

Course Outcomes: FY 2023 Pattern

Subject1: 2300101A: Linear Algebra

	Course Outcomes	Bloom's Level
CO1	Interpret the concepts of Jacobians, rank, quadratic form, canonical	2-Understanding
	form, transformations, Eigen values, Eigen vectors and probability.	
CO2	Solve problems on linear algebra, partial derivatives and probability.	3- Apply
CO3	Apply concepts of linear algebra, differential calculus and probability to engineering problems.	3- Apply
CO4	Use computational tools for solving mathematical problems.	3- Apply
CO5	Analyze the nature of quadratic forms, extreme values of the	4 -Analyze
	function, error and approximations.	-

Subject2: 2300102A: Differential Calculus

	Course Outcomes	Bloom's Level
CO1	Explain types of differential equations, finite differences and multiple integrals.	2- Understanding
CO2	Solve problems on differential equations and multiple integrals.	3- Apply
CO3	Apply concept of numerical methods, differential and multivariate calculus to engineering problems.	3- Apply
CO4	Use computational tools for solving mathematical problems.	3- Apply
CO5	Analyze the solution of differential equations, numerical differentiation & integration and multiple integrals.	4- Analyze

Subject3: 2300103A: Applied Physics

	Course Outcomes	Bloom's Level
CO1	Describe basics of electromagnetics, advanced materials, wave optics, wave mechanics and environmental energy	1-Knowledge
CO2	Classify advanced materials, refracting crystals and solar cell	2-Understand
CO3	Explain properties of superconductors, nano-materials and matter waves	2-Understand
CO4	Calculate characteristics of electromagnetic circuits and optical devices, conductivity, efficiency of solar and wind power unit.	3-Apply
CO5	Use concepts of electromagnetic effect, semiconductors, wave optics and wave equations in real life problems	3-Apply

Subject4: 2300103B: Applied Physics

	Course Outcomes	Bloom's Level
CO1	Describe basics of mechanics, advanced materials, wave optics and environmental energy	1-Knowledge
CO2	Classify motions is kinematics, advanced materials, refracting crystals and solar cell	2-Understand
CO3	Explain properties of superconductors and nano-materials	2-Understand

CO4	Calculate parameters in kinematics, conductivity, efficiency of solar and wind power unit	3-Apply
CO5	Use knowledge of Laws of kinematics, semiconductors and wave optics in real life problems	3-Apply

Subject5: 2300104A: Applied Chemistry

	Course Outcomes	Bloom's
		Level
CO1	Describe different techniques used for chemical entities present in fluids, fuel, polymer, alloys.	1-Knowledge
CO2	Select appropriate technology involved in determination of purity and properties of material.	2- Understand
CO3	Illustrate causes and preventive measures of ill effect of hard water and corrosion	3-Apply
CO4	Analyse the fluids, fuels and selection of appropriate purification methods.	3-Apply
CO5	Compare composition of fuels, purity of water and mitigation for corrosion control	4-Analyze

Subject6: 2300105A: Fundamentals of Electrical Engineering

	Course Outcomes	Bloom's Level
CO1	Define terminologies and laws related to AC-DC circuits, machines and batteries.	1-Remember
CO2	Demonstrate the need for safety precautions and procedures, components and instruments in the laboratory.	2-Understand
CO3	Elaborate construction, working and performance characteristics of electrical machines and protective devices.	2-Understand
CO4	Solve problems on AC-DC circuits, work, power and energy using relevant laws and theorems.	3-Apply
CO5	Select appropriate machines, protective devices for a given applications.	3-Apply
CO6	Calculate and analyze transformer efficiency, regulation and LT, HT electricity bill.	4-Analyze

Subject7: 2300106A: Basic Electrical Engineering

	Course Outcomes	Bloom's Level
CO1	Define terminologies and laws related to AC-DC circuits, machines and batteries an solve numerical	1-Remember
CO2	Demonstrate the need for safety precautions and procedures, components and instruments in the laboratory.	2-Understand
CO3	Elaborate construction, working and performance characteristics of electrical machines and protective devices.	2-Understand
CO4	Select appropriate machines, protective devices for a given applications.	3-Apply
CO5	Calculate and analyze transformer efficiency, regulation and LT, HT electricity bill.	4-Analyze

Subject8: 2300107A: Fundamentals of Electronics Engineering

	Course Outcomes	Bloom's Level
CO1	Describe the working of semiconductor diodes, transistors and	2- Understand
	OpAmp.	
CO2	Explain the basics of number systems, logic gates, Boolean algebra,	2- Understand
	electronic communication system, AM, FM, cellular concepts and	
	GSM system.	
CO3	Apply the knowledge of semiconductor diodes, transistors and	3-Apply
	OpAmp in realization of basic analog circuits.	
CO4	Apply the knowledge of number systems, logic gates and Boolean	3-Apply
	algebra in realization of basic digital circuits.	
CO5	Analyze the basic analog and digital application circuits.	4-Analyze
i		1

Subject9: 2300108A: Programming in C

	Course Outcomes	Bloom's Level
CO1	Illustrate algorithm, flowchart for a given problem	2- Understand
CO2	Apply fundamentals of 'C' programming to solve a given problem	3-Apply
CO3	Build a solution for a given problem using conditional and iterative algorithmic constructs	3-Apply
CO4	Use arrays and functions in developing programs	3-Apply
CO5	Develop program using structure	3-Apply

Subject10: 2300109A: Programming in C++

	Course	Bloom's Level
	Outcomes	
CO1	Illustrate Object Oriented Programming concepts to solve various computing roblems using C++	2-Understand
CO2	Apply the concept of Inheritance for reusability of a class	3-Apply
CO3	Apply Polymorphism to build a solution	3-Apply
CO4	Use template and e ception handling in a given problem	3-Apply
CO5	Use files for developing a program	3-Apply

Subject11: 2300110A: Engineering Drawing

COs	Course Outcomes	Bloom's Level
CO1	Explain the need of engineering drawing and its standards.	2-Understand
CO2	Interpret engineering drawing by visualization.	2-Understand
CO3	Draw projections of 2D and 3D objects.	3-Apply
CO4	Apply manual and computerized graphical tools to solve practical problems.	3-Apply

Subject12: 2300111A: Workshop Practice

	Course Outcomes	Bloom's Level
CO1	Select appropriate machine and cutting tools for a given application	1- Remember
CO2	Describe the process and programming methods for CNC machines and 3D printing	2-Understand
CO3	Apply the basic knowledge of Shop Floor Safety, Machine tools and Manufacturing processes.	3-Apply
CO4	Fabricate the simple mechanical parts	3-Apply

Subject13: 2300112A: Communication Skills

Ū	Course Outcomes	Bloom's Level
CO1	Develop effective communication skills including Listening, Reading, Writing and Speaking	3-Apply
CO2	Practice professional etiquette and present oneself confidently.	3-Apply
CO3	Function effectively in heterogeneous teams through the knowledge of team work, Inter-personal relationships, conflict management and leadership quality.	3-Apply
CO4	Evaluate oneself by performing SWOC Analysis to introspect about individual's goals and aspirations.	4-Evaluate
CO5	Constructively participate in group discussion, meetings and prepare and deliver Presentations.	4-Evaluate

Subject14: 2300113A: Engineering Mechanics

	Course Outcomes	Bloom's Level
CO1	Select appropriate method to solve problems on rigid bodies.	1 - Remember
CO2	Extend the concepts of engineering mathematics and trigonometry for analyzing structures.	2 - Understanding
CO3	Construct the free body diagram and correlate active and reactive forces.	3 - Applying
CO4	Determine centroid and moment of inertia of plane lamina.	3 - Applying
CO5	Apply the concept of work, power, energy and impulse- momentum to solve engineering problems.	3 - Applying

Subject15: 2300114A: Fundamentals of Mechanical Engineering

	Course Outcomes	Bloom's Level
CO1	Explain the basic concepts of IC engine, thermodynamics and smart manufacturing.	2- Understand
CO2	Identify various components of electric and hybrid vehicles.	2- Understand
CO3	Apply the knowledge of laws of thermodynamics and heat transfer to heat engine, heat pump and refrigerator.	3- Apply
CO4	Calculate material parameters for a given application	3- Apply
CO5	Select a suitable power transmission element for a required application.	3- Apply

Subject16: 2300115B: Engineering Explorations

	Course Outcomes	Bloom's Level
CO1	Apply principles from several disciplines.	3-Apply
CO2	Demonstrate long-term retention of knowledge and skills acquired.	3-Apply
CO3	Function effectively as a team to accomplish a desired goal.	3-Apply
CO4	Explore an Engineering Product and prepare its Mind map	4-Analysis
CO5	Enhance their learning ability to solve practical problems.	5-Synthesis