

K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

		2023 PAT.S.Y.	B. Tee	h			Mechani	ical En	gineeri	ng (M	ef AY 2	024-25)	SE	M-III	[
Course	Course Course Title of Course Scheme						Evaluation Scheme and Marks								Credits				
Code	eType	The of Course	TH	TU	PR	INSEM	ENDSEM	CCE	TU	TW	OR	PR	TOTAL	TH	TU	PR	TOTAL		
2305201	PCC	Manufacturing Processes	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3		
2305202	PCC	Engineering Thermodynamics	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3		
2305203	PCC	Mechanism and Machines	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3		
2305204	PCC	Mechanism and Machines Lab	-	-	2	-	-	-	-	25	25	-	50	-	-	1	1		
2305205	PCC	Material Testing and Measurement Lab	-	-	4	-	-	-	-	50	50	-	100	-	-	2	2		
2305206	MDM	Energy Systems for Mobility	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3		
2305207	MDM	Energy Systems for Mobility Lab	-	-	2	-	-	-	-	25	-	25	50	-	-	1	1		
2305208	OE	Industrial Management	2	-	-	-	-	50	-	-	-	-	50	2	-	-	2		
2305209	VEC	Professional Ethics	-	2	-	-	-	-	50	-	-	-	50	-	2	-	2		
2305210	VSEC	Workshop Practice	-	1	2	-	-	-	25	25	-	-	50	-	1	1	2		
	T	otal	14	03	10	80	240	130	75	125	75	25	750	14	3	5	22		

		1	2023	PAT.	S.Y. B. Te	ch Mech	anical Engin	eering (y	ef AY 2	024-25) SEM-I	V					
Course	Course	711 40	TeachingScheme			Evaluation Scheme and Marks							Credits				
Clode	Type	Title of Course	тн	TU	PR	INSEM	ENDSEM	CCE	TU	TW	OR	PR	TOTAL	тн	TU	PR	TOTAL
2300201D	BSC	Applied Mathematics	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
2305212	PCC	Fluid Mechanics and Machines	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
2305213	PCC	Solid Mechanics	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
2305214	PCC	Fluid Mechanics and Machines Laboratory	-	-	2	-	-	-	-	25	25	-	50	-	-	1	1
2305215	PCC	Geometric Modeling and Production Drawing	-	-	4	-	-	-	-	50	-	50	100	-	-	2	2
2305216	MDM	Machine Intelligence	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
2305217	MDM	Machine Intelligence Laboratory	-	-	2	-	-	-	-	25	25	-	50	-	-	1	1
2305218	OE	Industrial Psychology and organizational Behaviour	2	-	-	-	-	50	-	-	-	-	50	2	-	-	2
2305219	VEC	Democracy, Election and Governance	-	2	-	-	-	-	50	-	-	-	50	-	2	-	2
2305220	AEC	Soft Skill	-	1	2	-	-	-	25	25	-	-	50	-	1	1	2
	To	tal	14	3	10	80	240	130	75	125	50	50	750	14	3	5	22

		2	023 PA	T. S.Y.	B. Tech Depar		al Engineering Exit Courses		f AY 20 ard Cert	-					
Course	Course	T 11 4 0	Te	achingSche	me	E	valuation Sche	eme and	Marks				Credit	s	
Code	Туре	Title of Course	ТН	TU	PR	INSEM	ENDSEM	CCE	тw	PR /OR	TOTAL	тн	TU	PR	TOTAL
2305221	EXIT	Internship	-	-		-	-	-	100	-	100		-	2	2
2305222	EXIT	Fault Diagnosis and Maintenance of EV	2	-	2	-	-	50	50	-	100	2	-	1	3
2305223	EXIT	Battery build up Technology for EV	2	-	2	-	-	50	50	-	100	2	-	1	3
		Total	4		4	-	-	100	200	-	300	4	-	4	8

	D // 2022	S. Y. B. Tech.	·				
		Semester: III (Mechan 5201: Manufacturing Pi	8 8,				
Teaching	g Scheme:	Credit Scheme:	Examination Sch	eme:			
Theory :	:03 hrs/week	03	Continuous Comp Evaluation: 20Ma In Sem Exam: 20 End Sem Exam: 6	nrks Marks			
	isite Courses, if any: - Fun s and their properties, Stress etc.						
	Objectives:						
tec	escribe the casting process chniques of melting, molding plain the basics of metal for	g, core and sand making,	and finishing.				
	etal forming.	01					
	scuss the properties and pro-	cessing methods of polyn	ners				
• De	escribe the principles and tec	hniques of additive manu	afacturing processes				
Course (Dutcomes: On completion of	of the course, students will	ll be able to-				
		Course Outcomes		Bloom's Level			
C01	Identify appropriate manuf consideration and source of		2-Underst				
CO2	Understand the mechanisn basics operations.	n of metal forming techni	ques and demonstra	te 2-Understand			
CO3	Relate the principle of man	nufacturing polymers.		2-Understand			
CO4	Understand and Demonstra	ate various rapid manufac	cturing techniques.	3-Apply			
		COURSE CONTEN	Г				
Unit I	Casting Processes		(08hrs)	COs Mapped - CO1			
Melting (Numeric	tion to casting processes, T practices and furnaces, Po cal), Cleaning and Finishi nts of Permanent mould cast	uring and Gating system ng of casting, Casting,	n design, Riser de Defects and reme	sign and placement edies, Principle and			
Unit II	Metal Forming Process		(07hrs)	COs Mapped - CO1, CO2			
power. F Wire Dra	Process, Classification, Ro orging: Open and closed d awing, Die profile Friction for all forming processes.(N	ie forging, Forging stage and lubrication in meta	s, Extrusion: Types l forming, Forming	, Process parameter, defects, causes and			

Unit	Sheet M	etal W	orkiı	ng							(07hı	rs)	COs Ma	pped -
III													CO1, CO	02
• -		-					-	-	-		• -	• •		, Clearance
-			-	-			-							sign of strip
-	Methods	of red	ucing	g cut	ing f	forces	s, Fo	rmab	ility	and fo	rming	limit d	iagrams, S	pring Back
Effect.														
TI	T 4 J		4. D.	1	D		•				(071		CO- M-	
Unit IV	Introdu		10 PO	iyine	er pro	ocess	ing				(07hı	:5)	COs Ma CO1, CO	
Introduct	ion to	Polym	er (F	Plastic	c an	d Rı	ubber	;), C	lassif	ication	of P	olymer	, Thermoj	plastic and
Thermos	etting Pl	astic 1	Manu	factu	ring	Proc	ess:	Com	press	ion m	oulding	g, Tran	sfer moule	ding, Blow
moulding	g, Centri	fugal	moul	ding,	Inje	ection	n mo	uldin	g Ex	trusio	n, Pres	sure F	forming an	d Vacuum
Forming.														
Unit V	Additiv	e Man	ufac	turin	g						(07hı	s)	COs Ma	pped -
					8						(~)	CO1,CC	
Introductio	on, class	ificatio	on of	Rap	id P	rototy	yping	g Pro	cesse	s, Wo	rking	princip		s, models &
specificati	on of pro	cess, a	pplic	ation	, adv	antag	ges ar	nd dis	sadva	ntages,	Rapid	Toolin	g and STL	format.
							Tex	t Boo	oks					
1. P. N. Ra			-		-	•								
	•	•		-			•		har R	oy, "E	lement	s of Wo	orkshop Te	chnology",
Volume I,														
3. P. C. Sh	harma, "P	roduct	ion E	ngın	eerin	-								
1 D K I			m 1	1					Books	6				
1. R. K. Ja										10.020	77406			77 40 650
		-				-	-						N 978-038'	
	-				-					-				Book series.
Prototypin										iuracti	ining 1	echnolo	ogies: Rapi	u
rototypin	ig to Dife	ct Dig		lanui	actui	mg, i	Sprin	igei						
					Str	ength	n of C	CO-P	O Ma	pping				
					~	8			PC					
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
COI	1 3	2	2	-	-	-	2	-	-	-	-	2	2	-
CO2	2 3	2	3	-	-	-	2	-	-	-	-	2	2	-
COS	3 2	-	-	-	2	-	-	2	-	-	-	2	1	-
CO4	4 3	-	-	-	2	-	-	-	-	-	-	2	1	-
Avera	ge 3	2	3	-	2	-	2	2	-	-	-	2	2	-

	Guidelines for Continuous Comprehensive Evaluation of Theory	Course
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted
1	Assignments on each Unit	10
2	Online or Offline Test	10
	Total	20

	Dottom 2022	S. Y. B. Tech.	nical Engineering)	
		Semester: III (Mecha 02: Engineering Therm		
Teaching	g Scheme:	Credit Scheme:	Examination Sche	eme:
Theory :	:03 hrs/week	03	Continuous Comp Evaluation: 20Ma InSem Exam: 20M EndSem Exam: 60	nrks Aarks
Prerequis	site Courses, if any: -Engin	eering Mathematics I an	d II, Engineering Phy	vsics, Calculus
Course (Objectives:			
	introduce laws of thermody	vnamics		
• To	introduce the concept of en	ntropy and availability		
• To	cover fluid properties and v	vapour cycles.		
• To	introduce first law analysis	s of refrigeration system	s and Psychrometry	
• To	introduce first law analysis	s of Air Compressor and	Steam Generators	
Course (Outcomes: On completion of	of the course, students w	ill be able to-	
		Course Outcomes		Bloom's Level
CO1	Apply the concepts of First Systems	st Law of Thermodynam	ics for Steady Flow	3-Apply
CO2	Apply the concepts of Ent closed system	ropy and Availability fo	r analysis of open and	d 3-Apply
CO3	Estimation of steam property cycle	erties and application of	first law to power	3-Apply
CO4	Estimate performance of Psychrometry	refrigeration system and	understand	3-Apply
CO5	Apply the concepts of First and Steam Generators	st Law of Thermodynam	ics for Air Compress	or 3-Apply
		COURSE CONTEN	TS	
Unit I	Laws of Thermodynamic	S	(08hrs)	COs Mapped - CO1
aw of the equation (Second L	v of Thermodynamics: Co ermodynamics, Equivalence SFEE) Law of Thermodynamics: w of Thermodynamics; PMI	of heat and work. App Limitations of first la	lication of first law to w of thermodynamic	o Steady flow energes, Statement of the
econa na				

Unit II Entropy and Availability	(07hrs)	COs Mapped -
		CO1, CO2

Entropy: Entropy as a property, Clausius Inequality, Principle of increase of Entropy Principle, Entropy changes for an Open and Closed System, Change of Entropy for an ideal gas and Pure Substance, Concept of Entropy generation. Entropy - a measure of Disorder.

Availability: Available and Unavailable Energy, Concept of Availability, Availability of heat source at constant temperature and variable temperature, Availability of non-flow and steady-flow Systems.

Unit	Properties of Working Fluid and Vapour Power	(07hrs)	COs Mapped -
III	Cycle		CO1, CO2,CO3

Ideal Gas properties

Ideal Gas definition, Gas Laws: Boyle's law, Charle's law, Avagadro's Law, Equation of State, Ideal Gas constant and Universal Gas constant, Ideal gas Processes- on P-v and T-s diagrams, Constant Pressure, Constant Volume, Isothermal, Adiabatic, Polytropic, Throttling Processes (Open and Closed systems), Calculations of Heat transfer, Work done, Internal Energy, Entropy.

Properties of Pure substances: Formation of steam, Phase changes, Properties of steam, Use of Steam Tables, Study of P-v, T-s and h-s plots (Mollier Chart) for steam, Dryness fraction and its determination, Study of steam calorimeters (Barrel, Separating, Throttling and combined) Non-flow and Steady flow Vapour Processes, Change of Properties, Work and Heat transfer.

Vapour Power Cycle: Thermodynamic Cycle: Carnot Cycle, Rankine Cycle, Comparison of Carnot cycle and Rankine cycle.

Unit	First Law Analysis of Refrigeration System	(07hrs)	COs Mapped -
IV	and Psychrometry		CO1, CO4

Refrigeration System: Schematic of mechanical refrigeration system, SFEE of components of refrigeration system, Thermodynamic Refrigeration Cycle representation of vapour compression cycle (VCC) on T-s and P-h diagram, Performance Analysis of VCC

Psychrometry: Introduction, Psychrometry and Psychrometric Properties, Basic Terminologies & Psychrometric Relations, Psychrometric Processes, Psychrometric Chart.

Unit V	Air Compressor and Steam Generators	(07hrs)	COs Mapped -
			CO1,CO5

Reciprocating Compressor: Applications of compressed air, single stage compressor (without clearance and with clearance volume), volumetric efficiency, isothermal efficiency, effect of clearance volume, free air delivery (FAD), actual indicator diagram for air compressor, Multi staging of compressor, optimum intermediate pressure, intercooler, after cooler, Capacity control of compressors.

Steam Generators: Classification, Constructional details of low pressure boilers, Boiler mountings and accessories, Instrumentations required for safe and efficient operation, Introduction to IBR Act

Text Books
P. K. Nag, Engineering Thermodynamics, Tata McGraw Hill Publications
C.P. Arora: Engineering Thermodynamics, Tata McGraw Hill.
Reference Books

- Y. Cengel & Boles: Thermodynamics An Engineering Approach,
- P. L Ballaney: Thermal Engineering, Khanna Publishers
- S. Domkundwar, C. P. Kothandaraman, and Domkundwar, Thermal Engineering, Dhanpatrai Publishers.

	Strength of CO-PO Mapping											
		РО										
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	2	2	-	-	-	-	2	-	-	2
CO2	3	2	2	2	-	-	-	-	2	-	-	2
CO3	3	2	2	2	-	-	-	-	2	-	-	2
CO4	3	2	2	2	-	-	-	-	2	-	-	2
CO5	3	2	2	-	-	-	2	-	2	-	-	2
Average	3	2	2	2	-	-	2	-	2	-	-	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course									
Sr. No.	. Components for Continuous Comprehensive Evaluation Marks Allotte									
1	Assignment on each unit	10								
2	Test (Online/Offline) on each unit	10								
	Total	20								

	Pattorn 2023	S. Y. B. Tech. Semester: III (Mechan	ical Engineering)	
		203: Mechanism and M		
Teaching	g Scheme:	Credit Scheme:	Examination Sch	eme:
	03 hrs/week	03	Continuous Com Evaluation: 20 M InSem Exam: 20 EndSem Exam: 6	arks Marks 60 Marks
_	isite Courses, if any: -Fund		Engineering, Engine	eering Mechanics,
-	ing Mathematics I & II, Eng	ineering physics		
 To inc. To ana To tec To van To van To van To van 	make the students conversa lustrial applications. develop the competency alytical and graphical approa develop the skill to propos hnique. develop the competency to constructions. develop the competency to Dutcomes: On completion of IDENTIFY mechanisms CALCULATE velocity and graphical method CONSTRUCT a four ba	to analyze the velocity ach. se and synthesize the me to understand & apply design a cam profile for of the course, students will Course Outcomes in real life applications and acceleration in mech	and acceleration in chanisms using gra- the principles of go various follower mo ll be able to–	n mechanisms using phical and analytical ear theory to design ptions. Bloom's Level 2-Understand
CO4	methods APPLY fundamentals of	gear theory as a prerequi	site for gear design	3-Apply
CO5	CONSTRUCT cam prof			3-Apply
	I FILL	COURSE CONTENT		rr J
Unit I	Fundamentals of Mechan	isms	(08 hrs)	COs Mapped - CO1
(mobility)	on, Mechanism and machin , Classification of kinemati inversion, Inversions of slic Kinematic Analysis of Pla	c pairs, Kinematic chair der crank chain, Double s	n, Linkage, Mechan	-
analysis	c analysis of slider crank of Four-Bar and Slider c or the velocity and accelera	rank mechanisms using	Complex Algebra	ity and acceleration Method. Graphical

freedom	mechanisms by relative velocity method and ICR me	thod.								
Unit	Synthesis of Mechanisms	(07 hrs)	COs Mapped -							
III			CO1, CO3							
Steps in	Synthesis: Type synthesis, Number Synthesis, Dim	nensional synthes	sis, Tasks of Kinematic							
synthesis	- Path, function and motion generation (Body guid	dance), Precisior	Positions, Chebychev							
spacing,	Mechanical and structural errors									
Graphic	al Synthesis: Inversion and relative pole method for	three position system	nthesis of Four-Bar and							
Single Sl	ider Crank Mechanisms									
Analytical Synthesis: Three position synthesis of Four-Bar mechanism using Freudenstein's equation										
Unit	Gears and Gear trains	(07 hrs)	COs Mapped -							
IV			CO1, CO4							
Classific	ation, Terminology, Law of Gearing, Interference an	d methods to ave	oid interference in spur							
gears. Sin	mple, compound, reverted and Epicyclic gear trains.									
Unit V	Cam and Follower	(07 hrs)	COs Mapped -							
			CO1, CO5							
Classifica	tion of Followers and Cams, Terminology of Cam, I	Displacement dia	gram for the Motion of							
follower a	s Uniform velocity, Simple Harmonic Motion (SHM)), Uniform Accel	eration and Retardation							
Motion (I	JARM), Cycloid motion, Cam Profile construction	n for Knife-edge	e Follower and Roller							
Follower,	Cam jump Phenomenon									
	Text Books									
1. S. S. F	attan, "Theory of Machines", Third Edition, McGrav	v Hill Education	(India) Pvt. Ltd., New							
Delhi.										
2. Bevan	T, "Theory of Machines", Third Edition, Longman P	ublication								
3. G. Am	bekar, "Mechanism and Machine Theory", PHI									
4. J. J. U	icker, G. R. Pennock, J. E. Shigley, "Theory of Mach	ines and Mechan	isms", Fifth Edition,							
Internatio	onal Student Edition, Oxford									
	Reference Books									
1.Paul E.	Sandin, "Robot Mechanisms and Mechanical Device	es Illustrated", Ta	ta McGraw Hill							
Publicati	on									
2. Stephe	n J. Derby, "Design of Automatic Machinery", 2005,	Marcel Dekker,	New York							
3. Neil S	clater, "Mechanisms and Mechanical Devices Source	book", Fifth Edit	ion, Tata McGraw Hill							
Publicati	on									
4. Ghosh	Malik, "Theory of Mechanism and Machines", East-	West Pvt. Ltd.								
5. Hanna	h and Stephans, "Mechanics of Machines", Edward A	Arnolde Publication	on							
6. R. L. I	Norton, "Kinematics and Dynamics of Machinery", Fi	irst Edition, McG	raw Hill Education							
(India) P	Ltd. New Delhi									
7. Sadhu	Singh, "Theory of Machines", Pearson									
8. Dr. V.	P. Singh, "Theory of Machine", Dhanpatrai and Sons	5								
9. C. S. S	Sharma & Kamlesh Purohit, "Theory of Machine and	Mechanism", PH	Ι							

	Strength of CO-PO Mapping													
		РО												
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	3	2	2	1	-	-	-	2	-	-	1	2	-
CO2	3	3	2	2	-	-	-	-	2	-	-	1	2	-
CO3	3	2	-	2	1	-	-	-	1	-	-	1	2	-
CO4	3	3	2	2	-	-	-	-	1	-	-	2	2	-
CO5	3	2	2	2	1	-	-	-	2	-	-	2	2	-
Average	3	3	2	2	1	-	-	-	2	-	-	1	2	-

	Components for Continuous Comprehensive Evaluation of Theory Course									
Sr. No.	Components for Continuous Comprehensive Evaluation Marks Allottee									
1	Assignments on each Unit	10								
2	Online/ offline Test on Each Unit	10								
	Total	20								

S. Y. B. Tech.										
	Pattern 2023 Semester: III (Mechanical Engineering) 2305204: Mechanism and Machines Lab									
Teaching		Credit Scheme:	Examination Schen	ne:						
Practical	: 02 hrs/week	01	Term work: 25Mar	·ks						
			Oral: 25Marks							
Prerequisite Courses, if any: - Fundamentals of Mechanical Engineering, Engineering Mechanics,										
-	ng Mathematics I & II, Eng	gineering physics								
Course O	•									
	nake the students conversa	nt with kinematic analys	is of mechanisms appl	ied to real life and						
	strial applications. develop the competency	to analyze the velocity	and acceleration in a	mechanisms using						
	ytical and graphical approa	• •		incentainisins using						
	develop the skill to propos		chanisms using graph	ical and analytical						
	nique.	,								
	develop the competency	to understand & apply	the principles of gear	theory to design						
vari	ous applications.									
	levelop the competency to	<u> </u>		ons.						
Course Outcomes: On completion of the course, students will be able to-										
	Course Outcomes Bloom's Level									
CO1	O1 IDENTIFY mechanisms in real life applications									
CO2	CALCULATE velocity and graphical method	and acceleration in mech	anisms by analytical	3-Apply						
CO3	CONSTRUCT a four bas methods	r mechanism with analyti	ical and graphical	3-Apply						
CO4	APPLY fundamentals of	gear theory as a prerequi	isite for gear design	3-Apply						
CO5	CONSTRUCT cam prof	ile for given follower mo	otion	3-Apply						
	List of La	boratory Experiments /	' Assignments							
Sr. No.		ory Experiments / Assig	8	CO Mapped						
1	To make a model of any give a presentation using		of 4 students and to	CO1						
2	Identify mechanisms in re links, pairs, obtain degree	eal life and Analyze for t	ypes and number of	CO1						
3	Velocity and acceleration acceleration method.	analysis using relative v	velocity and	CO1, CO2						
4	Velocity analysis using the	ne ICR method.		CO1, CO2						
5	Kinematic Analysis of Slider Crank Mechanism using Analytical Method by using any suitable programming language. CO1, CO2									
6	Method by using any suitable programming language.CO1, CO3To synthesize the four bar and slider crank mechanism using relativeCO1, CO3									

	pole and inversion method with three accuracy points.	
7	To study manufacturing of gear using gear generation with rack as a cutter and to generate an involute profile.	CO1, CO4
8	To determine holding torque for Epicyclic gear train	CO1, CO4
9	To draw cam profile for various follower motion with radial and off-set cam and manufacturing by using laser cutting machine	CO1, CO5
10	To study and verify cam jump phenomenon.	CO1, CO5

Guidelines for Laboratory Conduction

1. Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.

2. Apparatus and equipment's required for the allotted experiment will be provided by the lab assistants using SOP.

3. Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant.

4. After performing the experiment students will check their readings, calculations from the teacher.

5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, and diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Term work Assessment

- 1. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

Text Books

1. S. S. Rattan, "Theory of Machines", Third Edition, McGraw Hill Education (India) Pvt. Ltd., New Delhi.

2. Bevan T, "Theory of Machines", Third Edition, Longman Publication

3. G. Ambekar, "Mechanism and Machine Theory", PHI

4. J. J. Uicker, G. R. Pennock, J. E. Shigley, "Theory of Machines and Mechanisms", Fifth Edition, International Student Edition, Oxford

Reference Books

1.Paul E. Sandin, "Robot Mechanisms and Mechanical Devices Illustrated", Tata McGraw Hill Publication

2. Stephen J. Derby, "Design of Automatic Machinery", 2005, Marcel Dekker, New York

3. Neil Sclater, "Mechanisms and Mechanical Devices Sourcebook", Fifth Edition, Tata McGraw Hill

Publication 4. Ghosh Malik, "Theory of Mechanism and Machines", East-West Pvt. Ltd.

5. Hannah and Stephans, "Mechanics of Machines", Edward Arnolde Publication

6. R. L. Norton, "Kinematics and Dynamics of Machinery", First Edition, McGraw Hill Education (India) P Ltd. New Delhi

7. Sadhu Singh, "Theory of Machines", Pearson

8. Dr. V. P. Singh, "Theory of Machine", Dhanpatrai and Sons

9. C. S. Sharma & Kamlesh Purohit, "Theory of Machine and Mechanism", PHI

	Strength of CO-PO Mapping													
		PO												
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	3	2	2	1	-	-	-	2	-	-	1	2	-
CO2	3	3	2	2	-	-	-	-	2	-	-	1	2	-
CO3	3	2	-	2	1	-	-	-	1	-	-	1	2	-
CO4	3	3	2	2	-	-	-	-	1	-	-	2	2	-
CO5	3	2	2	2	1	-	-	-	2	-	-	2	2	-
Average	3	3	2	2	1	-	-	-	2	-	-	1	2	-

		S. Y. B. Tech.						
Pattern 2023 Semester: III (Mechanical Engineering) 2305205 : Material Testing and Measurement Laboratory								
Teaching		Credit Scheme:	Examination Sche					
Teaching	Scheme.	Crean Scheme.	Term Work: 50 Mar					
Practical:	04 hrs / week	02	Oral: 50 Marks	K5				
Prerequisit	te Courses: - Fundamental	s of Mechanical Engineer		measurement,				
-	plied Chemistry.	C C						
Course Ob	jectives:							
	elop hands-on proficiency		Vickers hardness tes	sting machines to				
	arately measure and assess							
-	uire the knowledge and action in materials, ensuri		-					
	nique.	ing a morough understa	unaming of the non-the	estructive testing				
	nprehend the principles of	the Iron-Iron Carbide Ph	ase diagram and appl	y this knowledge				
	redict and analyze material		• •	• •				
• To c	levelop essential skills for	calibrating and testing ins	struments.					
• To	apply basics of measurer	ment methods through	the gathering of da	ta, analysis, and				
inte	rpretation and expertise in o		8.	1				
		Course Outcomes		Bloom's Level				
CO1	Selection of measurem collection and its analysis	ent methods and stand is.	ards, carryout data	2-Understanding				
CO2	Determine limits, fits, to of Gauges.	tolerances, geometric tol	erances and Design	3- Apply				
CO3		cy in performing hard ickers hardness testing n		3- Apply				
CO4	1 1	ples of the Iron-Iron Car predicting material be	e	3- Apply				
CO5		esting techniques, specif for flaw detection in mat		3- Apply				
CO6		lls in optical metallu and microstructure exam n.		4- Analyze				
		COURSE CONTENT	ſS					
The studer	nt shall complete the follow	ving activity as a Term W	/ork,					
1.	Hardness measurement o machine.			ers hardness testing				
2.	Non Destructive Testing (Magnetic Particle Inspec	tion Test).					
3	Study of Iron-Iron Carbid	e Phase diagram						

- 3. Study of Iron-Iron Carbide Phase diagram.
- 4. Specimen preparation for microscopic Examination.

- 5. Microstructure examination of plain carbon steels and Cast Iron.
- 6. Heat Treatment of plain carbon steel and determination of hardness (Annealing, Normalizing, Hardening)
- 7. Demonstrate and compute linear and angular measurements employing tools such as Vernier Caliper, Screw Gauge, Dial Gauge, Height Gauge, Bevel Protector, etc.
- 8. Determine Parameters of screw thread using floating carriage micrometer.
- 9. Determine the geometry and dimensions of a given composite object or a single-point tool using an Optical Projector or Tool Maker's Microscope. Evaluate and distinguish its practical utility in real-life applications.
- 10. Measurement of the any one characteristics from the following using any suitable measurement system,
 - a. Surface roughness
 - b. Gear tooth Parameter
 - c. Verification of composite geometry.
- 11. Limit Gauges: Concepts, uses and applications of Go –No Go Gauges, Taylor's principle and Design of gauges (Numerical and student activity)
- 12. Industry visit for Heat Treatment Plant and advanced in measurement to provide exposure to students.

Text Books

- 1. Dr. V. D. Kodgire & S. V. Kodgire, "Material Science & Metallurgy For Engineers", Everest Publication.
- 2. William D. Callister, "Materials Science and Engineering an Introduction", Jr, John Wiley & Sons,Inc.
- 3. Jain R.K., Engineering Metrology, Khanna Publication.
- 4. I.C.Gupta, Engineering Metrology, Dhanpath Rai.
- 5. Bewoor A. K. and Kulkarni V. A., Metrology and Measurements, McGraw hill Publication.

Reference Books

- 1. Raghvan V., "Material Science & Engineering", Prentice Hall of India, New Delhi. 2003
- 2. Avner, S.H., "Introduction to Physical Metallurgy", Tata McGraw-Hill, 1997.
- 3. Higgins R. A., "Engineering Metallurgy", Viva books Pvt. Ltd.
- 4. George Ellwood Dieter, "Mechanical Metallurgy", McGraw-Hill 1988
- 5. Smith, W.F, Hashemi, J., and Prakash, R., "Materials Science and Engineering in SI Units", TataMcGraw Hill Education Pvt. Ltd.
- 6. Narayana K.L., Engineering Metrology.
- 7. Galyer J.F & Shotbolt C.R., Metrology for engineers
- 8. Judge A.W., Engineering Precision Measurements, Chapman and Hall
- 9. ASTME, Handbook of Industrial Metrology, Prentice Hall of India Ltd.
- 10. Connie Dotson, Fundamentals of Dimensional Metrology, ThamsonPubln. 4th Edition.

Codes / Handbooks

Francis T. Farago, Mark A. Curtis, Handbook of dimensional measurement

E- resources

- 1. nptel.ac.in/courses/112106179
- 2. www.nptelvideos.in/2012/12/mechanical-measurements-and-metrology.html
- 3. https://nptel.ac.in/courses/112/107/112107242/
- 4. freevideolectures.com > Mechanical > IIT Madras
- 5. <u>https://nptel.ac.in/courses/112/106/112106139/</u>
- 6. <u>https://archive.nptel.ac.in/courses/112/106/112106175/#</u>
- 7. https://archive.nptel.ac.in/courses/112/106/112106300/

		Strength of CO-PO/PSO Mapping												
		PO PSO												
Strength of CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	-	3	-	-	-	-	2	2	1	2	2	1
CO 2	3	2	-	3	3	-	-	-	2	2	1	2	2	1
CO 3	3	2	-	3	2	-	-	-	2	2	1	2	2	2
CO 4	3	2	-	3	2	-	-	2	2	2	1	2	2	2
CO 5	3	2	3	3	2	-	-	3	2	2	1	2	2	2
CO 6	3	2	-	-	2	-	-	2	2	2	1	2	2	2

Gui	Guidelines for Teamwork Assessment							
	Continuous A	Assessment Policy						
(Term work marks o	f 25 will be av	warded based on the following policy)						
Each laboratory assignment will be assessed for 30 Marks according to the following rubrics:								
R1- Timely completion of assig	nments (10 M	arks)						
R2- Understanding of assignme	ent (10 Marks)							
R3 – Presentation/Clarity of jou	rnal writing (10 Marks)						
For all 10 Experiments, total man	For all 10 Experiments, total marks of 300 will be converted into 25 Marks.							
Description	Weightage	Evaluation criteria						
R1-Timely completion of	10 Marks	Each experiment/assignment will get 10 marks						
assignments		for timely submission.						
		Late submission will be valued as 5 in totality.						
		Failure to submit will be valued as 0 in totality						
R2- Understanding of	10 Marks	Understanding of assignments is based on oral						
assignment.		questions based on assignment.						
R3 – Presentation/Clarity of	10 Marks	Completed sheet with proper dimensioning, line						
Drawing Sheets		work carries 10 marks.						

	Pattern 2023 S	S. Y. B. Tech. emester: III (Mechanica	l Engineeri	ing)	
		6: Energy Systems for M	0	ing <i>)</i>	
Teaching		Credit Scheme	Examinat	ion Scł	neme
	03 hrs/week	03	Continuou Evaluation InSem Exa EndSem E:	: 20Ma m: 20N	nrks Aarks
Prerequi	site Courses, if any: Engir	neering Thermodynamic	cs, Basic Ma	athema	itics
Course C	Dbjectives:				
 To evappro To un 	derstand basics of IC Engin valuate various performance priate emission control tech derstand components and te derstand the basics of Fuel	e parameters of engines, nologies in SI and CI engechnologies used in electro	, compare c gines ric and hybri	ombust	ion and identify
Course C	Dutcomes: On completion of	of the course, students will	ll be able to-	_	
		Course Outcomes			Bloom's Level
CO1	Explain basics of IC engin	nes and Analyze air stand	lard cycles		3- Apply
CO2	Compare combustion and technologies in SI and CI parameters of engines				3- Apply
CO3	Understand and Compar engine technologies based		combustion		2-Understand
CO4	Understand the basics of kinetics and understand c	•		on	2-Understand
		COURSE CONTENTS			
Unit I	Introduction to Engines		(06 hrs)	COs	Mapped – CO1
Basics of	IC engines, Working of uel air cycles, Actual cycle		· · · · ·		
Unit II	Combustion and Emissio	n control in Engines	(08 hrs)	COsl	Mapped - CO2
Combusti	on: Combustion in SI and C	CI engines, Knocking/ De	tonation, Fa	ctors at	ffecting Knocking
	CI engines, advanced te		g combusti	on proc	cess (MPFI, GDI
E mission standards),	atified charge, CRI, Turbock Control: Pollutants, Phen , Emission control technolog Hydrogen, Fuel additives	omenon of formation, l		,	
Unit III	Engine Systems and Test	ing of engines	(08 hrs)	COs	Mapped – CO2
	stems: Fuel supply, Ignition			-	

I. C. Engines (Numericals)

Unit IV Electric and	nd Hy	brid H	Electri	ic Veh	icles			(08 h	rs)	COs M	lapped	- CO3	
Electric Vehicles: P	erform	ance o	of Elec	ctric V	ehicle	es, Mo	otors, 7	Fractio	on Mo	otor Cha	racteris	tics and	
comparison with er	ngines	perfo	rmanc	e cha	aracter	ristics,	Batt	eries,	Batte	ery sizi	ng calc	ulation,	
Battery management	, Effec	t on ca	arbon	emissi	ions								
Hybrid Vehicles: Se	eries H	Iybrid	Elect	ric D	rive 7	Frains,	, Para	llel H	ybrid	Electri	ic Drive	e Trains,	
TorqueCoupling, Spee	ed Cou	ıpling,	Com	bined	Torqu	e and	Speed	l Coup	oling i	in Paral	lel Hyb	rid Drive	
Trains													
Unit V Fuel cell 7	[echno	ology a	and R	egene	rative	e Brak	king	(06 h	rs)	COs M	lapped	-CO4	
Fuel cells: Operating Principle, Electrode Potential and current voltage curve, Fuel cell													
thermodynamics, Fuel cell reaction kinetics, Fuel cell technologies (Types of Fuel cell), Fuel cell													
Hybrid Vehicle Drive	e train	techno	ology,	Hydr	ogen f	fuel ce	ll, Hy	drogei	n Prod	luction	and Sto	rage.	
Regenerative braking	ng: En	ergy c	onsun	nption	in bra	aking,	Brake	e Syste	em of	EVs an	d HEVs	s (Series	
Brake : Optimal Feel, Optimal Energy Recovery, Parallel Brake)													
Text Books													
1. IC Engines (Combustion and Emissions) by B. P. Pundir, Narosa Publications													
2. Internal combustion engine by Mathur M. L. and Sharma R. P., DhanpatRai publications													
3. Internal combustic	on engi	nes by	v V. G	anesa	n, Tata	a McC	Braw H	Hill					
4. Modern Electric,	Hybric	l elect	ric and	d Fuel	cell V	Vehicl	es, Eh	sani M	1., Ga	o Y., G	ay S., E	Emadi A.,	
CRC Press													
5. Fuel Cell Technolo	ogy fo	r Vehi	cles, 2	2nd Ed	lition,	<u>Richa</u>	rd Sto	<u>bart</u> , S	SAE				
				Refe	rence	Book	5						
1.Engine Emission	s: Pol	lutant	Forma	ation a	nd Ad	lvance	es in C	ontrol	Tech	nology	by B. P	. Pundir,	
Alpha science pub											•		
2.Internal combust	tion en	gine F	Fundar	nental	s by J	ohn B	. Hey	wood,	McG	raw Hil	1		
3.Hybrid Electric	Vehicl	e Desi	gn and	d Cont	trol: In	ntellig	ent Oi	nnidir	ection	nal Hyb	rids by	Y. Xu, J.	
Yan, H Qian, T la	n, Mc	Graw	Hill										
		ļ	Streng	gth of	CO-F	PO Ma	appin	g					
							PO						
	1	2	3	4	5	6	7	8	9	10	11	12	
C01	3	2	2	-	-	2	2	-	2	-	-	2	
CO2	3	3	3	2	-	2	2	-	2	-	-	2	
CO3	3	2	2	-	-	2	2	-	2	2	-	2	
CO4	3	2	2	-	-	2	2	-	2	2	-	2	
Average	3	3	2	2	-	2	2	-	2	2	-	2	

(Guidelines for Continuous Comprehensive Evaluation of Theory Course										
Sr. No.											
1	One assignment on each unit	10									
2	Online/ Offline Test / Oral Presentation	10									
	Total	20									

	Pattern 2023 Se	S. Y. B. Tech. emester: III (Mechanic	al Engineerin	σ)				
		gy Systems for Mobilit	0					
Teaching	g Scheme:	Credit Scheme:	Examinatio	on Scheme:				
Practica	l :02 hrs/week	01	Term work Practical E	: 25 marks xam: 25 marks				
Prerequ	isite Courses, if any: - Bas	ic Thermodynamics an	d I. C. Engine	es				
To evalu To diagn To evalu Use softw	Objectives: ate performance of engines ose engine combustion thro ate the performance of refrig ware in analysis of thermal s Dutcomes: On completion of	ugh emission measurem geration and Air conditi- ystem of the course, students w	oning system					
	Co	urse Outcomes		Bloom's Level				
CO1	Apply first law of thermo	lynamics to energy syst	ems	3-Apply				
CO2	-	Evaluate various performance parameters of Energy systems through experimentation and using software						
CO3	Diagnose engine combust	ion through emission m	easurement	2-Understand				
CO4	Analyze and Compare va environmental perspective		gy and	4- Analyze				

	List of Laboratory Experiments / Assignments	
Sr. No.	Laboratory Experiments / Assignments	CO Mapped
1.	Trial on IC engine to determine performance parameters and to draw heat balance sheet at different loads	CO1, CO2
2.	Trial on engine to study the effect of variable compression ratio	CO4
3.	Demonstration on Exhaust Gas Analyzer	CO3
4.	Analysis of Fuel cell system	CO1, CO2
5.	Analysis of Vapour compression refrigeration system	CO1, CO2
6.	Analysis of AC system	CO1, CO2
7.	Trial on Bomb calorimeter to determine calorific value of fuel	CO1, CO2
8.	Trial on Air compressor to determine performance parameters	CO1, CO2
9.	Analysis of any thermal system using programming software (Assignment)	CO1, CO2, CO4
10.	Visit to Automobile Service station	CO1, CO2, CO3, CO4

11.	Case study on Fuel cell or electric vehicle (Assignment and Presentation)	CO1, CO4							
Guidelines for Laboratory Conduction									
1. Teacher	1. Teacher will brief the given experiment to students its procedure, observations calculation, and								
outcome o	f this experiment.								

2. Apparatus and equipment's required for the allotted experiment will be provided by the lab assistants using SOP.

3. Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant.

4. After performing the experiment students will check their readings, calculations from the teacher.

5. After checking they have to write the conclusion of the final result.

6. Experiment no. 10 and 11 are compulsory and any 06 experiments of experiment no. 1 to 9

Guidelines for Student's Lab Journal

Write-up should include title, aim, setup diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Termwork Assessment

- 1. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

	Strength of CO-PO Mapping													
		PO												
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	3	3	3	-	-	2	2	-	3	2	2	2		
CO2	3	3	3	-	2	2	2	-	3	2	2	2		
CO3	3	2	2	-	-	3	3	-	3	2	2	2		
CO4	3	3	3	-	-	3	3	-	3	2	2	2		
Average	3	2	2	-	2	3	2	-	3	2	2	2		

Books to be referred

- 1. Basic and applied Thermodynamics P. K. Nag, McGraw Hill Education
- 2. Refrigeration and Air conditioning C P Arora, McGraw Hill Education
- 3. Internal Combustion Engines V. Ganesan, Tata McGraw Hill Education

	D	S. Y. B. Tech.		
		Semester: III (Mecha 05208: Industrial Mana		
Teaching	g Scheme:	Credit Scheme:	Examination Sch	eme:
Theory :	: 02hrs/week	02	Continuous Com	prehensive
			Evaluation (CCE	
Prerequ	isite Courses, if any: -Introd	duction to Engineering M	lanagement	
		Course Objectives	5	
1. To	familiarize students with th	e principles and practices	s of industrial mana	gement in the context of
me	echanical engineering.			
	develop students' understan	ding of production plann	ing, scheduling, and	l control techniques used
	industrial settings.			
	equip students with knowl		ment systems and to	echniques for enhancing
	oductivity and efficiency in 1			
Course (Outcomes: On completion o	f the course, students wil	l be able to–	
			Bloom's Level	
C01	To apply industrial manage	3		
	manufacturing processes. To analyze skills in produc			
CO2	ensure efficient utilization			4
	Illustration of implementir	ng quality management te	chniques to improve	e ,
CO3	product quality and custon		1 1	4
		COURSE CONTEN	TS	
Unit I	Introduction to Indus	strial Management	(04hrs)	COs Mapped –CO1
Overview	of Industrial Management (Objective, Role, Respons	ibility, Authority, D	elegation of Power),
	and Importance of Industria			
Unit II	Organiz	ation	(05hrs)	COs Mapped –CO2
Organizat	ional Structure and Hierarch	ical Levels (Objective, T	ypes, Advantages, L	Limitations), Role of
Industrial	Managers and Leadership S	tyles		
Unit III	Job Eval	uation	(05hrs)	COs Mapped –CO3
	ation and Wage Plan: Object	tive, Methods of job evalu	uation, job evaluation	on procedure, merit
	rformance appraisal), metho	-	× 5	1
Unit IV	Wage Inc	-	(05hrs)	COs Mapped –CO3
Wage and	wage incentive plans, Introd	luction, Types, Evolution	1	
Unit V	Introduction to indu	strial legislation.	(05hrs)	COs Mapped –CO3
Introducti	on , Objective , Employment	t Legislations		
		Text Books		
1. In	ntroduction to Industrial and	Systems Engineering" by	y Wayne C. Turner,	CRC Press, 2020.

- 2. Production and Operations Management" by R. B. Khanna, Golden Swan Publications, 2019.
- 3. Total Quality Management: Text, Cases and Readings" by Joel E. Ross, Wiley, 2018.
- **4.** Supply Chain Management: Strategy, Planning, and Operation" by Sunil Chopra and Peter Meindl, Pearson, 2019.

Reference Books

- 1. Operations Management" by Nigel Slack and Alistair Brandon-Jones, Pearson, 2020.
- 2. Lean Thinking: Banish Waste and Create Wealth in Your Corporation" by James P. Womack and Daniel T. Jones, Free Press, 2019.
- 3. Six Sigma for Green Belts and Champions: Foundations, DMAIC, Tools, Cases, and Certification" by Howard S. Gitlow, Wiley, 2021.
- 4. Warehouse Management: A Complete Guide to Improving Efficiency and Minimizing Costs in the Modern Warehouse" by Gwynne Richards, Kogan Page, 2019.

	Strength of CO-PO/PSO Mapping														
Strength	РО													PSO	
of COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO 1	3	3	2	-	-	2	-	-	-	-	2	2	2	2	
CO 2	3	3	2	-	-	2	-	-	-	-	2	2	2	2	
CO 3	3	3	2	-	-	2	-	-	-	-	2	2	2	2	
Avg	3	3	2	-	-	2	-	-	-	-	2	2	2	2	

	Guidelines for Continuous Comprehensive Evaluation of Theory Course											
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation Marks Allotted											
1	One Assignments on Unit-1, Unit-2, Unit-3	30										
2	Offline Test	10										
3	Online test	10										
	Total	50										

	Semeste	. Y. B. Tech. Pattern 2023 er: III Mechanical Engine 05209: Professional Ethics	0							
	Teaching Scheme:	Credit Scheme:		nination	Scheme:					
,	Tutorial: 02hrs/week	02	Tut	torial: 50) marks					
Course (1.To spre 2.To pron 3.To prov	isite Courses: Communication Objectives: ad awareness amongst students note ethics and values amongst st vide openings to get involved in Outcomes: On completion of th	about professionalism. students used in personal an a group so as to develop tea	m skills and							
COs	Course Outcomes				Bloom's Level					
C01	Understand basic purpose of p and social issues	rofession, professional ethic	es and variou	us moral	2-Understand					
CO2	Describe professional rights and responsibilities of an Engineer, safety and 2-Understand risk benefit analysis of an Engineer									
CO3	Acquire and apply knowledge of various roles of Engineer in applying ethical principles at various professional levels 3-Apply									
	TUTO	DRIAL COURSE CONTE	NT							
Unit I	Introduction to Pro		(4 hrs)	CO	COs Mapped- O1, CO2, CO3					
	on to Professional Ethics, Mor ode of Ethics by NSPE	als, Values and Ethics – P	ersonal and							
Unit II	Business	Ethics	(5 hrs)		Os Mapped- 01, CO2, CO3					
-	ical approaches to Business bility of Business, conflict of inte				business, Social					
Unit III	Psychological		(5 hrs)	CO	Os Mapped- 01, CO2, CO3					
	neories - Psychological and Phile rical perspective, ethical dilemm	1 11 1	is about Moi	rality, co	nflict of interest in					
Unit IV	Workplac		(5 hrs)		Os Mapped- 01, CO2, CO3					
Managers	changing domains of Research , Ethical issues in Diverse we crimination			ights, In	tellectual property					
Unit V	Safety, Responsibi		(5 hrs)	CO	Os Mapped- 01, CO2, CO3					
	Engineering, Economy, Risk ber brate Sustainability, CSR in Indi	a - Sustainability Case Stud	· .	ate socia	l responsibility					
1 D C		Text Books	17							
2. Nagara	sional Ethics: R. Subramanian, G asan. R.S. Professional Ethics ar in Engineering Practice & Rese	d Human Values. New Age	e Internation							
J. Lunes	in Engineering Flactice & Rese		unionage Of	inversity	11000 2013.					

4. "Professional ethics & human values" by M. Govindarajan, S. Natarajan, V. S. Senthikumar, PHI learning private ltd. Delhi, Third Printing

Reference Books

1. Engineering Ethics, Concepts Cases: Charles E Harris Jr., Michael S Pritchard, Michael J Rabins, 4e, Cengage learning, 2015.

2. Business Ethics concepts & Cases: Manuel G Velasquez, 6e, PHI, 2008.

	Strength of CO-PO Mapping												
	РО												
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1						1		2	2	1		1	
CO2							1	2	2	1		1	
CO3								2	2	1		1	
Aver age						1	1	2	2	1		1	

	List of Tutorial Assignments and guidelines for Continuous Comprehensive Evaluation							
Tut. No.	Tutorial Assignments	Marks Allotted	CO Mapped					
1	Assignment No. 1 on Introduction to Professional Ethics	30	CO1, CO2, CO3					
2	Group presentations on Business Ethics	30	CO1, CO2, CO3					
3	Assignment No. 2 Ethical Theories	30	CO1, CO2, CO3					
4	Assignment No. 3 on Workplace Ethics and Safety, Responsibilities and Rights	30	CO1, CO2, CO3					
5	Combined MCQ/Class Test on all Units	30	CO1, CO2, CO3					

Guidelines for Tutorial Conduction

Faculty will explain details about the tutorial activity in short. Students will complete all 5 tutorial assignments as shown in the above section.

Guidelines for Continuous Comprehensive evaluation

Each tutorial assignments will be assessed for 30 Marks according to following rubrics:

R1- Timely completion of assignments (10 Marks)

R2- Understanding of concept/assignment/communication skills (10 Marks)

R3- Presentation/Clarity of activity done (10 Marks)

All five tutorial assignments with total marks of 150 will be converted into 50 Marks

		S. Y. B. Tech. 3Semester: III Mechan 2305210:Workshop Pra	e	ıg			
Teaching	g Scheme:	Credit Scheme:	Exan	ninatio	n Scheme:		
	Tutorial : 01 hrs/week01Tutorial : 25MaPractical : 02 hrs/week01Term work : 25Ma						
Prerequ	isite Courses, if any: - Wor	kshop Practice (F.Y. B	.Tech)				
 To ap To ac To a produ 	Objectives: oply the basic knowledge for equire skill to produce a FRP equire skills to handle CN ace a job. Dutcomes: On completion o	job C/VMC, Slotting Mac		inishin	g machine and to		
Course		Course Outcomes			Bloom's Level		
C01	Apply the basic knowledge		one on latha m	achina	3-Apply		
CO1	Apply the programming for Turning)	-			3-Apply		
CO3	Development of fiber rein	forcement job			3-Apply		
CO4 Make a use of CNC program for appropriate machining processes like turning and milling					3-Apply		
CO5 Demonstrate machining phenomenon like milling, gear and thread manufacturing, indexing, tapping, super finishing, slotting etc.				d	3-Apply		
		COURSE CONTEN	Т				
Unit I	Lathe Machine Operation, and parting, Gear train use		ng, threading,	(03 hrs)	COs Mapped – CO1,CO5		
Unit II	CNC& VMC programm Programming) Type of Codes, Simple software's for develop prog	•		(03 hrs)	COs Mapped – Co2,CO5		
Unit III					COs Mapped – CO5		
Unit IV	FRP (Fibre-reinforced plast High Grade RESIN, Fibre RESIN, HDPE Material, N Die/mould manufacturing FRP Manufacturing proces	glass Materials, Unsatur atural FRP. for FRP process,	ated Polyester	(02h rs)	COs Mapped – CO3		
Unit V	Facing operation, Program	mable milling machine		(02h	COs Mapped –		

K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

Drilling and Tapping process.	rs)	CO2,CO4			
Thread Pitch, Rotary motion with axial motion mechanism.					
Text Books					
1. A Text Book of Production Technology, P. C. Sharma, S.Chand Publica	tions				
2. A Text Book of Manufacturing Technology, R. K. Rajput, Laxmi Public	cations (p)) LTD			
3. A Text book of Manufacturing Technology, Metal Cutting and Machine	Tools, P.	N. Rao, Vol. 2, 2nd			
edition, Tata McGraw Hill Publishing Co. Ltd, New Delhi, 2002					
4. Elements of Workshop Technology, Vol-II, S. K. Hajra Chaudhary, Me	dia Promo	oters & Publications			
Pvt Ltd.					
5. S. K. Sinha, CNC Programming using Fanuc Custom Macro B, McGrav	v-Hill Pro	ofessional			
Reference Books					
References Books:					
1. Theory of Metal Cutting, M. C. Shaw, 1st Edition, Oxford and I.B.H. pu	ıblishing,	1994			
2. Jigs & Fixtures, P.H. Joshi, Third edition, McGraw Hill, 2017					
3. Production Technology Manufacturing Systems VOL-I & II, R. K. Jain,	Khanna	Publishers			
4. Production Technology –HMT, Tata McGraw Hill publication					
5. An Expert Process Planning System, Chang, T. C., Addison Wesley Lor	ngman, 19	990			
6. Process Planning- Design/Manufacture Interface, Scallan P, Butterworth	n-Heinem	ann, 2003			
7. CNC Machines, B. S. Pabla, M. Adithan, New Age International, 2018					
8. Manufacturing Science, Amitabh Ghosh and AshokKumar Mallik, Affil	iated East	t-West Press, 2010			
Strength of CO-PO Mapping					

	Strength of CO-PO Mapping											
		РО										
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	-	-	-	-	2	-	3	3	-	2
CO2	3	3	3	-	3	1	2	3	3	3	-	2
CO3	3	-	2	-	3	-	2	-	3	3	-	2
CO4	3	-	-	-	3	1	2	3	3	3	-	2
CO5	3	-	-	-	1	-	-	-	2	2	-	2
Average	3	2	3	-	3	1	2	3	3	3	-	2

Sr No	Tutorial Assignments					
1	Surface finishing, and Tapping operation by using simple programming					
2	Manufacturing of Fibre-reinforced Composites by hand lay-up process or spray lay-up techniques.	CO3				

List of Laboratory Experiments / Assignments							
Sr. No.	Sr. No. Laboratory Experiments						
1	Various machining operation job on Lathe machine including, Facing, Liner-Taper turning, Threading, Grooving etc.	CO1,CO5					
2	CNC programming for Lathe and VMC machine for Facing and Turning operation	CO2,CO4					
3	Key way preparation by using slotting machine	CO5					
	Guidelines for Termwork Assessment						

A) Tutorial Assessment : 25 Marks

- 1. After completion of the unit in class room conduct 10 marks LMS Test.
- 2. Maximum 10 questions in test and each question having 02 Marks weight age.
- 3. Total 05 LMS test having 50 Marks
- 4. Final marks for student to be converted into 5 marks.
- 5. Two Assignments 10 Marks each.

Note: If student were absent for test conduct his/her test again through LMS or Offline mode and allot the marks.

B) Term work Assessment: 25 Marks

Term work assessment shall be based on the timely completion of jobs, quality of job, skill acquired, Completion of workshop diary and brief write-ups etc.

Guideline for Term work assessment:

- 1. Each laboratory assignments will be assessed for 30 marks according to following rubrics:
 - a. R1- Timely completion of assignments (10 Marks)
 - b. R2-Understanding of assignments (10 Marks)
 - c. R3- Presentation /Clarity of journal writing (10 Marks)

Example of R1

- i) Decide the date for completion of Job/Assignment, if completion date is 14th date of month and student completed his/her job/assignment then allots the 10 Marks.
- ii) If student check/submit the job/assignment after the same date practical (14th date) and before or at the time of next practical (21st Date of month) then allots 5 marks
- iii) If students submitted or check the job/assignment after above mention date then allot 0 Marks.
- 2. For machining operation/ job preparation allot the R2 based on quality of job and understanding about tool used and its process.
- 3. For all 05 assignment/practical total marks of 150 will be converted into 50 Marks for student (Marks= 150/3)

		S.Y.B.Tech.		
		(R&A/Mechanica	l)	
		Pattern2023 Semeste	er:IV	
	230	00201D: <mark>Applied Mat</mark> l	hematics	
Teaching	Scheme:	Credit Scheme:	Examination Sch	eme:
Theory :()3hrs/week	03	Continuous	
			ComprehensiveE	
			20MarksInSem B	
			20MarksEndSem	Exam:60
Duono ant	to Compage High or Coord	www.Mothewatica	Marks	
_	siteCourses:-HigherSecond	arywainematics		
CourseO	•			
	eral solution of higher-order	linear differential equa	tion with constant &	Variable
	t using different Methods.			
_	ace transform and Fourier tr	ansform of functions us	sing definition & prop	erties & solve
-	D.E. using L.T. ze nature of vector fields, us	a different vector differ	contial operators & abl	a to avaluata
U	face & Volume integrals &		ential operators& abio	
	oundary value problems for I		t equation the wave e	quation by separation
of variable		aplace s'equation, nea	equation, the wave e	quation by separation
	ace transform and Fourier tr	ansform of functions us	sing definition & prop	erties & solve
-	D.E. using L.T			
-	utcomes:On completion of t	he course, students wil	l be able to–	
		CourseOutcomes		Bloom'sLevel
CO1	Understand basic concept Transform, Statistics, Pro		· •	2-Understanding
CO2	Calculate Laplace transfor	m, Fourier Transform,	Directional	3-Apply
	Derivative, Line Integral a	nd solution of L.D.E., l	P.D.E. using	
	different Methods.			
CO3	Apply Probability, Statisti	cal methods and vector	calculus to solve real	
	life problems			
CO4	Calculate Laplace Transfo	rm and solution of LDF	E using MATLAB	3-Apply
CO5	Analyze real life problems	by using concepts of 1	LDE, statistics,	4-Analyze
	probability and vector calc	ulus		
		COURSECONTEN	ITS	
UnitI	Transf	orms	(08hr)	COs Mapped -
				CO1, CO2,CO3
LaplaceT	`ransform(LT): LTofstandar	dfunctions, properties a	ndtheorems,InverseLT	7

Аррпса	ionof LTtosolve LDE.		
Fourier	Transform (FT): Fourier transform, Fourier	Sine &Cosinetransfor	m,InverseFourier
Transfor	ms.		
UnitII	Linear Differential Equations with Constant	(07 hrs)	COs Mapped -
	Coefficient		CO1, CO2
	nth order with constant coefficients, Method of variatic altaneous DE.	on of parameters, Cauch	y's & Legendre's
Unit	Applications of Linear Differential Equations	(07 hrs)	COsMapped
III	& Partial Differential Equations		CO1,CO2,
			CO5
concepts	g of Mass-spring systems, Free & Forced D ,methodofseparationofvariables,modelingofVibratingS onalHeat flow equations.	1 1	•
aimensio			

Measures of central tendency, Measures of dispersion: Standard deviation, Coefficient of variation, Moments, Skewness and Kurtosis, Correlation and Regression, Curve fitting: fitting of straight line,parabolaandrelatedcurves,CorrelationandRegression,ReliabilityofRegressionEstimates.Probability,P robabilitydistributions: Binomial, Poisson and Normal distributions

UnitV	Vector Calculus	(07 hrs)	COs Mapped - CO1,CO3,
			CO5

Vector differentiation, Gradient, Divergence and Curl, Directional derivative, Solenoid and Irrotational fields, Vector identities. Line, Surface and Volume integrals, Green's Lemma, Gauss's Divergence theorem and Stokes theorem.

Text Books

- 1. B. V. Ramana, "Higher Engineering Mathematics", Tata McGraw-Hill.
- 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publication, Delhi.
- 3. AdvancedEngineeringMathematics,7e,by Peter V. O"Neil (Thomson Learning)

Reference Books

1. Erwin Kreyszig," Advanced Engineering Mathematics", Wiley Eastern Ltd.

2. P. N. Wartikar and J. N. Wartikar," Applied Mathematics" (Volumes I and II), Pune Vidyarthi Griha Prakashan, Pune.

3. Advanced Engineering Mathematics, 2e, by M. D. Greenberg(Pearson Education).

	Strength of CO-PO Mapping											
		РО										
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	-	-	-	-	-	-	-	-	-	3
CO2	3	3	-	-	2	-	-	-	-	-	-	3
CO3	3	2	-	2	2	-	-	-	-	-	-	3
CO4	3	2	2	3	2	-	-	-	-	-	-	3
CO5	3	-	-	-	2	-	-	-	-	-	-	3

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation						
1	Tests on each unit using LMS	05					
	(Each test for 15 M and total will be converted out of 05 M)						
2	Problem solving through Computational Software	05					
3	Tutorial (1 tutorial on each unit for 15 marks and total will be converted	05					
	out of 05 M)						
4	Group Presentation on real life problem	05					

	Topics for Tutorial						
Sr. No.	Sr. No. Title						
1	Examples on transforms	CO1, CO2,CO3					
2	Examples on LDE of nth order with constant coefficients.	CO1, CO2					
3	Examples on Applications of LDE & PDE	CO1,CO2, CO5					
4	Examples on Statistics& Probability distributions.	CO1,CO3, CO5					
5	Examples on Vector Calculus.	CO1,CO3, CO5					

		S.Y. B.Tech		
		Semester: IV (Mechan : Fluid Mechanics And	0 0	
Teaching	g Scheme:	Credit Scheme:	Examination Sch	eme:
	:03 hrs/week	03	prehensive rksInSem EndSem	
Pre requ	uisite Courses ,if any: -Basi	cs Mechanical Propert	ies	
Course (Out comes: On completion	of the course, students w	vill be able to-	
		Course Outcomes		Bloom's Level
	Gain fundamental knowled	lge of fluid, its propertie	s, and behavior	
CO1	Under various conditions of	of internal and external f	lows.	2-Understand
CO2	Develop an understand buoyancy, and stability momentum, and energ	2-Understand		
CO3	Imbibe basic laws and dynamic fluids	d 2-Understand		
CO4	Determine the losses through pipes.	w 3-Apply		
CO5	Demonstrate hydraul operation.	eir 3-Apply		
		COURSECONTEN	TS	
Unit I	Fluid Properties and Flui	d statics	(08 hrs)	COs Mapped - CO1, CO2
compressi Fluid stat	s of fluids: Density, specific bility, vapors pressure, capil cics: Concept of fluid static pers, Hydro static forces on pl	llarity and surface tensio pressure, absolute and ga	n. uge pressures. Press	scosity, ure measurements by
Unit II	Fluid Kinematics		(07 hrs)	Cos Mapped - CO1,CO2,CO3
	nematics : Classification and (one and three dimensional o			n, continuity

Unit Fluid Dynamics III			(07 hrs)	COsMapped- CO1,CO2,CO3
		s: Equations of motion: Navier's stokes ation, flow measuring devices (venturi r		
UnitIV Analysis of Flow Through		Analysis of Flow Through Pipes	(07 hrs)	COs Mapped - CO1,CO3, CO4
gradient and min turbuler	, flow nor lo itboun	periment, laminar flow through circular through pipes, Darcy – Weisbach's ec sses of flow in pipes, Boundary laye darylayerdisplacement, energy and momen and lift forces.	uation, friction factor, r for external and int	Moody's diagram, majo ernal flows, laminar an
Unit V		Hydraulic Machines	(07 hrs)	COsMappe d- CO1,CO2,C O5
Classifi	cation	n of energy transfer, definition of in of turbines and pumps, velocity triangl turbines and pumps.	-	
		TextBo	oks	
1. Intro	oducti	on to Fluid Mechanics- Fox, Pichard, Me		
		hanics-F.M. White, TATA McGraw-Hil		
		hanics,-Dr.R.K. Bansal-Laxmi Publicati		
		hanics,-Cengel &Cimbla, TATA McGra s and Fluid Mechanics- Modi P.N. and S		Нолге
•		tals of Fluid Mechanics-Mour 1.10, and 5		
		hanics-Potter Wiggert, Cengage Learnin		<i>i</i> iu
		Reference	-	
Fluid M	Mecha	nics-Kundu, Cohen ,Dowling, ElsevierIr	ndia	
. I Tulu I				
	Mecha	nics-Chaim Gutfinger David Pnueli, Car	nbridge University pres	SS.
2. Fluid I		nics-Chaim Gutfinger David Pnueli, Car to Fluid Mechanics- Edward Shaughness	• • • •	

Gu	Guidelines for Continuous Comprehensive Evaluation of Theory Course							
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation Marks Allotte							
1	Any Three Assignments on unit-1, Unit-2, Unit-3, Unit-4, Unit-5	10						
2	Online and offline test	10						
	Total	20						

	Strength of CO-PO/PSO Mapping													
	РО								PS	PSO				
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	1	-	-	-	-	1	1	1	-	2	2	-
CO 2	3	2	1	-	-	-	-	1	1	1	-	2	2	-
CO 3	3	2	1	-	-	-	-	1	1	1	-	2	-	-
CO 4	3	2	1	-	1	-	-	1	1	1	-	2	2	-
CO 5	3	2	1	-	1	-	-	1	1	1	-	2	2	-
Avg	3	2	1	-	1	-	-	1	1	1	-	2	2	-

	S. Y. B. Tech. Pattern 2023Semester: IV (Mechanical Engineering)								
		2305213 :So	lid Mechar	nics					
Teac	ching Scheme:	Credit Scheme:		Examinatio	n Scl	neme:			
			Continuo	us Comprehe	nsive	e Evaluation:			
Theo	ry :03hrs/week	03	20Marks						
11100	ly .03115/week	05	InSem Ex	am: 20Marks	S				
	·ks								
Prereq	Prerequisite Courses, if any: -								
Engine	ering Mechanics,	Mathematics I & 1	I, Fundam	entals of Mec	chani	cal Engineering			
Course	Objectives:								
•	Understand the var	ious types of stress	es in machir	ne members					
•	Understand the bea	m theory with varie	ous load and	l support cond	lition	S			
		cept of complex st							
		sion and Buckling p		1					
		mpletion of the cou			to-				
	Course Outcome	=				Bloom's Level			
		of simple stresses	s strains fo	or the analysis	s of				
CO1	machine members	1	, suums 10	i die uluijon		3 - Apply			
CO2	Draw Shear force	and Bending Mom	ent Diagran	n		3 - Apply			
CO3		ts of Bending and S			ns	3 - Apply			
CO4		and deflection of b	_			3 - Apply			
CO5		t of Principal stress				3 - Apply			
		COURSE	CONTENT	ſS					
Unit I	Simple stresses	and strains		(8 hrs)	COs	s Mapped - CO1			
Overvie	w of Material Pr	operties, Bulk Mo	dulus. Inter	rrelation betw	veen	elastic constants,			
factor	of safety, Stress	es and strains in	n determin	ate and ind	etern	ninate structures,			
homoge	neous and compos	ite bars under conc	entrated load	ds. Thermal st	tresse	es			
TT	Shear Force and	d Bending Momen	t		00				
Unit II	Diagrams			(7hrs)	CO	s Mapped – CO2			
Shear f	orce and bending	moment diagrams	for Simply	supported &	Can	tilever beams for			
Point lo	ad, UVL, UDL &	k Couple, Maximu	im bending	moment and	posi	ition of points of			
contra f	lexure.								
Unit	Staars in Maa	L:		(7)	co	Manual CO2			
III	Stresses in Machine Elements(7hrs)COs Mapped - CO2								
Bending	g stresses : Theory	of simple bending,	flexural for	mula,	•				
Shear s	stresses: Shear str	ress distribution for	ormula & o	distribution d	liagra	ims for common			
symmet	symmetrical sections								
Unit	Slope and defle	ction of beams & I	Buckling	(71	CO	s Mapped –			
IV	of columns		_	(7hrs)	CO	2, CO3			
Slope a	nd deflection of a	leterminate beams,	Macaulay'	s method, slo	ope a	nd deflection for			
standar									

Buckling of columns: Euler's formula, Rankine's formula, safe load on columns							
Unit V	Unit V Principal stresses and strains, Torsion (7hrs) COs Mapped – CO3						
Expression	Expression for principal stresses and maximum shear stress, position of principal planes and						
planes of a	maximum shear, Graphical solution using Mohr	's circle of st	resses.				
Torsion ed	quation, Basic Numerical on Torsion Equation						
	Text Books						
1. R. K. B	ansal, "Strength of Materials", Laxmi Publication	on					
2. S. Ram	amrutham, "Strength of material", DhanpatRai	Publication					
3. S.S. Ra	ttan, "Strength of Material", Tata McGraw Hill	Publication (Co. Ltd.				
4. Punmia	and Jain, "Mechanics of Materials", Laxmi pu	blications					
5. Singer a	and Pytel, "Strength of materials", Harper and r	ow Publicatio	on				
6. R. C. H	6. R. C. Hibbeler, "Mechanics of Materials", Prentice Hall Publication						
	Reference Books						
1. Egor. P. Popov, "Introduction to Mechanics of Solids", Prentice Hall Publication							
2. Gere an	2. Gere and Timoshenko, "Mechanics of Materials", CBS Publishers						
3. Beer and Johnston, "Strength of materials", CBS Publication							

- 4. James M. Gere, "Mechanics of Materials", CL Engineering
- 5. Timoshenko and Young, "Strength of Materials", CBS Publication, Singapore

	Strength of CO-PO/PSO Mapping													
		РО								PS	0			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	2	-	-	-	-	-	-	-	-	2	2	-
CO 2	3	3	2	-	-	1	-	1	-	-	-	2	2	-
CO 3	3	3	2	-	-	1	-	1	-	-	-	2	2	-
CO 4	3	3	2	-	-	1	-	1	-	-	-	2	2	-
CO 5	3	3	2	-	-	-	-	-	-	-	-	2	2	-

G	Guidelines for Continuous Comprehensive Evaluation of Theory Course							
Sr. No.	Components for Continuous Comprehensive	Marks Allotted						
	Evaluation							
1	One Assignment on each unit	10						
2	Online or Offline Test on Each Unit	10						
	Total	20						

		S.Y. B. Tech.		
	Pattern2023	B Semester: IV (N	Iechanical Engineering)	
	2305214 : F	luid Mechanics and M	Iachines Lab	
Teachiı	ng Scheme:	Credit Scheme:	Examination Scheme	•
Practic	al: 02hrs/week	01	Term work: 25 Marks	
			Oral : 25Marks	
<u> </u>				
Prerequ	usite Courses ,if any: -			
Course	Outcomes: On completion o	f the course, students w	vill be able to-	
		Bloom's		
				Level
	Explain fundamentals of fl	uid properties, pressure	e measurement and fluid	3-Apply
CO1	statics			
	Apply governing equation	Bernoulli's Equation as	nd applications of	3-Apply
CO2	fluid momentum mechanic	s equation i.e. for Cont	inuity equation,	
02	different fluid flow			
	Analyze the losses in fluid	flow systems.		3-Apply
CO3				
	Demonstrate hydraulic mad	chines.		3-Apply
CO4				J-Apply

List	List of Laboratory Experiments (Any Eight)					
Sr. No.	Laboratory Experiments	CO Mapped				
1	Determination of pressure using manometers.	C01				
2	Determination of fluid viscosity and its variation with temperature	CO1				
3	Determination of Metacentric height of floating object	CO1				
4	Determination of Reynolds number and flow visualization of laminar and turbulent flow using Reynolds apparatus.	CO2				
5	Verification of modified Bernoulli's equation	CO2				
6	Calibration of Orifice meter / Venturimeter	CO2				
7	Determination of minor/major losses through metal/non-metal pipes	CO3				

8	Study of Impact of Jet / Turbine /Pump.	CO4						
9		CO3,CO4						
	Case study on CFD idelines for Laboratory Conduction							
		1 1 4'						
	Teacher will brief the given experiment to students its procedure, observations	calculation,						
an	d outcome of this experiment.							
2.	Apparatus and equipment's required for the allotted experiment will be provid	ed by the						
lat	assistants using SOP.							
3.	Students will perform the allotted experiment in a group (two students in each	group) under						
the	e supervision off faculty and lab assistant.							
4.	After performing the experiment students will check their readings, calculation	ns from the teacher.						
5.	After checking they have to write the conclusion of the final result.							
Gı	iidelines for Student's Lab Journal							
W	rite-up should include title, aim, diagram, working principle, procedure, observ	vations,						
gra	aphs, calculations, conclusion and questions, if any.							
Gı	idelines for Term work Assessment							
1.	1. Each experiment from lab journal is assessed for thirty marks based on three rubrics.							
2.	2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for							
	presentation/journal writing where each rubric carries ten marks.							

	Strength of CO-PO/PSO Mapping													
		РО										PS	0	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	2	-	-	-	-	1	1	1	-	2	2	1
CO 2	3	2	2	-	-	-	-	1	1	1	-	2	2	1
CO 3	3	2	2	-	-	-	-	1	1	1	-	2	2	1
CO 4	3	2	2	-	1	-	-	1	1	1	-	2	2	1
AVG	3	2	2	-	1	-	-	1	1	1		2	2	1

S. Y. B. Tech. Pattern 2023 Semester: IV (Mechanical Engineering) 2305215:Geometric Modeling and Production Drawing

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Practical: 04 hr / week	02	Term work: 50 Marks
		Practical: 50 Marks

Prerequisite Courses: - Systems in Mechanical Engineering, Engineering Graphics, Engg. Math I & II

Course Objectives:

To understand basic concepts of 3D modeling and to create geometric models and assemblies of simple engineering components. The student should be able to employ their knowledge to create more complicated models.

To read, understand and explain basic Geometric Dimensioning & tolerancing concepts.

To apply various geometric and dimension tolerances based on type of fit

To create engineering drawings, design documentation and use in manufacturing activities.

To ensure that the components of the assembly fit together properly, without excessive clearance or interference.

	Course Outcomes	Bloom's Level
CO1	READ the Industrial drawing to understand standard industrial practices.	2- Understanding
CO2	CONSTRUCT solid models, assemblies of real life components using various modeling techniques	3- Apply
CO3	APPLY geometric and dimensional tolerance, surface finish symbols in production drawing	3- Apply
CO4	Apply geometrical & dimensional tolerance using suitable software to mechanical component	3- Apply
	COURSE CONTENTS	
	Part A	
Ι	Assignment on parametric solid modeling of a machine (04hrs) component.	COs Mapped – CO1, CO2
Introdu	ction to parametric solid modeling, Introduction to the CAD software in	nterface, basic
drawing	g tools, sketching techniques, Introduction to 2D sketching techniques,	apply/modify
constra	ints and dimensions, and geometric relations in creating 2D profiles o	f the machine
compor	nent, transform the parametric 2-D sketch into a 3D solid, feature operation	18.
II	Assembly modeling of the parts modeled in Practical (04 hrs) assignment-1 using proper assembly constraint conditions and generation of exploded view for assemblies	COs Mapped - CO1, CO2
Assemt	oly modeling – defining relationship between various parts of machin	e, creation of

constraints, generation of exploded view		
III Generation of production drawings of the parts and	(04 hrs)	COs Mapped –
assembly with appropriate tolerance.		CO2, CO3, CO4
Production drawing - generation of 2-D sketches from parts	s and asse	embly 3-D model,
appropriate dimensioning, tolerancing and symbols		
Part B		
I Assignment I : Limits Fits and Tolerances	(06hrs)	COs Mapped –
Assignment II : Calculation of Tolerances based on		CO1,CO3
Type of Fits in Assembly		
Limits, Fits, Dimensional Tolerances, Geometric Tolerances, calo	culate toler	ances based on the
type of fit required for an assembly.		
II Study and reading of Industrial Drawings to understand	(06 hrs)	COs Mapped –
standard industrial procedure		CO4, CO5
Assignment III : Study and use of geometrical		
tolerances in production drawing		
Assignment IV: Student has to draw a A2 size drawing	7	
sheet for a mechanical component, including dimensional		
and geometrical tolerances.		
Assignment V: Student has to show tolerances and fits in		
production drawing using suitable software for any	r	
mechanical system.		
Introduction to ASME Y14.5-2018, straightness, perpendicularity,		• •
roundness, concentricity, cylindricity, runout, profile, true position	, parallelis	m, orientation, GD
&T, Surface finish, Welding symbols		
Text Books		
I. Bhatt, N. D. and Panchal, V. M., (2014), "Machine Drawing", C Ltd, Anand, India, ISBN-13: 978-9385039232	Charotar Pu	blishing House Pvt.
2. Ajeet Siingh, " Machine Drawing", Mc Graw Hill Publications, 1	New Delhi	2012
3. Narayana, K. L., Kannaiah, P., Venkata Reddy, K., (2016), "M		
New Age International Publishers, New Delhi, India, ISBN-13: 978	-81224405	46
4. Chang, Kuang-Hua, (2015), "e-Design: Computer-Aided En Press, ISBN-13: 978-0123820389	gineering	Design", Academic
Reference Books		
I. Cogorno, G. R., (2020), "Geometric Dimensioning and Toleration	ncing for N	Aechanical Design".
Brd edition, McGraw-Hill Education	U U	C
2. Blokdyk, Gerardus, (2019), "Geometric Dimensioning and Tol	erancing: A	Complete Guide
2020 Edition", 5STARCooks	-	_
Codes / Handbooks		
Standards: ASME Y14.5 – 2018		
Standards: ISO/TR 23605:2018, ISO 1101:2017, SP 46, IS 15054(2	.001)	
e resources		
e resources		

1 https://geotol.com/resources/

2 https://www.sae.org/learn/professional-development/gdt

Useful websites / Video

1 <u>https://nptel.ac.in/courses/112/102/112102102/</u>

2 https://nptel.ac.in/courses/112/103/112103019/

3 https://nptel.ac.in/courses/112/106/112106179/

4 <u>https://youtu.be/0IgOapAtauM</u>

5 <u>https://youtu.be/aS9OgYadjpY</u>

		Strength of CO-PO/PSO Mapping														
						Р	O							PSO		
Strength	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
Of CO																
CO 1	3	2	-	-	-	-	-	1	-	2	-	2	-	2		
CO 2	3	2	-	-	3	-	-	-	-	2	-	2	-	2		
CO 3	3	2	-	-	-	-	-	-	-	2	-	2	-	2		
CO 4	3	2	-	-	3	-	-	1	-	2	-	2	-	2		
Avg	3	3	-	-	3	-	-	1	-	2	-	2	-	2		

	Guidelines for Tutorial / Termwork Assessment	
Sr. No.	Components for Termwork Assessment	Marks Allotted
1	Assignment on Geometric Modeling	20
2	Assignments on Production Drawing (Each assignment carries	30
	30marks)	
	R1- Timely completion of assignments (10 Marks)	
	R2- Understanding of assignment (10 Marks)	
	R3 – Presentation/Clarity of journal writing (10 Marks)	
	For all 5 Assignment total marks will be converted into 30 Marks.	
	Practical Exam	
Sr. No.	Components for Practical Exam	Marks Allotted
1	Geometric Modeling	40
2	Production Drawing (One numerical on Tolerance Calculation)	10

	Pattern 20	S.Y. B. Tech. 23 Semester IV (Mechanica	l Engineering	;)				
		2305216:Machine Intellige						
Teaching Sc	heme:	Credit Scheme:	Examination	Examination Scheme:				
Theory:03 H	Irs/week	03	Evaluation In Sem Exa	Continuous Comprehensive Evaluation:20Marks In Sem Exam: 20 Marks End SemExam:60 Marks				
Prerequisite	Courses:-Engineer	ring Mathematics, Linear Alg	ebra, Probabili	ty, Bas	ic Statistics			
 APPI APPI APPI DEM essen EXPI 	ERSTAND the fund LY Feature Extraction LY fundamental of constract the all CONSTRATE the all tial steps, emphasiz	damentals of Artificial Intellig on and Selection techniques to classification and regression a pility to develop machine lead ing practical application in me of reinforced and deep learnin on of the course, students wil	o process datas lgorithms. rning models l echanical engin ng, digital twin	ets. by outlineering	ining and executing contexts.			
		Course Outcomes			Bloom's Level			
CO1	APPLY fundame Machine Learning	ental principles of Artificia g.	l Intelligence	and	2-Understanding			
CO2	EXPLORE eme problems using M	rging technologies in so lachine Learning.	lving engine	ering	2-Understanding			
CO3	APPLY feature e the given dataset	extraction and selection techn	iques to prepro	ocess	3-Apply			
CO4		E classification and regression nical engineering, enabling the solutions			3-Apply			
CO5		hine learning models, to nanical engineering by follow s.		-	4-Analyze			
	•	COURSECONTEN	NTS					
UnitI	Introduction	to AI & ML	(08 hrs)	COs	Mapped -CO1			
learning Bass and manipul Ethical consi to Machine	ics of AI: Reasoning ation. Approaches derations in AI, Soc Learning.	and history of AI, Compariso g, Knowledge representation, to AI: Cybernetics and brain cietal Impact and Responsible earning, Unsupervised learnin	Planning, Lea n simulation, AI	rning, F Symbol	Perception, Motion lic, Sub-symbolic, Introduction			
UnitII	es to ML: Supervised learning, Unsupervised learning, Reinforcement learning. Feature Engineering (07 hrs) Cos Mapped –CO3							

Feature selection: Filter Method, Wrapper Method, Embedded Methods, Greedy forward & backward methods, feature Ranking techniques, Decision tree

Feature extraction: Statistical features, Principal Component Analysis. (Numerical based on Statistical features and PCA)

UnitIII	Machine Learning Algorithms	(07 hrs)	Cos Mapped –CO4						
Classification:	Classification: Decision tree- Entropy reduction and information gain, Random Forest, Naive Bayes,								
Support vector	machine. (Numerical based on Decision tree using	ng IG and Ba	ys theorem only)						
Regression: L	ogistic Regression, K-Means, K-Nearest Neigh	nbor (KNN),	Time series forecasting						
Algorithms (Al	RIMA, SARIMA, LSTM)								
Unit IV	Development of Machine Learning	Development of Machine Learning (07 hrs) COs Mapped – C							
	Model		CO5						
Problem identi	fication: classification, clustering, regression, r	anking. Steps	s in ML modeling, Data						
Collection, Da	ta pre-processing, Model Selection, Model train	ning (Training	g, Testing, K-fold Cross						
Validation), pa	rameters for Model evaluation of classification	and regressio	on algorithms (confusion						
matrix, Accuracy, Precision, Recall, True positive, false positive etc.), Hyper parameter Tuning.									
Introduction to	Introduction to Artificial Neural Network, Convolution Neural Network.								
Unit V	Introduction to Emerging Technologies								

Characteristics of reinforced learning Algorithms: Value Based, Policy Based, Model Based; Positive vs Negative Reinforced Learning Models, Markov Decision Process, Deep Learning, Introduction to digital twin (Definition, Components, Characteristics, Applications) and basics of Transfer Learning. Application of Artificial Intelligence and Machine Learning

Text Books

1. B Joshi, Machine Learning and Artificial Intelligence, Springer, 2020.

2. Parag Kulkarni and Prachi Joshi, "Artificial Intelligence – Building Intelligent Systems", PHI learning Pvt. Ltd., ISBN – 978-81-203-5046-5, 2015

ReferenceBooks

1. Stuart Russell and Peter Norvig (1995), "Artificial Intelligence: A Modern Approach," Third edition, Pearson, 2003.

2. Solanki, Kumar, Nayyar, Emerging Trends and Applications of Machine Learning, IGI Global, 2018.

3. Mohri, Rostamizdeh, Talwalkar, Foundations of Machine Learning, MIT Press, 2018.

4. Kumar, Zindani, Davim, Artificial Intelligence in Mechanical and Industrial Engineering, CRC Press, 2021.

	Strength of CO-PO Mapping															
00		РО														
CO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2		
CO1	3	3	1	-	-	2	-	1	-	-	-	2	-	-		
CO2	3	-	1	2	-	2	-	-	2	2	-	2	-	-		
CO3	3	3	1	2	-	-	-	-	2	2	-	2	2	-		
CO4	3	3	2	2	-	-	-	-	2	2	-	2	2	-		
CO5	3	3	2	2	-	-	-	-	2	2	-	2	2	-		

	Guidelines for Continuous Comprehensive Evaluation of Theory Course							
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation							
		Allotted						
1	Assignment on each unit	10						
2	Test (Online/Offline) on each unit	10						

Patterr	S.Y. B. Tech a 2023 Semester: IV Mee 2305217:Machine Intel	chanical Engineering					
Teaching Scheme:	hing Scheme: Credit Scheme: Examination Scheme:						
Practical:02hrs/week	01	Term work:25 Marks					
		Oral:25 Marks					
Prerequisite Courses:-Eng	gineering Mathematics, Lin	ear Algebra, Probability, Basic Statistics					
Course Objectives:							
1. UNDERSTAND th	e fundamentals of Artificial	Intelligence and Machine Learning.					
2. APPLY Feature Ex	traction and Selection techr	iques to process datasets.					
3. APPLY fundament	al of classification and regre	ession algorithms.					

- 4. DEMONSTRATE the ability to develop machine learning models by outlining and executing essential steps, emphasizing practical application in mechanical engineering contexts.
- 5. EXPLORE the concepts of reinforced and deep learning, digital twin and Transfer learning.

Course Outcomes: On completion of the course, students will be able to-
--

	Course Outcomes	Bloom's Level
CO1	APPLY fundamental principles of Artificial Intelligence and	2-Understanding
~~~	Machine Learning.	
CO2	EXPLORE emerging technologies in solving engineering problems using Machine Learning.	2-Understanding
CO3	APPLY feature extraction and selection techniques to preprocess	3-Apply
	the given dataset	
CO4	DEMONSTRATE classification and regression Algorithms in the	3-Apply
	context of mechanical engineering, enabling them to choose and	
	implement suitable solutions	
CO5	DEVELOP machine learning models, to address complex	4-Analyze
	problems in mechanical engineering by following systematic and	
	well-defined steps.	

	List of Experiments										
Sr.	Title	CO Mapped									
No.											
1	To Visualize and analyze the Mechanical Engineering domain dataset	CO1									
2	To Evaluate Statistical Features from given dataset	CO1, CO3									
3	To apply feature selection and Extraction techniques to given dataset	CO1, CO3, CO4									
4	To develop classification model and evaluate its performance	CO1, CO3, CO4,CO5									



5	To develop regression model and evaluate its performance	CO1, CO3, CO4, CO5
6	To Develop ANN Model and evaluate its performance	CO1, CO3, CO4, CO5
7	To Develop Deep learning model for Image-based dataset	CO1,CO2, CO4, CO5

## **Text Books**

B Joshi, Machine Learning and Artificial Intelligence, Springer, 2020. Parag Kulkarni and Prachi Joshi, "Artificial Intelligence – Building Intelligent Systems", PHI learning Pvt. Ltd., ISBN – 978-81-203-5046-5, 2015

#### **Reference Books**

Stuart Russell and Peter Norvig (1995), "Artificial Intelligence: A Modern Approach," Third edition, Pearson, 2003.

Solanki, Kumar, Nayyar, Emerging Trends and Applications of Machine Learning, IGI Global, 2018.

Mohri, Rostamizdeh, Talwalkar, Foundations of Machine Learning, MIT Press, 2018.

Kumar, Zindani, Davim, Artificial Intelligence in Mechanical and Industrial Engineering, CRC Press, 2021.

	Strength of CO-PO Mapping														
CO	РО														
CO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	
CO1	3	3	1	2	2	-	-	1	2	2	-	2	-	-	
CO2	3	3	1	2	2	-	-	1	2	2	-	2	-	-	
CO3	3	3	1	2	2	-	-	1	2	2	-	2	2	-	
CO4	3	3	1	2	2	-	-	1	2	2	-	2	2	-	
CO5	3	3	1	2	2	-	-	1	2	2	-	2	2	-	

	Guidelines for Term work Assessment									
Sr. No.										
1	Presentation in group of 2-3 students on unit No. IV and V	5								
2	Experiment(EachExperimentcarries30marks)	20								
	R1- Timely completion of assignments (10 Marks)									
	R2- Understanding of assignment (10 Marks)									
	R3 – Presentation/Clarity of journal writing (10 Marks)									
	For all Experiments total marks will be converted into 20 Marks.									



		Second Year B. Tech.			
	Pattern: 2023	Semester: IV (Mechan	nical Engir	neering	)
	2305218: Industrial	Psychology and Organ	izational B	Behavio	ur
Teachin	ng Scheme:	Credit Scheme:	Examin	ation S	cheme:
	02 hr / week	02		CCE	E: 50
	site Courses: - Industrial Ma	anagement, Professional	Ethics		
Course (	Objectives:				
	o align the students to the a ganizational workplace.	pplication of principles	s of psycho	ology in	an industrial a
	o demonstrate the understar ays to handle it.	ding of job requiremer	nt and rela	ted fati	gue, boredom a
	o develop the insights in nprovement strategies.	to performance manag	gement an	id unde	erstanding relat
	o have an understanding of h leadership, power, commun	0,		-	e
	o develop the expertise to un ganizational development.	derstand the organizatio	onal culture	, change	e management a
	С	ourse Outcomes			Bloom's Leve
CO1	Understand the importance	e of psychology in indus	stry, various	8	2- Understand
	aspects of team, leadership	and conflict managemer	nt and		
CO2	organizational behavior. <b>Discuss</b> the organizational of	ultura Theories and un	doratonda		2- Understand
02	organizational development		iuerstanus		2- Understand
CO3	<b>Demonstrate</b> fundamental		and scope of	f	3- Apply
005	industrial -organizational p	-	-	1	⁵ ¹ <b>PP</b> ¹
<b>CO4</b>	<b>Illustrate</b> the industrial fati			the job	3- Apply
	satisfaction				
		COURSE CONTENTS			-
	(				COs Mapped -
I	(	COURSE CONTENTS l Psychology		5 hrs)	
I	Industria	l Psychology	(0		CO1, CO3
I	Industria Etion to Industrial Psycholog	<b>l Psychology</b> gy, Brief History of Inc	(0 dustrial Psy	cholog	CO1, CO3 y, Nature, Scop
I Introduc and Pro	Industria Etion to Industrial Psychology blems, psychology as a scie	l Psychology gy, Brief History of Inc ence and areas of appli	(0 lustrial Psy cations, In	/cholog dividua	CO1, CO3 y, Nature, Scop l differences an
I Introduc and Pro their eva	Industria Etion to Industrial Psycholog blems, psychology as a scie aluation, Role of heredity an	<b>I Psychology</b> gy, Brief History of Inc ence and areas of appli d environment, study of	(0 dustrial Psy cations, In f behavior	cholog dividua and stin	CO1, CO3 y, Nature, Scop l differences an nulus to respons
I Introduc and Pro their eva behavior	Industria Etion to Industrial Psychology blems, psychology as a scie	<b>I Psychology</b> gy, Brief History of Inc ence and areas of appli d environment, study of	(0 dustrial Psy cations, In f behavior	cholog dividua and stin	CO1, CO3 y, Nature, Scop l differences an nulus to respons
I Introduc and Pro their eva behavior	Industria Industrial Psycholog blems, psychology as a scie aluation, Role of heredity an r, Types of individual di	<b>I Psychology</b> gy, Brief History of Inc ence and areas of appli d environment, study of	(0 dustrial Psy cations, In f behavior a managemer	vcholog dividua and stim nt and	y, Nature, Scop l differences an nulus to respons
I Introduc and Pro their eva behavior	Industria Industrial Psycholog blems, psychology as a scie aluation, Role of heredity an r, Types of individual di rne Studies	<b>I Psychology</b> gy, Brief History of Inc ence and areas of appli d environment, study of	(0 dustrial Psy cations, In f behavior managemer	cholog dividua and stin	CO1, CO3 y, Nature, Scop l differences an nulus to respons it's limitations COs Mapped -
I Introduc and Pro their eva behavior Hawthor II	Industria Industrial Psycholog blems, psychology as a scie aluation, Role of heredity an r, Types of individual di rne Studies	<b>I Psychology</b> gy, Brief History of Inc ence and areas of appli d environment, study of fferences, Scientific r <b>nd Industrial Boredon</b>	(0 dustrial Psy cations, In f behavior a managemer <b>n</b> (0	ycholog dividua and stim and and 5 hrs)	CO1, CO3 y, Nature, Scop l differences an nulus to respons it's limitation COs Mapped - CO1, CO3, CO



Fatigue	Contents, Fatigue Symptoms, Industrial Studies on Fatigue.	Causes an	d Remedies of								
-	Fatigue, Effects of Industrial Fatigue	, Causes an	a Remedies of								
	Boredom: Introduction, Concept and Meaning, Causes and	d Remedie	s of Boredom								
	f Boredom, Reducing Boredom	a Remeale	s of Doredoni,								
Lifeets o			COs Mapped –								
III     Organizational Behavior and Group Behavior     (05 hrs)     (05 hrs)       CO1, CO2, CO3											
Concept of organization & organizational behavior, Organizational structure, factors affecting											
behavior	in organizations										
Group Be	chavior: Groups: Concept and Classification, Stages of Gro	up Develo	pment, Group								
Structure	, Roles and Norms, Premise and Issues. Group Decision-M	aking: Gro	up vs Individual,								
Groupthi	nk and Groups Shift, Group Decision Making Techniques a	and Process	5								
Team wo	rk: meaning, concept, types, creating, an effective team										
Leadersh	ip: Functions and approaches; trait, behavioral and conting	ency mode	els; characteristics								
of succes	sful leaders; role of power in leadership										
		(05  hrs)	COs Mapped –								
IV	IV Organizational Culture (05 hrs)										
Organiza	tional Culture: Concept, Dominant Culture, Strong vs Wea	k Cultures,	Creating and								
Sustainin	g Culture, Employees Learning of the Culture, Creati	ng a Cust	comer-Responsive								
Culture.											
-	tional theory and development:										
-	tional Theory: Classical Organizational Theory, Humanisti	c Theory, 0	Open-System								
Theory											
V	<b>Organizational Development</b>	(04 hrs)	COs Mapped – CO1, CO2								
Organiza	tional development: Need, models of Organization	al change	, Organizational								
developn	nent interventions										
Organiza	tional Changes: Concept and Forces for Change, M	anaging P	lanned Changes,								
Resistance	e to Change, Approaches to Manage Organizational Chang	ge									
	Text Books										
	Bisen and Priya, Indistrial Psychology, New Age Publication										
	Aamodt, Organizational/ Industrial Psychology, Wadswor	th Cengag	e Learning,								
2010											
	s, S.P. Organizational Behaviour. Prenctice-Hall, latest edit										
	, P.E. Industrial and Organizational Psychology: Research	and Practic	e. International								
	ersion. Latest Edition. Wiley.										
	. & Newstrom J.W., Human Behaviour at work, Mcgraw H		tional, 1985								
	P. Robbin & Seema Sanghi, Organizational behavior, Pear	rson, 2011									
/. L.M. Pr	asad, Organizational behavior, S Chand & sons										
1 D1 -	<b>Reference Books</b>	<u></u>									
	I.L. Naylor J.C., Horper & Row, Industrial Psychology, CE		er								
2. Luthans	Fred, Organizational Behaviour, McGraw Hill Internation	ai.									
	C.t., King R.A., John Rweisz & John Schoples, Introduction		alagy Matter								



Hill, 1966.

4. Schermerhorn J.R.Jr., Hunt J.G &Osborn R.N., Managing, Organizational Behaviour, John Willy.

5. Arnold J., Robinson, Iran, T. and Cooper, Cary L, Work Psychology, Macmillan IndiaLtd.

6. Muchincky (2009). Psychology applied to work. New Delhi: Cengage.

7. Griffin, Ricky W: Organizational Behaviour, Houghton Mifflin co., Boston.

8. Ivancevich; John and Micheeol T. Matheson, Organizational Behaviour and Management, Tata McGraw-Hill, New Delhi.

9. Newstrom, John W. and Keith Davis: Organizational Behavior: Human Behavior at Work, Tata McGraw-Hill, New Delhi.

	PO	РО	PO	PO	РО	PO	PO	PO	PO	PO	РО	РО	PSO	PS
	1	2	3	4	5	6	7	8	9	10	11	12	1	O2
2305219.1	1	-	-	-	-	2	2	2	2	-	2	1	-	-
2305219.2	1	-	-	-	-	2	2	2	-	-	1	1	-	-
2305219.3	1	-	-	-	-	2	2	2	-	-	1	1	-	-
2305219.4	1	-	-	-	-	2	2	2	-	-	1	1	-	-
Avg.	1	-	-	-	-	2	2	2	2	-	1	1	-	-
Level	1	-	-	-	-	2	2	2	2	-	1	1	-	-

### Program Outcome (PO) and Program Specific Outcome (PSO) 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)



	Pattern 2023	S. Y. B. Tech. Semester: IV (Mechan	iical Engineering)						
	2305219 :	Democracy Election and	d Governance						
Teachin	g Scheme:	Credit Scheme:	Examination Sche	me:					
Tutorial :02 hrs/week     02     Tutorial : 50 Marks									
Prerequi	site Courses, if any: -Social	Sciences							
		Course Objectives							
l To intro	oduce the students meaning o	f democracy and the role	of the governance						
	them understand the various			overnance					
Course	Outcomes: On completion o	f the course, students wil	ll be able to-						
		Course Outcomes		Bloom's Level					
CO1	Understand the concepts of social, economic and political democracy								
CO2	Analyse the rights and dut	ties specified under the C	Constitution of India	3-Apply					
CO3	Apply constitutional values to ensure just, equitable and secure								
CO4	Develop an understanding life through introduction to via constitutional amendm	the concepts of decentration	• •	3-Apply					
CO5	Analyze the effectiveness through exposure to gover	•	and programmes	4-Analyze					
		COURSE CONTENT	TS						
Unit I	Democracy- Foundation and Dimensions, Elections		, ,	COs Mapped - CO1					
Evolution	on of India of Democracy- Different M ns of Democracy- Social, Ec		1						
Unit II	Decentralization			COs Mapped - CO1, CO2					
Histo	an tradition of decentralizatio ory of panchayat Raj instituti and 74 th amendments		ice period						



Unit	Governance	(08 hrs)	COs Mapped -				
III			CO1, CO2,CO3				
Mea	ning and concepts						
Gove	ernment and governance						
inclusion	and exclusion						
	Text Books						
E	Banerjee-Dube, I. (2014). A history of modern Ind	lia. Cambridge Unive	rsity Press.				
E	Basu, D. D. (1982). Introduction to the Constitution	on of India. Prentice H	Iall of India.				
E	Bhargava, R. (2008). Political theory: An introduc	tion. Pearson Educati	on India				
	Reference Boo	bks					
1 G	uha, R. (2007). India After Gandhi: The Histo	ory of the World's	Largest. Democracy,				
	erCollins Publishers, NewYork.						
Harp	,						
-	Guha, R. (2013). Gandhi before India. PenguinUK						

	Strength of CO-PO/PSO Mapping														
Strength	РО												PS	0	
of COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO 1	-	-	-	-	-	3	-	3	3	2	-	-	-	-	
CO 2	-	-	-	-	-	3	-	3	3	2	-	-	-	-	
CO 3	-	-	-	-	-	3	-	3	3	2	-	-	-	-	
CO 4	-	-	-	-	-	3	-	3	3	2	-	-	-	-	
CO 5	-	-	-	-	-	3	-	3	3	2	-	-	-	-	
Avg	-	-	-	-	-	3	-	3	3	2	-	-	-	-	

Guidelines for Continuous Comprehensive Evaluationof Theory Course								
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation Marks Allottee							
1	One Assignments on Unit-1, Unit-2, Unit-3	30						
2	Oral Presentation	20						
	Total	50						



	S. Y. B. Tech.						
Pattern 2023 Semester: IV (Mechanical Engineering)							
	2305220 : Soft Ski	lls					
Teaching Scheme:	Credit Scheme:	Examination Scheme:					
Tutorial : 1hr/week	01	Tutorial : 25 Marks					
Practical: 02hrs/week	01	Term work: 25 Marks					
Prerequisite Courses, if any: Co							
Course Objectives:							

1. To highlight the need to improve soft skills among engineering students so as to become good professionals.

2. To facilitate a holistic development of students by enhancing soft skills.

3. To develop and nurture the soft skills of the students through individual and group activities.

4. To expose students to right attitudinal and behavioural aspects and assist in building the same through activities.

Course Outcomes: On completion of the course, students will be able to-

	Course Outcomes							
CO1	CO1 Develop effective communication skills including Listening, Reading, Writing and Speaking							
CO2	Practice professional etiquette and present oneself confidently.	3-Apply						
CO3	Function effectively in heterogeneous teams through the knowledge of team work, Inter-personal relationships, conflict management and leadership quality.	3-Apply						
CO4	Use Time management and Stress management skills.	3-Apply						
CO5	Constructively participate in group discussion, meetings and prepare and deliver Presentations.	3-Apply						

COURSE CONTENTS									
Unit I	Communication Skills(4 hrs)COs Mapped- CO1, CO2, CO5								
Importance of communication, Barriers in communication and how to overcome these barriers,									
Significance of non-verbal messages as augmentation to verbal communication, Group Discussion,									
Listening Vs Hearing, Reading to comprehend, Learning to skim and scan to extract relevant information									
Unit II	Unit IITeam building and Team work(2 hrs)COs Mapped- CO3, CO5								
Team building, Team Work, Skills needed for Team Work, Aspects of Team building, Model of Team									
building, R	ole of a Team leader, Intergroup collabora	tion							
Unit III	IIIEtiquettes and manners(2 hrs)COs Mapped- CO2								
Corporate grooming and dressing, Email and Telephone etiquettes, Etiquettes in social and office setting									
Unit IVTime management(2 hrs)COs Mapped- CO4									
The 80-20 rule, Features of time, Time management matrix, Successful time management, Difficulties in									
time management, Time wasters, Time savers									



Unit V	Stress management	(2 hrs)	COs Mapped- CO4
a E			

Stress, Eustress, Distress, Effects of stress, Kinds of stress, Sources of stress, Behaviour identified with stress, Signs of stress

	List of Laboratory Experiments								
Sr. No.	I	COs Mapped							
1	Literature Survey	Student should read research papers and write the Literature Survey	CO1						
2	Story telling / Case Study	Every student will get 5 minutes, to share a fictional or real life story related to technology.	CO1,CO2						
3	Group activity/Teamwork activity	The batch will be divided into groups of 4-5 students. For each group same activity (like preparation of drama, skit, play etc.) will be assigned. Maximum 30 minutes should be given to each group, simultaneously, to plan the activity. After 30 minutes, every group will get 10 minutes to present their work. At the end, there will be discussion between teacher and students, about things necessary for successful Teamwork, problems faced by students during teamwork etc.							
4	Presentation Skills	Every student will have to choose a topic of his/her choice and make a 10-minute presentation using audio-video aids / PPT. Every student will make presentation on either technical or non-technical topic. Focus and evaluation of each presentation should be the depth of knowledge about the topic, originality of perspective on the topic, well- researched or not, verbal and non-verbal skills and ability to answer questions effectively.							
5	Group Discussion	The batch will be divided into groups of 6-7 students for a discussion lasting 15 minutes. Topics should be provided by teachers. After each group finishes its discussion, the teacher will give critical feedback including areas of improvement. The teacher should act as a moderator / observer only	C01,C03,C05						
6	Reviewing an Editorial article	Either by using e-paper / printed copy, students have to select a recent editorial (that is non-controversial), read it and explain to the audience what the editor's perspective is							
7	Listening Skills	Listening Worksheets will be distributed among students. Each student will be given specifically designed	CO1,CO2						



		worksheets that contain blanks / matching / MCQs that are designed to an audio (chosen by the faculty). Students have to listen to the audio (only once) and complete the worksheet as the audio plays. This will help reiterate active listening as well as deriving information (listening	
		to information between the lines)	
8	Time Management	Use Pomodoro Technique. Write your experience about it. (Self study)	CO1,CO4
9	Stress Management	Discuss stress management. Ask students about, What do they do to relieve stress?	CO1,CO4
10	Swayam/NPTEL course	Every student should complete at least one Swayam / NPTEL course on Soft Skills or Personality development.	CO1,CO2,CO3, CO4,CO5

### Guidelines for Laboratory Conduction

The teacher may design specific assignments that can highlight the learning outcomes of each unit. Each activity conducted in the lab should begin with a brief introduction of the topic, purpose of the activity from a professional point of view and end with the learning outcomes as feedback from students. Most of the lab sessions can be designed to be inclusive; allowing students to learn skills experientially; which will benefit them in the professional environment. Every student must be given sufficient opportunity to participate in each activity and constructive feedback from the instructor / facilitator at the end of the activity should learn towards encouraging students to work on improving their skills. Activities should be designed to cater to enhancement of multiple skills – e.g. Team Building Activity can highlight 'open communication', 'group discussion', 'respecting perspectives', 'leadership skills', 'focus on goals' which can help students improve their inherent interpersonal skills.

### **Guidelines for Student's Lab Journal**

Each student should have a Lab Workbook (sample workbook attached) which outlines each lab activity conducted. The student must respond by writing out their learning outcomes and elaborating the activities performed in the lab., group discussion, group exercises and interpersonal skills and similar other activities/assignments.

### **Guidelines for Term work Assessment**

Continuous assessment of laboratory work is to be done based on overall performance and lab assignments and performance of student. Each lab assignment assessment will be assigned grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include- timely completion, performance, punctuality, neatness, enthusiasm, participation and contribution in various activities.

Text Books



- Gajendra Singh Chauhan, Sangeeta Sharma, "Soft Skills An Integrated Approach to Maximize Personality", Wiley India, ISBN:13:9788126556397
- Simon Sweeney, "English for Business Communication", Cambridge University Press, ISBN 13:978-0521754507

#### **Reference Books**

1. Indrajit Bhattacharya, "An Approach to Communication Skills", Delhi, Dhanpat Rai, 2008

2. Sanjay Kumar and Pushpa Lata, "Communication Skills", Oxford University Press, ISBN 10:9780199457069

3. Business Communication & Soft Skills, McGraw Hill Education.

4. Atkinson and Hilgard, "Introduction to Psychology", 14th Edition, Geoffrey Loftus, ISBN-10:0155050699, 2003.

5. Kenneth G. Mcgee, "Heads Up: How to Anticipate Business Surprises & Seize Opportunities First", Harvard Business School Press, Boston, Massachusetts, 2004, ISBN 10:1591392993

6. Krishnaswami, N. and Sriraman T., "Creative English for Communication," Macmillan

Strength of CO-PO Mapping												
	РО											
	1	1 2 3 4 5 6 7 8 9 10 11 12										
CO1	-	-	-	-	-	-	-	-	3	3	-	-
CO2	-	-	-	-	-	-	-	-	3	3	-	-
CO3	-	-	-	-	-	-	-	-	3	3	-	-
CO4	-	-	-	-	-	-	-	-	3	3	-	-
CO5	-	-	-	-	-	-	-	-	3	3	-	-