on Units III and IV) (Deadline: before Endsem) | 5                 |  |  |  |  |  |  |  |
| 3.      | LearniCo (Best 5 sessions out of Minimum 10 sessions)               | 5                 |  |  |  |  |  |  |  |
| 4.      | Class test (Before End sem)                                         | 5                 |  |  |  |  |  |  |  |

|      | Strength of CO-PO-PSO Mapping |                            |   |   |   |  |  |  |   |   |  |     |   |   |
|------|-------------------------------|----------------------------|---|---|---|--|--|--|---|---|--|-----|---|---|
|      | PO                            |                            |   |   |   |  |  |  |   |   |  | PSO |   |   |
|      | 1                             | 1 2 3 4 5 6 7 8 9 10 11 12 |   |   |   |  |  |  | 1 | 2 |  |     |   |   |
| CO 1 | 3                             | 3                          |   |   |   |  |  |  |   |   |  |     |   |   |
| CO 2 |                               | 3                          | 3 |   | 3 |  |  |  |   |   |  |     |   |   |
| CO 3 | 3                             | 3                          | 3 | 3 | 3 |  |  |  |   |   |  | 3   | 3 | 3 |
| CO 4 | 3                             | 3                          | 3 | 3 | 3 |  |  |  |   |   |  | 3   | 3 | 3 |



|                                                                                              | Pat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S. Y. B. Tech.<br>ttern 2022 Semester: IV (Electrical Engine<br>ELE222014: Power System Engineering                                                                                                                                                                                   | ering)                                                                     |                                                                              |  |  |  |  |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|
| Teaching                                                                                     | Scheme:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Credit Scheme:                                                                                                                                                                                                                                                                        | Examinat                                                                   | ion Scheme:                                                                  |  |  |  |  |
| Theory: 3                                                                                    | hrs./week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TH-03                                                                                                                                                                                                                                                                                 | CCE: 20N<br>InSem Ex<br>EndSem Ex                                          | Iarks<br>am: 20Marks<br>xam: 60Marks                                         |  |  |  |  |
| Prerequis                                                                                    | ite Courses: Fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ndamentals of Electrical Engineering                                                                                                                                                                                                                                                  |                                                                            |                                                                              |  |  |  |  |
| Course O<br>1. Ena<br>rela<br>2. Hel<br>equ<br>3. Get<br>tran<br>Course O                    | bjectives: The o<br>ble students to le<br>ted to the power<br>p students to un<br>ipment present in<br>knowledge of<br>smission system<br>utcomes: On co                                                                                                                                                                                                                                                                                                                                                                         | bjectives of the course are to<br>earn the basic structure of electrical power sys<br>system, and tariffs.<br>Inderstand the specifications and applications<br>in power plants.<br>The mechanical and electrical design of<br>s.<br>mpletion of the course, students will be able to | tems, variou<br>of various<br>overhead a                                   | s electrical terms<br>major electrical<br>nd underground                     |  |  |  |  |
|                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Bloom's Level</b>                                                                                                                                                                                                                                                                  |                                                                            |                                                                              |  |  |  |  |
| CO1                                                                                          | Define various terminologies related to load curve, tariff, economical 1. Remember load dispatch, and transmission system.                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                       |                                                                            |                                                                              |  |  |  |  |
| CO2                                                                                          | Elaborate tariff and allocation of generating units on an economical basis. 2- Understand                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                       |                                                                            |                                                                              |  |  |  |  |
| CO3                                                                                          | Calculate electristation and trans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ical and mechanical parameters and factors i mission system.                                                                                                                                                                                                                          | n the power                                                                | 3- Apply                                                                     |  |  |  |  |
| CO4                                                                                          | Model and analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ze the performance of the overhead transmissi                                                                                                                                                                                                                                         | on line                                                                    | 3- Analyze                                                                   |  |  |  |  |
| CO5                                                                                          | Evaluate different dispatch and uni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt types of tariffs and methods of economical l t commitment.                                                                                                                                                                                                                         | oad                                                                        | 5 -Evaluate                                                                  |  |  |  |  |
|                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COURSE CONTENTS                                                                                                                                                                                                                                                                       |                                                                            |                                                                              |  |  |  |  |
| Unit I                                                                                       | Stru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cture of Power System and Tariff                                                                                                                                                                                                                                                      | 08 hrs                                                                     | CO1, CO2,<br>CO3, CO5                                                        |  |  |  |  |
| Structure of<br>associated y<br>peak load s<br>Tariff: Intr<br>part tariff, t<br>Introductio | Structure of Electrical Power Systems: Structure of electrical power system, Different factors<br>associated with generating stations and Load curve, Load duration curve, Concept of base load and<br>peak load stations (04 hrs)<br>Tariff: Introduction of Tariff, objectives, desirable characteristic, various consumer categories, two-<br>part tariff, three-part tariff, Time of day tariff for H.T and L.T industrial and commercial consumers,<br>Introduction to Availability based tariff (ABT), kVAh tariff (4 hrs) |                                                                                                                                                                                                                                                                                       |                                                                            |                                                                              |  |  |  |  |
| Unit II                                                                                      | Economical Load Dispatch and Unit Commitment 08 hrs CO1, CO2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                       |                                                                            |                                                                              |  |  |  |  |
| Economic<br>method of 1<br>of thermal 1<br>Unit comm<br>thermal and<br>(03 hrs)              | load dispatch:<br>Lagrange multip<br>plant considering<br>nitment: Concep<br>l hydro constrain                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cost curve of thermal and hydro plant, equilier (neglecting transmission losses), Bmn coers<br>the effect of transmission losses, penalty factors of unit commitment, constraints on unit corr<br>the methods of unit commitment – priority list                                      | ial incremen<br>fficient, ecor<br>or (05 hrs)<br>nmitment –<br>t and dynam | tal cost method,<br>nomic scheduling<br>spinning reserve,<br>ic programming, |  |  |  |  |

| U     | nit III                                                                                                | Mechanical Design of Transmission System                                   | 08 hrs        | CO1, CO3           |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------|--------------------|--|--|--|--|
| Ove   | rhead L                                                                                                | ine Insulators: Types of insulators, its construction, and the             | eir applicat  | tions such as Pin  |  |  |  |  |
| type  | type, Suspension type, Strain type, Shackle type, Post insulators, and bushing. Potential distribution |                                                                            |               |                    |  |  |  |  |
| over  | over suspension insulators, String efficiency, and Methods of improving string efficiency (03 hrs)     |                                                                            |               |                    |  |  |  |  |
| Sag   | Sag Calculations: Main components of overhead lines, Various types of line supports, Conductor         |                                                                            |               |                    |  |  |  |  |
| spac  | ing, Len                                                                                               | gth of span, Calculation of sag for equal and unequal supports             | s, and effec  | t of ice and wind  |  |  |  |  |
| load  | ing. (02 l                                                                                             | nrs)                                                                       |               |                    |  |  |  |  |
| Und   | ergroun                                                                                                | d Cables: Construction of Cables, Classification of cables, X              | LPE cables    | s, Capacitance of  |  |  |  |  |
| sing  | le core ai                                                                                             | nd three core cable, Dielectric stresses in single core cable, Gr          | ading of ca   | bles, inter sheath |  |  |  |  |
| grad  | ing, capa                                                                                              | citance grading. (03 hrs)                                                  |               |                    |  |  |  |  |
| U     | nit IV                                                                                                 | Electrical Design of Transmission System                                   | <b>08 hrs</b> | CO1, CO3           |  |  |  |  |
| Resi  | stance of                                                                                              | of Line: Resistance of transmission line, Skin effect, and                 | d proximity   | y effect, Factors  |  |  |  |  |
| resp  | onsible f                                                                                              | or the production of these effects,                                        |               |                    |  |  |  |  |
| Indu  | ictance                                                                                                | and capacitance calculations: Internal and external flux lin               | nkages of s   | single conductor,  |  |  |  |  |
| Elec  | tric pote                                                                                              | ntial at a single charged conductor, Potential at the condu-               | ctor in a g   | group of charged   |  |  |  |  |
| conc  | luctors, I                                                                                             | nductance and capacitance of single phase two wire line, the               | e necessity   | of transposition,  |  |  |  |  |
| indu  | ctance, a                                                                                              | and capacitance of three-phase line with symmetrical and u                 | ınsymmetri    | cal spacing with   |  |  |  |  |
| trans | transposition (Based on GMD and GMR Approach), Inductance of bundled conductors.                       |                                                                            |               |                    |  |  |  |  |
| U     | nit V                                                                                                  | Modeling of Transmission System                                            | 08 hrs        | CO1, CO4           |  |  |  |  |
| Clas  | sificatior                                                                                             | n of lines based on length and voltage levels, modelling                   | of short, n   | nedium, and long   |  |  |  |  |
| trans | smission                                                                                               | line, generalized constant of transmission line, the concept o             | of complex    | power, and power   |  |  |  |  |
| flow  | equation                                                                                               | as using a generalized constant.                                           |               |                    |  |  |  |  |
|       |                                                                                                        | Text Books                                                                 |               |                    |  |  |  |  |
| 1     | l. V.K.N                                                                                               | Ieheta, Rohit Mehta, "Principles of Power System", 2022 Color I            | Edition, S. C | Chand Publication. |  |  |  |  |
| 2     | 2. J.B.G                                                                                               | upta, "Transmission and Distribution", 2018-Edition, S.K. Katar            | ia and Sons,  | , New Delhi.       |  |  |  |  |
|       | 3. A Cha                                                                                               | kraborty, M.L.Soni, P.V. Gupta, U.S.Bhatnagar," A text book on P           | ower Syste    | m                  |  |  |  |  |
|       | Engine                                                                                                 | eering",2009 Edition, Dhanpatrai& Co, Delhi.                               |               |                    |  |  |  |  |
|       |                                                                                                        | <b>Reference Books</b>                                                     |               |                    |  |  |  |  |
| ]     | . W.D.S                                                                                                | Stevenson, "Power System Analysis", 2 <sup>nd</sup> Edition, Tata McGraw   | Hill Public   | ations.            |  |  |  |  |
| 2     | 2. M.V.                                                                                                | Deshpande," Elements of Power Station Design", PHI Publicatio              | n.            |                    |  |  |  |  |
| 3     | 3. I.J. Na                                                                                             | agrath and D.P.Kothari," Modern Power System Analysis", 4 <sup>th</sup> Ec | lition Tata M | McGraw Hill        |  |  |  |  |
| 2     | I. D. Da                                                                                               | s," Electrical Power System", New Age Publication                          |               |                    |  |  |  |  |
|       | 5. Hadi                                                                                                | Sadat, "Power System Analysis", McGraw Hill                                |               |                    |  |  |  |  |
| Г     |                                                                                                        |                                                                            |               |                    |  |  |  |  |
|       |                                                                                                        | Guidelines for Continuous Comprehensive Evaluation of                      | Theory Co     | ourse              |  |  |  |  |
|       | Sr. No.                                                                                                | Components for Continuous Comprehensive Eva                                | luation       | Marks              |  |  |  |  |

| Sr. No. | Components for Continuous Comprehensive Evaluation                  | Mark<br>Allotte |
|---------|---------------------------------------------------------------------|-----------------|
| 1       | Assignment 01 (Based on Units I and II) (Deadline: before Insem)    | 4               |
| 2       | Assignment 02 (Based on Units III and IV) (Deadline: before Endsem) | 4               |
| 3.      | Learnico (Best 5 sessions out of Minimum 10 sessions)               | 4               |
| 4.      | Class test (Before Endsem) Based on Units III to V                  | 4               |
| 5.      | Industrial Visit assessment                                         | 4               |

|     | Strength of CO-PO-PSO Mapping |   |   |   |  |  |  |  |  |   |   |   |     |   |
|-----|-------------------------------|---|---|---|--|--|--|--|--|---|---|---|-----|---|
|     | РО                            |   |   |   |  |  |  |  |  |   |   |   | PSO |   |
|     | 1 2 3 4 5 6 7 8 9 10 11 12    |   |   |   |  |  |  |  |  | 1 | 2 |   |     |   |
| CO1 | 3                             |   |   |   |  |  |  |  |  |   |   |   | 3   |   |
| CO2 | 3                             | 3 |   |   |  |  |  |  |  |   |   |   | 3   | 2 |
| CO3 | 3                             | 3 | 2 | 2 |  |  |  |  |  |   |   |   | 3   |   |
| CO4 | 3                             | 3 | 2 | 2 |  |  |  |  |  |   |   | 1 | 3   | 2 |
| CO5 | 3                             | 3 | 2 | 2 |  |  |  |  |  |   |   | 1 | 3   | 2 |



|                                            | Pattern 2022<br>ELE222015:                                                                                                                                                           | S. Y. B. Tech.<br>Semester: IV (Electric<br>Design Thinking for Ac                                                                        | al Engineering)<br>cademic Projects                                         |                                     |  |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------|--|
| Teaching                                   | Scheme:                                                                                                                                                                              | Credit Scheme:                                                                                                                            | Examination Sche                                                            | me:                                 |  |
| Theory: 3                                  | 3 hrs/week                                                                                                                                                                           | TH: 3                                                                                                                                     | Continuous Comp<br>Evaluation: 20 Ma<br>InSem Exam: 20 M<br>EndSem Exam: 60 | rehensive<br>arks<br>Aarks<br>Marks |  |
| Prerequi                                   | site Courses:                                                                                                                                                                        |                                                                                                                                           |                                                                             |                                     |  |
| Course C<br>1. High<br>2. Make<br>3. Intro | <b>Objectives:</b> The objectives of<br>light the significance of the<br>e aware of the design thinking<br>duce good practices in projection of<br><b>Dutcomes:</b> On completion of | of the course are to<br>academic project in acquing strategy in the project<br>ect planning and execution<br>of the course, students will | tiring employability s<br>topic finalization<br>n<br>l be able to-          | skills                              |  |
|                                            |                                                                                                                                                                                      | Bloom's Loval                                                                                                                             |                                                                             |                                     |  |
| 601                                        |                                                                                                                                                                                      |                                                                                                                                           | 1 • . • •                                                                   | Divolii S Level                     |  |
| C01                                        | Select the topic for the a statement, scope, and obj                                                                                                                                 | the project problem                                                                                                                       | 2-Understand                                                                |                                     |  |
| CO2                                        | Develop a system block<br>project planning, execution                                                                                                                                | important steps in                                                                                                                        | 3- Apply                                                                    |                                     |  |
| CO3                                        | Apply design thinking str                                                                                                                                                            | n                                                                                                                                         | 3- Apply                                                                    |                                     |  |
| CO4                                        | Prepare and present proje                                                                                                                                                            | nd report                                                                                                                                 | 3-Apply                                                                     |                                     |  |
|                                            |                                                                                                                                                                                      | COURSE CONTENT                                                                                                                            | 'S                                                                          |                                     |  |
| Unit I                                     | Project Life Cycle                                                                                                                                                                   |                                                                                                                                           | 8 hrs                                                                       | COs Mapped<br>– CO1                 |  |
| Introducti                                 | ion to project, the importan                                                                                                                                                         | ce of the academic proje                                                                                                                  | ect, characteristics of                                                     | the project, project                |  |
| failure, p                                 | roject management, selecti                                                                                                                                                           | ng project topic, selecti                                                                                                                 | ng team members, o                                                          | competency matrix,                  |  |
| Project lif                                | fe cycle (Activity I)                                                                                                                                                                |                                                                                                                                           |                                                                             |                                     |  |
| Unit II                                    | Design Thinking and Idea                                                                                                                                                             | ation                                                                                                                                     | 10 hrs                                                                      | COs Mapped<br>– CO3                 |  |
| Introducti                                 | ion to design thinking, ir                                                                                                                                                           | nportance, the impact of                                                                                                                  | of design thinking,                                                         | design innovation,                  |  |
| desirable,                                 | feasible, viable, human-cei                                                                                                                                                          | itered design, double dia                                                                                                                 | mond approach                                                               | 1 . 1                               |  |
| Ideation                                   | definition, ideation strates                                                                                                                                                         | gies, brainstorming, Op                                                                                                                   | posite thinking, ide                                                        | ea sketching, mind                  |  |
| Unit                                       | (Activity II)                                                                                                                                                                        |                                                                                                                                           | 6 hrs                                                                       | COs Manned                          |  |
| III                                        | Troject Demitton                                                                                                                                                                     |                                                                                                                                           | 0 11 5                                                                      | -CO3                                |  |
| Defining<br>block dias                     | project problem statement,<br>gram, methodology, develo                                                                                                                              | project objectives and so<br>ping project plan (Activit                                                                                   | cope, developing sys<br>v III)                                              | stem/process/project                |  |
| Unit<br>IV                                 | Project Execution                                                                                                                                                                    | 6 hrs                                                                                                                                     | COs Mapped                                                                  |                                     |  |
| Literature                                 | survey, reading a researc                                                                                                                                                            | h paper, summarizing t                                                                                                                    | he research paper.                                                          | Types of modeling:                  |  |
| Mathema                                    | tical, software, hardware m                                                                                                                                                          | odeling, the need of mo                                                                                                                   | deling, procedure of                                                        | modeling, detailed                  |  |
| design, ar                                 | nd development of the proje                                                                                                                                                          | ct, (Activity IV)                                                                                                                         |                                                                             | <u> </u>                            |  |
| Unit V                                     | <b>Project Presentation</b>                                                                                                                                                          |                                                                                                                                           | 10 hrs                                                                      | COs Mapped                          |  |

|                                                                                                              |                          | - CO4      |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|--------------------------|------------|--|--|--|--|--|--|--|--|
| Preparation for various competitions and hackathons, making project presentations, delivering                |                          |            |  |  |  |  |  |  |  |  |
| Presentations, Project Report Writing, Research Paper writing, Project Proposal writing, and identifying IPR |                          |            |  |  |  |  |  |  |  |  |
| potential in the project. (Activity V)                                                                       |                          |            |  |  |  |  |  |  |  |  |
| Text Books                                                                                                   |                          |            |  |  |  |  |  |  |  |  |
| 1. Tim Brown Change by Design How Design Thinking Trar                                                       | sforms Organizations and | 1 Inspires |  |  |  |  |  |  |  |  |
| Innovation, HarperCollins Publications                                                                       |                          |            |  |  |  |  |  |  |  |  |

**Reference Books** 

1. Andrew Shea, Bryan Boyer, Jennifer May, Mariana Amatullo, "Design for Social Innovation Case Studies from Around the World," Taylor & Francis, 2021

2. Jason Westland, "The Project Management Life Cycle A Complete Step-By-Step Methodology for Initiating, Planning, Executing & Closing a Project Success" Kogan Page Publication, 2007

| <b>Guidelines for Continuous Comprehensive Evaluation of Theory Course</b> |                                                           |                   |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------|-----------------------------------------------------------|-------------------|--|--|--|--|--|--|--|--|
| Sr. No.                                                                    | <b>Components for Continuous Comprehensive Evaluation</b> | Marks<br>Allotted |  |  |  |  |  |  |  |  |
| 1                                                                          | Activities I to V (4 marks for each activity)             | 20                |  |  |  |  |  |  |  |  |

|     | Strength of CO-PO-PSO Mapping |                              |   |   |   |   |   |   |   |   |   |   |     |  |
|-----|-------------------------------|------------------------------|---|---|---|---|---|---|---|---|---|---|-----|--|
|     |                               | PO                           |   |   |   |   |   |   |   |   |   |   | PSO |  |
|     | 1                             | 2 3 4 5 6 7 8 9 10 11 12 1 2 |   |   |   |   |   |   |   |   |   |   |     |  |
| CO1 |                               | 2                            | 3 | 3 |   | 1 | 1 | 1 |   |   |   | 3 |     |  |
| CO2 |                               | 2                            | 3 | 3 | 1 |   |   |   |   |   | 3 | 3 |     |  |
| CO3 |                               |                              | 3 | 3 |   | 1 | 1 | 1 |   |   | 3 | 3 |     |  |
| CO4 |                               |                              |   |   |   |   |   |   | 1 | 1 | 3 | 3 |     |  |



|                                                                                         |                                   | S. Y. B. Tech.<br>Pattern 2022 Semester: IV(Electrical Engineering) |               |                                        |             |                      |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------|---------------|----------------------------------------|-------------|----------------------|--|--|--|--|--|--|--|
|                                                                                         |                                   |                                                                     | <b>ELE222</b> | 016: Solar Photovoltaic Systems        |             |                      |  |  |  |  |  |  |  |
| Teachi                                                                                  | ng Sche                           | me:                                                                 |               | Credit Scheme:                         | Examina     | ation Scheme:        |  |  |  |  |  |  |  |
| Theory                                                                                  | <b>: 1 hr./</b>                   | week                                                                |               | No Credit                              | 1           | No Exam              |  |  |  |  |  |  |  |
| Prereq                                                                                  | uisite C                          | ourses: Ap                                                          | plied Phys    | sics                                   |             |                      |  |  |  |  |  |  |  |
| Course                                                                                  | • Object                          | ives: The o                                                         | bjectives o   | of the course are to                   |             |                      |  |  |  |  |  |  |  |
| 1. Iı                                                                                   | 1. Introduce the solar PV system. |                                                                     |               |                                        |             |                      |  |  |  |  |  |  |  |
| 2. Highlight the importance of onsite solar PV in transforming our grid and providing a |                                   |                                                                     |               |                                        |             |                      |  |  |  |  |  |  |  |
| S                                                                                       | sustainable home.                 |                                                                     |               |                                        |             |                      |  |  |  |  |  |  |  |
| 3. E                                                                                    | Enable st                         | udents to g                                                         | et familiar   | with the economic risks and benef      | ïts of Sola | ır PV.               |  |  |  |  |  |  |  |
| Course                                                                                  | Outcor                            | mes: On con                                                         | npletion c    | of the course, students will be able t | to-         |                      |  |  |  |  |  |  |  |
|                                                                                         |                                   |                                                                     |               | <b>Course Outcomes</b>                 |             | <b>Bloom's Level</b> |  |  |  |  |  |  |  |
| CO                                                                                      | )1 I                              | Draw variou                                                         | is curves r   | related to solar PV generation.        |             | 1-Remember           |  |  |  |  |  |  |  |
| CO                                                                                      | )2 I                              | Handle soft                                                         | ware tools    | for solar PV systems.                  |             | 4-Analyze            |  |  |  |  |  |  |  |
| CO                                                                                      | )3                                | Design solar                                                        | r PV syste    | ms for small and large installations   | 5.          | 6-Create             |  |  |  |  |  |  |  |
|                                                                                         | ·                                 |                                                                     |               | COURSE CONTENTS                        |             |                      |  |  |  |  |  |  |  |
|                                                                                         | Unit ]                            | [                                                                   | Ba            | asics of Solar PV Systems              | 6 hrs.      | CO1, CO2             |  |  |  |  |  |  |  |
| The PV of                                                                               | cell, seri                        | es and para                                                         | llel interco  | onnection, energy from the sun, inc    | ident ener  | gy estimation,       |  |  |  |  |  |  |  |
| sizing PV                                                                               | V, SPV o                          | curves, max                                                         | imum pov      | wer point tracking, and MPPT algor     | rithms.     |                      |  |  |  |  |  |  |  |
|                                                                                         | Unit I                            | Ι                                                                   | D             | esign of Solar PV System               | 6 hrs.      | CO1, CO2,<br>CO3     |  |  |  |  |  |  |  |
| Software                                                                                | e for sol                         | ar PV desi                                                          | gn, PV-ba     | ttery interfaces, Peltier cooling, P   | V and wa    | ter pumping, PV-     |  |  |  |  |  |  |  |
| grid inter                                                                              | rface-I, I                        | PV-grid inte                                                        | erface-II, a  | and life cycle costing.                |             |                      |  |  |  |  |  |  |  |
|                                                                                         |                                   |                                                                     |               | Books                                  |             |                      |  |  |  |  |  |  |  |
| 1. C                                                                                    | Chammii                           | ng, H. and V                                                        | White, R.N    | I., "Solar Cells: From Basic to Adv    | vanced Sys  | stems", McGraw       |  |  |  |  |  |  |  |
| H                                                                                       | Iill Bool                         | k co, 1983.                                                         | *             |                                        |             |                      |  |  |  |  |  |  |  |
| 2. H                                                                                    | Ians S. I                         | Rauschenba                                                          | ch, "Solar    | Cell Array Design Handbook", Ne        | w York, 1   | 980.                 |  |  |  |  |  |  |  |
| 3. P                                                                                    | Proceedin                         | ng of IEEE                                                          | Conference    | ce on Photovoltaic Specialists Conf    | erences.    |                      |  |  |  |  |  |  |  |
| h                                                                                       | ttps://ied                        | eexplore.iee                                                        | e.org/xpl/    | conhome/1000561/all-proceedings        |             |                      |  |  |  |  |  |  |  |
| 4. S                                                                                    | olar Ene                          | ergy Journa                                                         | l. https://w  | www.sciencedirect.com/journal/sola     | ar-energy   |                      |  |  |  |  |  |  |  |
| 5. I                                                                                    | Prof. L U                         | Jmanand, "                                                          | Design of     | Photovoltaic Systems", IISc Banga      | alore       |                      |  |  |  |  |  |  |  |
| ł                                                                                       | nttps://o                         | nlinecourse                                                         | s.nptel.ac.   | in/noc22_ee71/preview.                 |             |                      |  |  |  |  |  |  |  |
|                                                                                         | *                                 |                                                                     | *             | <b>*</b>                               |             |                      |  |  |  |  |  |  |  |

| Strength of CO-PO-PSO Mapping |   |    |   |   |   |   |   |   |   |    |    |     |   |   |
|-------------------------------|---|----|---|---|---|---|---|---|---|----|----|-----|---|---|
|                               |   | PO |   |   |   |   |   |   |   |    |    | PSO |   |   |
|                               | 1 | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12  | 1 | 2 |
| CO1                           | 3 | 3  | 3 |   |   |   | 3 |   |   |    |    |     |   | 3 |
| CO2                           |   |    |   | 2 | 2 |   |   |   |   |    |    |     |   | 3 |
| CO3                           | 3 | 3  | 3 | 2 | 2 |   | 3 |   |   |    |    | 1   |   | 3 |



|                                                    | Pattern 2022                                                                                                                                                                                                                                                                                                                                          | S. Y. B. Tech.<br>Semester: IV (Electr               | rical Engineering)                      |               |  |  |  |  |  |  |  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------|---------------|--|--|--|--|--|--|--|
|                                                    | ELE                                                                                                                                                                                                                                                                                                                                                   | 222017: Power Electre                                | onics Lab                               |               |  |  |  |  |  |  |  |
| Teaching                                           | Scheme:                                                                                                                                                                                                                                                                                                                                               | Credit Scheme:                                       | Examination Schem                       | ne:           |  |  |  |  |  |  |  |
| Practical                                          | : 4 hrs/week                                                                                                                                                                                                                                                                                                                                          | PR- 2                                                | Termwork: 25Marks<br>Practical: 50 Mark |               |  |  |  |  |  |  |  |
| Prerequis                                          | Prerequisite Courses: Analog and Digital circuits, Applied Mathematics III                                                                                                                                                                                                                                                                            |                                                      |                                         |               |  |  |  |  |  |  |  |
| 1. Enable<br>experimer<br>2. Introduc<br>power cor | <ul> <li>Course Objectives: The objectives of the course are to</li> <li>1. Enable students to develop hands-on experience in analyzing, designing, and carrying out experiments on power electronic circuits.</li> <li>2. Introduce the switching devices, power converters, and their applications in various systems for power control.</li> </ul> |                                                      |                                         |               |  |  |  |  |  |  |  |
|                                                    | 1                                                                                                                                                                                                                                                                                                                                                     | Course Outcomes                                      |                                         | Bloom's Level |  |  |  |  |  |  |  |
| CO1                                                | Simulate and analyze var<br>different control techniqu                                                                                                                                                                                                                                                                                                | ious power electronic co<br>es                       | onverters with                          | 3- Apply      |  |  |  |  |  |  |  |
| CO2                                                | Perform experiment in the group, write a lab report, and present it 3-Apply<br>effectively                                                                                                                                                                                                                                                            |                                                      |                                         |               |  |  |  |  |  |  |  |
| CO3                                                | Analyze the results of dif<br>various control technique                                                                                                                                                                                                                                                                                               | ferent power electronic<br>s under varying operation | converters with ng conditions.          | 4-Analyze     |  |  |  |  |  |  |  |
| CO4                                                | Design the magnetic circu<br>various power electronic                                                                                                                                                                                                                                                                                                 | it, power circuit, and co                            | ontrol circuit of                       | 6-Create      |  |  |  |  |  |  |  |

|         | List of Laboratory Experiments                                    |             |  |  |  |  |  |  |  |  |  |
|---------|-------------------------------------------------------------------|-------------|--|--|--|--|--|--|--|--|--|
| Sr. No. | Laboratory Experiments<br>(Perform any 16 Experiments)            | COs Mapped  |  |  |  |  |  |  |  |  |  |
| 1       | Static V-I Characteristics of SCR and TRIAC                       | CO1,CO2     |  |  |  |  |  |  |  |  |  |
| 2       | Static V-I Characteristics of MOSFET and IGBT                     | CO1,CO2     |  |  |  |  |  |  |  |  |  |
| 3       | Gate firing circuits of SCR (R, RC & UJT)                         | CO1,CO2     |  |  |  |  |  |  |  |  |  |
| 4       | Single-phase Half Controlled SCR Converter                        | CO1,CO2,CO3 |  |  |  |  |  |  |  |  |  |
| 5       | Single-phase Fully Controlled SCR Converter                       | CO1,CO2,CO3 |  |  |  |  |  |  |  |  |  |
| 6       | Three-phase AC-DC fully controlled bridge converter R and RL load | CO1,CO2,CO3 |  |  |  |  |  |  |  |  |  |
| 7       | Study of single-phase dual converter with RL loads                | CO1,CO2,CO3 |  |  |  |  |  |  |  |  |  |
| 8       | To study DC-DC converter i) Buck converter ii) Boost converter.   | CO2,CO3,CO4 |  |  |  |  |  |  |  |  |  |
| 9       | Buck-Boost Converter using IGBT                                   | CO2,CO3,CO4 |  |  |  |  |  |  |  |  |  |
| 10      | Solar-fed boost converter                                         | CO2,CO3,CO4 |  |  |  |  |  |  |  |  |  |
| 11      | Single-phase Inverter using IGBT                                  | CO1,CO2,CO3 |  |  |  |  |  |  |  |  |  |
| 12      | To study the Three-phase inverter.                                | CO1,CO2,CO3 |  |  |  |  |  |  |  |  |  |
| 13      | Single-phase step-down Cyclo-converter                            | CO1,CO2,CO3 |  |  |  |  |  |  |  |  |  |
| 14      | AC Voltage regulators using SCR/TRIAC.                            | CO1,CO2,CO3 |  |  |  |  |  |  |  |  |  |
| 15      | Power Quality Analysis (Harmonic and PF measurement Converter.    | CO1,CO2,CO3 |  |  |  |  |  |  |  |  |  |

| 16       | Performance analysis of three-phase diode clamped Multilevel       | CO1,CO2,CO3     |  |  |  |  |  |  |  |
|----------|--------------------------------------------------------------------|-----------------|--|--|--|--|--|--|--|
| 17       | Simulation of i) Single phase helf wave restifier                  |                 |  |  |  |  |  |  |  |
| 17       | Simulation of f) Single phase han wave rectifier.                  | CO1 CO2 CO2     |  |  |  |  |  |  |  |
|          | 11) Single phase full wave fully controlled rectifier [R, R-L, and | C01,C02,C03     |  |  |  |  |  |  |  |
|          | RLE].                                                              |                 |  |  |  |  |  |  |  |
| 18       | Simulation of the following experiments using PSIM/Matlab          |                 |  |  |  |  |  |  |  |
|          | I. AC Voltage regulator using SCR                                  |                 |  |  |  |  |  |  |  |
|          | II Single phase inverter using self-controlled devices such as     | CO1,CO2,CO3     |  |  |  |  |  |  |  |
|          | ICPT/MOSEET (Single DWM Multiple DWM sinusoidel DWM)               |                 |  |  |  |  |  |  |  |
|          |                                                                    |                 |  |  |  |  |  |  |  |
| 19       | Simulation of the following experiments using PSIM/Matlab          |                 |  |  |  |  |  |  |  |
|          | i) Three-phase inverter.                                           |                 |  |  |  |  |  |  |  |
|          | ii) DC-DC converter                                                | CO2,CO3,CO4     |  |  |  |  |  |  |  |
|          | a. Buck converter.                                                 |                 |  |  |  |  |  |  |  |
|          | b. Boost converter                                                 |                 |  |  |  |  |  |  |  |
| 20       | Industrial Visit to Power Electronics manufacturing unit/Renewable | CO3 CO4         |  |  |  |  |  |  |  |
|          | energy (Compulsory)                                                | 005,004         |  |  |  |  |  |  |  |
|          | Guidelines for Laboratory Conduction                               |                 |  |  |  |  |  |  |  |
| 1 The te | acher will brief the given experiment to students for its procedu  | re observations |  |  |  |  |  |  |  |

1. The teacher will brief the given experiment to students for its procedure, observations, calculations, and outcome.

2. Apparatus and equipment required for the allotted experiment will be provided by the lab technician using SOP.

3. Students will perform the allotted experiment in a group (2-3 students in each group) under the supervision of faculty and lab technician.

4. After performing the experiment students will check their readings and calculations from the teacher.

5. After checking they have to write the conclusion on the final results.

## Guidelines for Student's Lab Journal

The write-up should include a title, aim and apparatus, circuit or block diagram, waveforms, brief theory, procedure, observations, graphs, calculations, conclusion, and questions, if any.

## **Guidelines for Termwork Assessment**

1. Each experiment from the lab journal is assessed for thirty marks based on three rubrics.

2. Rubric R-1 for timely completion, R-2 for understanding, and R-3 for presentation/journal writing where each rubric carries ten marks.

|     | Strength of CO-PO Mapping |   |   |   |   |   |   |   |   |    |    |    |     |   |
|-----|---------------------------|---|---|---|---|---|---|---|---|----|----|----|-----|---|
|     | РО                        |   |   |   |   |   |   |   |   |    |    |    | PSO |   |
|     | 1                         | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1   | 2 |
| CO1 | 1                         | 2 | 2 | 2 | 2 | - | - | - | - | -  | -  | 2  | 2   | - |
| CO2 | -                         | - | - | - | - | - | - | - | 1 | 1  | -  | -  | -   | - |
| CO3 | 1                         | 2 | 2 | 2 | 2 | - | - | - | - | -  | -  | 2  | 2   | 1 |
| CO4 | 1                         | 2 | 2 | 2 | 2 | - | - | - | - | -  | -  | 2  | 2   | 1 |



|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~ ~ ~ ~ ~ ~ ~               |                                     |                  |  |  |  |  |  |  |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------|------------------|--|--|--|--|--|--|--|
|                                                   | S. Y. B. IECN.<br>Pattern 2022 Semester: IV Electrical Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                                     |                  |  |  |  |  |  |  |  |
| ELE232018: Electrical Network Analysis Laboratory |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                     |                  |  |  |  |  |  |  |  |
| Teaching                                          | ng Scheme: Credit Scheme: Examination Scheme:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                                     |                  |  |  |  |  |  |  |  |
| Practical                                         | : 2 hrs/week                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OR-1                        | Teamwork: 25 Marks<br>Oral: 25 Mark |                  |  |  |  |  |  |  |  |
| Prerequis                                         | site Courses: Fundamental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s of Electrical Engineering | ng, Application of                  | Mathematics, and |  |  |  |  |  |  |  |
| Applied P                                         | hysics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                                     |                  |  |  |  |  |  |  |  |
| Course O                                          | bjectives: Objectives of the objectives of the objectives of the objective | ne course are to-           |                                     |                  |  |  |  |  |  |  |  |
| 1. Pro                                            | vide hands-on experience i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n circuit design to studer  | nts.                                |                  |  |  |  |  |  |  |  |
| 2. Ena                                            | able students to apply netwo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ork theorems to electrical  | l circuits.                         |                  |  |  |  |  |  |  |  |
| 3. Imp                                            | part skills in software simul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ation and hardware desig    | gn.                                 |                  |  |  |  |  |  |  |  |
| Course O                                          | <b>Outcomes:</b> On completion of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of the course, students wi  | ll be able to-                      |                  |  |  |  |  |  |  |  |
|                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Course Outcomes             |                                     | Bloom's Level    |  |  |  |  |  |  |  |
| CO1                                               | Verify electrical network t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | heorems through experir     | nents.                              | 3 - Apply        |  |  |  |  |  |  |  |
| CO2                                               | Perform experiment in the group, write a lab report, and present it<br>effectively. 3 - Apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                                     |                  |  |  |  |  |  |  |  |
| CO3                                               | Find electrical network parcircuits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rameters and evaluate the   | em for different                    | 4 - Analyze      |  |  |  |  |  |  |  |
| CO4                                               | Design different filters for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | given specifications.       |                                     | 6 - Create       |  |  |  |  |  |  |  |

|         | List of Laboratory Experiments (Perform any 8 of the following)                                                                                     |            |  |  |  |  |  |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|--|--|--|--|--|
| Sr. No. | Experiments Title                                                                                                                                   | COs Mapped |  |  |  |  |  |  |  |  |  |
| 1       | Verification of superposition theorem in A.C. circuits. (Hardware)                                                                                  | CO1, CO2   |  |  |  |  |  |  |  |  |  |
| 2       | Verification of Thevenin's theorem in A.C. circuits. (Hardware)                                                                                     | CO1, CO2   |  |  |  |  |  |  |  |  |  |
| 3       | Verification of reciprocity theorem in A.C. circuits. (Hardware)                                                                                    | CO1, CO2   |  |  |  |  |  |  |  |  |  |
| 4       | Verification of Norton's theorem in A.C. circuits. (Hardware)                                                                                       | CO1, CO2   |  |  |  |  |  |  |  |  |  |
| 5       | Verification of Maximum Power Transfer theorem in A.C. circuits.<br>(Hardware)                                                                      | CO1, CO2   |  |  |  |  |  |  |  |  |  |
| 6       | Determination of time response of R-C circuit to a step D.C. voltage input. (Charging and discharging of a capacitor through a resistor) (Hardware) | CO2, CO3   |  |  |  |  |  |  |  |  |  |
| 7       | Determination of time response of R-L circuit to a step D.C. voltage<br>input. (Rise and decay of current in an inductive circuit)<br>(Hardware)    | CO2, CO3   |  |  |  |  |  |  |  |  |  |
| 8       | Determination of time response of R-L-C series circuit to a step D.C. voltage input using simulation.                                               | CO2, CO3   |  |  |  |  |  |  |  |  |  |
| 9       | Design of Low-Pass Filter and High-Pass Filter. (Software)                                                                                          | CO2, CO4   |  |  |  |  |  |  |  |  |  |
| 10      | Determination of parameters of Two Port Network. (Hardware)                                                                                         | CO2, CO3   |  |  |  |  |  |  |  |  |  |

#### **Guidelines for Laboratory Conduction**

1. The teacher will brief the given experiment to students for its procedure, observations, calculations, and outcome.

2. Apparatus and equipment required for the allotted experiment will be provided by the lab technician using SOP.

3. Students will perform the allotted experiment in a group (2-3 students in each group) under the supervision of faculty and lab technician.

4. After performing the experiment students will check their readings and calculations from the teacher.

5. After checking they have to write the conclusion on the final results.

#### Guidelines for Student's Lab Journal

The write-up should include a title, aim and apparatus, circuit or block diagram, waveforms, brief theory, procedure, observations, graphs, calculations, conclusion, and questions, if any.

#### **Guidelines for Termwork Assessment**

- 1. Each experiment from the lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding, and R-3 for presentation/journal writing where each rubric carries ten marks.

| Strength of CO-PO-PSO Mapping |    |   |   |   |   |   |   |   |   |    |    |     |      |      |
|-------------------------------|----|---|---|---|---|---|---|---|---|----|----|-----|------|------|
|                               | PO |   |   |   |   |   |   |   |   |    |    | PSO |      |      |
|                               | 1  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12  | PSO1 | PSO2 |
| CO1                           | 2  | 2 |   |   |   |   |   |   |   |    |    |     | 2    |      |
| CO2                           |    |   |   |   |   |   |   |   | 1 | 1  |    |     |      |      |
| CO3                           | 2  | 2 | 1 |   | 1 |   |   |   |   |    |    |     | 2    |      |
| CO4                           | 2  | 2 | 1 |   | 1 |   |   |   |   |    |    |     | 2    |      |



| S. Y. B. Tech.<br>Pattern 2022 Semester: IV Electrical Engineering<br>ELE222019: Microcontroller and Embedded Systems Lab |                                                                                                                |                                                                                                     |                                                               |               |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------|--|--|--|--|--|
| Teaching                                                                                                                  | Scheme:                                                                                                        | Credit Scheme:                                                                                      | Examination Schem                                             | e:            |  |  |  |  |  |
| Practical:                                                                                                                | 2 hrs/week                                                                                                     | OR: 1                                                                                               | Term work: 25 Marks;<br>Oral: 25 Marks                        |               |  |  |  |  |  |
| Prerequis                                                                                                                 | ite Courses: Analog and D                                                                                      | Digital Circuits                                                                                    |                                                               |               |  |  |  |  |  |
| 1) Develo<br>2) Inculca<br>Course O                                                                                       | bjectives: Objectives of the op skills to work with micro ate programming skills usin utcomes: On completion o | be course are to<br>be controllers and embedding assembly language pro-<br>f the course, students w | led processors.<br>rograms for various app<br>ill be able to– | lications.    |  |  |  |  |  |
|                                                                                                                           |                                                                                                                | Course Outcomes                                                                                     |                                                               | Bloom's Level |  |  |  |  |  |
| CO1                                                                                                                       | Perform experiment in t effectively                                                                            | report, and present it                                                                              | 3-Apply,<br>4 -Analyze                                        |               |  |  |  |  |  |
| CO2                                                                                                                       | Write the program for operations                                                                               | 8051 in assembly lan                                                                                | guage for the given                                           | 4 -Analyze    |  |  |  |  |  |
| CO3                                                                                                                       | Write the program by /parallel ports.                                                                          | using the timer, interr                                                                             | rupt, and serial ports                                        | 4 -Analyze    |  |  |  |  |  |
| CO4                                                                                                                       | Interface the memory and                                                                                       | I/O devices to the 8051                                                                             | microcontroller.                                              | 6 - Create    |  |  |  |  |  |

|         | List of Laboratory Experiments                                                                                                  |                      |  |  |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|--|--|
| Sr. No. | Laboratory Experiments                                                                                                          | COs<br>Mapped        |  |  |  |  |  |  |  |
| 1       | Identify various blocks of the 8051 microcontroller development board.                                                          | CO1                  |  |  |  |  |  |  |  |
| 2       | Write an assembly language program (ALP) to perform arithmetic operations: addition, subtraction, multiplication, and division. | CO1,CO2              |  |  |  |  |  |  |  |
| 3       | Write an ALP to find the smallest/largest number from the given data bytes stored in internal/external data memory locations    | CO1,CO2,<br>CO3 ,CO4 |  |  |  |  |  |  |  |
| 4       | Write an ALP for arranging numbers in ascending /descending order stored in external memory locations                           | CO1,CO2,<br>CO3 ,CO4 |  |  |  |  |  |  |  |
| 5       | Interface LED with microcontroller and turn it ON with microcontroller interrupt.                                               | CO1,CO2,<br>CO3 ,CO4 |  |  |  |  |  |  |  |
| 6       | Interface 7-segment display to display the decimal number from 0 to 9.                                                          | CO1,CO2,<br>CO3 ,CO4 |  |  |  |  |  |  |  |
| 7       | Interface relay with microcontroller and turn it ON and OFF.                                                                    | CO1,CO2,<br>CO3 ,CO4 |  |  |  |  |  |  |  |
| 8       | Interface ADC with 8051 microcontroller and verify input/output.                                                                | CO1,CO2,<br>CO3 ,CO4 |  |  |  |  |  |  |  |
| 9       | Interface the stepper motor to a microcontroller and rotate in a clockwise and anti-clockwise direction at the given angles.    | CO1,CO2,<br>CO3 ,CO4 |  |  |  |  |  |  |  |
| 10      | Industrial Visit with visit report.                                                                                             | CO1                  |  |  |  |  |  |  |  |

# Guidelines for Laboratory Conduction The teacher will brief the given experiment to students for its procedure, observations, calculations, and outcome. Apparatus and equipment required for the allotted experiment will be provided by the lab.

- Apparatus and equipment required for the allotted experiment will be provided by the lab technician using SOP.
- Students will perform the allotted experiment in a group (2-3 students in each group) under the supervision of faculty and lab technician.
- After performing the experiment students will check their readings and calculations from the teacher.
- After checking they have to write the conclusion on the final results.

## Guidelines for Student's Lab Journal

The student's Lab Journal should contain the following related to every experiment:

- Title of the program
- Related Theory
- Algorithm and Flowchart
- Pin Diagram for the connection
- Result

## **Guidelines for Termwork Assessment**

- 1. Each experiment from the lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding, and R-3 for presentation/journal writing where each rubric carries ten marks.

| Strength of CO- PO- PSO Mapping |    |   |   |   |   |   |   |   |   |    |    |     |   |   |
|---------------------------------|----|---|---|---|---|---|---|---|---|----|----|-----|---|---|
|                                 | PO |   |   |   |   |   |   |   |   |    |    | PSO |   |   |
|                                 | 1  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12  | 1 | 2 |
| CO1                             |    |   |   |   |   |   |   |   | 1 | 1  |    |     |   |   |
| CO2                             | 2  | 2 | 2 |   | 2 |   |   |   |   |    |    |     |   | 2 |
| CO3                             | 2  | 2 | 2 | 1 | 2 |   |   |   |   |    |    | 1   |   | 2 |
| CO4                             | 2  | 2 | 2 | 1 | 2 |   |   |   |   |    |    | 1   |   | 2 |



| S. Y. B. Tech.<br>Pattern 2022 Semester: IV Electrical Engineering<br>ELE222020: Project-Based Learning    |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                                                                                          |                                                                         |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Teaching                                                                                                   | g Scheme:                                                                                                                                                                                                                                                                                                                             | Credit Scheme:                                                                                                                                                                                                | Examination Schen                                                                                        | ne:                                                                     |  |  |  |  |  |  |  |  |
| Practica                                                                                                   | l: 2 hrs./week                                                                                                                                                                                                                                                                                                                        | <b>TW: 1</b>                                                                                                                                                                                                  | Term work: 25 Ma                                                                                         | rks                                                                     |  |  |  |  |  |  |  |  |
| <b>Prerequ</b><br>and III, S                                                                               | <b>Prerequisite Courses-</b> Fundamentals of Electrical and Electronics Engineering, Mathematics I, II, and III, Soft skills.                                                                                                                                                                                                         |                                                                                                                                                                                                               |                                                                                                          |                                                                         |  |  |  |  |  |  |  |  |
| Course (<br>1. Imparant<br>and si<br>2. Build<br>innov<br>3. Deve<br>beyon<br>4. Provi<br>team<br>Course ( | <b>Objectives:</b> The objectives of<br>rt technical knowledge and s<br>kills from various areas.<br>I critical thinking, problem-s<br>vation amongst students.<br>lop habits of self-evaluation<br>nd own ideas and knowledge<br>de every student the opportu-<br>skills and learn professional<br><b>Outcomes:</b> On completion of | of the course are to<br>skills, and develop a deep<br>olving, communication, of<br>and self-criticism, agains<br>e.<br>unity to get involved eithe<br>ism for long-term goals.<br>of the course, students wil | er understanding to in<br>collaboration and creat<br>st self-competency and<br>er individually or as a g | tegrate knowledge<br>tivity, and<br>l trying to see<br>group to develop |  |  |  |  |  |  |  |  |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                       | Course Outcomes                                                                                                                                                                                               |                                                                                                          | Bloom's Level                                                           |  |  |  |  |  |  |  |  |
| CO1                                                                                                        | Interact with different audie                                                                                                                                                                                                                                                                                                         | ences in oral, visual, and                                                                                                                                                                                    | written forms                                                                                            | 2-Understand                                                            |  |  |  |  |  |  |  |  |
| CO2                                                                                                        | Apply knowledge of mathe engineering fundamentals to                                                                                                                                                                                                                                                                                  | matics, basic sciences, and develop solutions for the                                                                                                                                                         | nd electrical<br>e project.                                                                              | 3-Apply                                                                 |  |  |  |  |  |  |  |  |
| CO3                                                                                                        | Draw information from a va<br>summarize the relevant poin                                                                                                                                                                                                                                                                             | ariety of sources and be a ats.                                                                                                                                                                               | ble to filter and                                                                                        | 3-Apply                                                                 |  |  |  |  |  |  |  |  |
| CO4                                                                                                        | Identify, formulate, and ana solutions considering social                                                                                                                                                                                                                                                                             | alyze the project problem<br>l, economical, and enviro                                                                                                                                                        | and provide<br>nmental aspects                                                                           | 5-Evaluate                                                              |  |  |  |  |  |  |  |  |

### **Guidelines for Project-Based Learning Conduction**

A group of 4-5 students will be assigned to a faculty member called a mentor. Based on the engineering knowledge of a group and societal and industry problems, the mentor has to guide a group to identify project problems and plan the work schedule. Here, the expected outcomes of the project must be noted. The complete work plan should be divided into the form of individual tasks to be accomplished with targets. Weekly review of the completed task should be taken and further guidelines are to be given to a group. The final activity will be to present the work completed and to submit the report. A group should be promoted to participate in a competition or write a paper.

A problem needs to refer back to a particularly practical, scientific, social, and/or technical domain. The problem should stand as one specific example or manifestation of more general learning outcomes related to knowledge and/or modes of inquiry. There are no commonly shared criteria for what constitutes an acceptable project. Projects vary greatly in the depth of the questions explored, the clarity of the learning goals, the content, and the structure of the activity. It may have

- 1. A few hands-on activities may or may not be multidisciplinary.
- 2. Use of technology in meaningful ways to help them investigate, collaborate, analyze, synthesize, and present their learning.

Activities on solving real-life problems, investigation /study, and writing reports of in-depth study,

and fieldwork.

#### **Guidelines for Assessment and Evaluation**

#### Assessment:

The mentor is committed to assessing and evaluating both students' performance and course effectiveness. The progress of PBL is monitored regularly every week. During the process of monitoring, continuous assessment, and evaluation the individual and team performances are to be measured by the supervisor /mentor and authorities.

#### **Evaluation:**

All the activities are to be recorded in a PBL workbook regularly. Regular assessment of work to be done and proper documents are to be maintained at the department by both students as well as a mentor. Continuous Assessment Sheet (CAS) is to be maintained by all mentors.

Evaluation will have parameters like idea development suggestive solutions, hardware and software development, report writing, and presentation.

| Term Work Guidelines                            | Marks Allotted |
|-------------------------------------------------|----------------|
| PBL Review I (After 5 <sup>th</sup> week)       | 10             |
| PBL Review II (After the 10 <sup>th</sup> week) | 10             |
| Final documentation and demonstration           | 5              |
| (Before End-sem exam)                           |                |
| Total Marks                                     | 25             |

| Strength of CO-PO-PSO Mapping |    |   |   |   |   |   |   |   |   |    |    |    |     |   |
|-------------------------------|----|---|---|---|---|---|---|---|---|----|----|----|-----|---|
|                               | РО |   |   |   |   |   |   |   |   |    |    |    | PSO |   |
|                               | 1  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1   | 2 |
| CO1                           |    |   |   |   | 1 |   |   |   | 1 | 1  |    |    | 2   | 2 |
| CO2                           | 1  | 2 | 2 |   |   |   |   |   |   |    |    |    |     |   |
| CO3                           |    |   |   |   | 1 |   |   |   | 1 | 1  | 2  | 2  | 2   | 2 |
| CO4                           |    | 2 | 2 | 1 |   | 1 | 1 |   |   |    | 2  | 2  |     |   |