

T. Y. B. Tech. Pattern 2022 Semester: V (Mechanical Engineering) MEC223001-:Machine Design-I							
Teaching Scheme: Credit Scheme: Examination Scheme:							
Theory :03 hrs/week O3 Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks							

Prerequisites: The basics of material elastic behavior, stress, strain, its relationship, failure modes, different theories of failure and its applications. The design cycle, basis of design considerations like strength, rigidity, manufacture, assembly and cost, standards and codes. The preferred sizes and series, tolerances and types of fits. Construction of SMD and BMD. Roots of equations, Interpolation rule.

Course Objectives:

- 1. **UNDERSTAND** the various design considerations, design procedure and select materials for a specific application
- 2. CALCULATE the stresses in machine components due to various types of loads and failure
- 3. **ANALYZE** machine components subjected to variable loading for finite and infinite life
- 4. **DESIGN** various machine components such as shafts, couplings, keys, screws, joints.

Course Outcomes: On completion of the course, students will be able to—

	Course Outcomes	Bloom's Level
CO1	Determine the dimensions of simple machine elements as cotter, knuckle Joints, levers, shafts, keys and couplings under static /eccentric loading conditions.	
CO2	Calculate the various stresses in power screws and apply in its design procedure.	3-Apply
CO3	Illustrate dimensions of machine components under fluctuating loads.	3-Apply
CO4	Analyze the stresses developed on the different type of welded and threaded joints.	4-Analyze

COURSE CONTENTS

Unit I Design of Simple Machine Elements	(08 hrs)	COs Mapped -
		CO1

Factor of safety, Selection of Factor of Safety, Service factor, Design of Cotter joint, Knuckle joint, Design of hand / foot lever, lever for safety valve, bell crank lever, Design of components subjected to eccentric loading.

Unit II	Design of Shafts, Keys and Couplings	(07hrs)	COs Mapped -
			CO1

Shaft design on the Strength basis, torsional rigidity basis and lateral rigidity basis, Design of shaft as per A.S.M.E. code. Design of key and splines. Design of Rigid and Flexible Coupling.

Unit	Design of Power Screws	(07hrs)	COs Mapped –
III			CO1, CO2

Terminology of Power Screw, Torque analysis and Design of power screws with square and trapezoidal threads, Collar friction torque, Self-locking screw, Efficiency of square threaded screw, Efficiency of

self-lock	self-locking screw, Design of screw, nuts and C-Clamp. Design of screw jack,				
Unit	Design against Fluctuating loads	(07hrs)	COs Mapped –		
IV			CO3		

Stress concentration and its factors, Reduction of stress concentration factors, fluctuating stresses, fatigue failures, endurance limit, S-N curve, Notch sensitivity, Endurance limit, Endurance strength modifying factors, Reversed stresses – Design for Finite and Infinite life, Cumulative damage in fatigue failure, Soderberg, Gerber, Goodman Lines, Modified Goodman diagrams.

Unit V	Threaded and Welded joints	(07hrs)	COs Mapped –
			CO1,C04

Introduction to threaded joints, Bolts of uniform strength, locking devices, eccentrically loaded bolted joint in shear, Eccentric load perpendicular and parallel to axis of bolt, Eccentric load on circular base. Introduction to welded joints, Strength of butt, parallel and transverse fillet welds, Axially loaded unsymmetrical welded joints, Eccentric load in plane of welds, Welded joints subjected to bending and torsional moments.

Text Books

Text Books:

- 1. Bhandari V.B., Design of Machine Elements, Tata McGraw Hill Publication Co. Ltd.
- 2. Shigley J.E. and Mischke C.R., Mechanical Engineering Design, McGraw Hill Publication Co. Ltd.

- 1. Spotts M.F. and Shoup T.E., Design of Machine Elements, Prentice Hall International.
- 2. Juvinal R.C., Fundamentals of Machine Components Design, John Wiley and Sons.
- 3. Black P.H. and O. Eugene Adams, Machine Design, McGraw Hill Book Co. Inc.
- 4. Willium C. Orthwein, Machine Components Design, West Publishing Co. and Jaico Publications House.
- 5. Hall A.S., Holowenko A.R. and Laughlin H.G, Theory and Problems of Machine Design, Schaum's Outline Series.
- 6. C. S. Sharma and Kamlesh Purohit, Design of Machine Elements, PHI Learing Pvt. Ltd.
- 7. D. K. Aggarwal & P. C. Sharma, Machine Design, S.K Kataria and Sons.
- 8. P. C. Gope, Machine Design: Fundamentals and Applications, PHI Learing Pvt. Ltd.
- 9. Design Data P.S.G. College of Technology, Coimbatore.
- 10. K. Mahadevan, K. Balveera Reddy, Design Data Handbook for Mechanical Engineers, CBS Publishers.

	Strength of CO-PO Mapping													
								PO						
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	3	3	2		2			2	2		2	2	
CO2	3	3	3	2		2			2	2		2	2	
CO3	3	2	3						2			2		
CO4	3	3	3	2		2			2	2		2	2	
Average	3	3	3	2		2			2	2		2	2	

Guidelines for Continuous Comprehensive Evaluationof Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Assignments on each Unit	10		
2	Online/ offline Test on Each Unit	10		
	Total	20		

T. Y. B. Tech. Pattern 2022 Semester: V (Mechanical Engineering) MEC223002: Heat Transfer						
Teaching Scheme:	Credit Scheme:	Examination Scheme:				
Theory: 03 hrs/week	03	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks				

Prerequisite Courses: Engineering Thermodynamics, Fluid Mechanics, Applied Mathematics

Course Objectives:

- 1. Identify the important modes of heat transfer and their applications
- 2. Formulate and apply the general three dimensional heat conduction equations
- 3. Analyze the thermal systems with internal heat generation and lumped heat capacitance
- 4. Understand the mechanism of convective heat transfer
- 5. Determine the radiative heat transfer between surfaces
- 6. Evaluate the performance of heat exchanger

Course Outcomes: On completion of the course, students will be able to—

	Course Outcomes	Bloom's Level
CO1	Apply heat transfer laws and electrical analogy to analyze one dimensional Cartesian, cylindrical and spherical coordinate systems	2-understand
CO2	Analyze thermal systems with and without internal heat generation and transient heat conduction	3- Apply
CO3	Evaluate heat transfer rate in convection and radiation heat transfer	2-Understand
CO4	Apply heat transfer principles to design and estimate performance of thermal equipment's	2-Understand

COURSE CONTENTS

Unit I	Introduction to Heat Transfer	(8 hrs)	COs Mapped – CO1,
			CO2

Basic Concepts: Different Modes and Laws of heat transfer, 3-D heat conduction equation in Cartesian coordinates (with derivation), and its simplified equations, simplified equations in cylindrical and spherical coordinates (simplified equations, no derivation) thermal conductivity, thermal diffusivity, electrical analogy, Thermal contact Resistance. Boundary and initial conditions **1-D steady state heat conduction without and with heat generation:** Heat conduction without heat generation in plane wall, composite wall, composite cylinder, composite sphere. Heat conduction with heat generation in Plane wall, Cylinder and Sphere with different boundary conditions.

Unit II	Heat Transfer through	Extended Surfaces and	(8 hrs)	COs Mapped - CO2
	Transient Heat Conduct	tion		

Heat Transfer through Extended Surfaces: Types of fins and its applications, Governing Equation for constant cross sectional area fins, solution for infinitely long & adequately long (with insulated end) fins, efficiency & effectiveness of fins.

Transient heat conduction: Validity and criteria of lumped system analysis, Biot and Fourier number, Time constant and response of thermocouple, Transient heat analysis using charts.

Introduction to Two Dimensional heat conduction Unit III | Convection | (6 hrs) | COs Mapped – CO3

Introduction: Mechanism of natural and forced convection, local and average heat transfer coefficient, concept of velocity and thermal boundary layers. Dimensionless numbers and their physical significance,

Forced convection: Empirical correlations for external and internal flow for both laminar and turbulent flows.

Jet impingement cooling, Film cooling

Natural convection: Empirical correlations for natural convection.

Condensation and Boiling: Boiling heat transfer, types of boiling, pool boiling curve and forced boiling phenomenon, condensation heat transfer, film wise and drop wise condensation

Unit IV Radiation (6hrs) COs Mapped - CO3

Fundamental concepts, Spectral and total emissive power, real and grey surfaces, Stefan Boltzmann law, Plank's, Wien's, Kirchhoff's and Lambert's cosine law with simple applications, Irradiation and radiosity, Electrical analogy in radiation, Radiation shape factor, radiation heat exchange between two black and diffuse gray surfaces, radiation shield.

Unit V Heat Exchanger (8 hrs) COs Mapped - CO4

Heat exchangers: Classification and applications, heat exchanger analysis – LMTD for parallel and counter flow heat exchanger, effectiveness– NTU method for parallel and counter flow heat exchanger, cross flow heat exchanger, Fouling factor, LMTD correction factor, design criteria for heat exchanger, Introduction to TEMA standards. Introduction to heat pipe, Loop heat pipe, pulsating heat pipe and Heat wheel

Heat Transfer Enhancement techniques used in heat exchanger

Text Books

- 1. F.P. Incropera, D.P. Dewitt, Fundamentals of Heat and Mass Transfer, John Wiley.
- Y. A. Cengel and A.J. Ghajar, Heat and Mass Transfer: Fundamentals and Applications, Tata McGraw Hill Education Private Limited.
- 3. S.P. Sukhatme, A Textbook on Heat Transfer, Universities Press.
- 4. R.C. Sachdeva, Fundamentals of Engineering Heat and Mass Transfer, New Age Science.
- 5. P.K. Nag, Heat and Mass Transfer, McGraw Hill Education Private Limited.
- 6. M. M. Rathod, Engineering Heat and Mass Transfer, Third Edition, Laxmi Publications, New Delhi

- 1. A.F. Mills, Basic Heat and Mass Transfer, Pearson.
- 2. S. P. Venkatesan, Heat Transfer, Ane Books Pvt. Ltd.
- 3. Holman, Fundamentals of Heat and Mass Transfer, McGraw Hill publication.
- 4. M. Thirumaleshwar, Fundamentals of Heat and Mass Transfer, Pearson Education India.
- 5. B. K. Dutta, Heat Transfer: Principles and Applications, Prentice Hall India.
- 6. C.P. Kothandaraman, S. V. Subramanyam, Heat and Mass Transfer Data Book, New Academic Science.

(Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	Assignment on each unit	10				
2	Test (Online/Offline) on each unit	10				
	Total	20				

	Strength of CO-PO/PSO Mapping													
Strength	PO										PSO			
of Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	1	-	-	-	1	-	2	2	-	2	1	-
CO 2	3	3	2	1	-	-	-	-	2	2	-	2	2	-
CO 3	3	3	2	-	-	-	1	-	1	-	-	1	2	-
CO 4	3	3	2	1	-	-	1	-	3	2	-	3	3	
Avg	3	3	2	1	-	-	1	-	2	-	-	2	2	

K K Wagh Institute of Engineering Education and Research, Nashik

		T. Y. B. Tech. Semester: V (Mechan 3: Numerical and Stat	<u> </u>		
Teaching	ne:				
Theory :	03 hrs/week	03	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks		
_	site Courses, if any: -Syste ty, Problemsolving and prog	-	Partial differentiation, S	Statistics,	
Course (L. UNDE L. APPL B. COMI	Objectives: ERSTAND applications of system of system of system of system of the syst	tems of equations and solved integration techniques to or the experimental data.	_		
Course (UNDI APPL B. COMI I. INTE	Objectives: ERSTAND applications of system of system of system of system of system of the system of system of system of the system of	tems of equations and solved integration techniques to or the experimental data. or quantitative data. ty theory and linear algebrases.	o solve engineering appli a.		
Course (. UNDI . APPL . COMI . INTE	Dbjectives: ERSTAND applications of systy numerical differentiation and PARE the system's behavior for RPRET Statistical measures for LYZE datasets using probability	tems of equations and solved integration techniques to or the experimental data. Or quantitative data. The ty theory and linear algebrate of the course, students we course Outcomes	o solve engineering applia a. ill be able to—		
Course (. UNDF . APPL . COMI . INTEI . ANAI	Objectives: ERSTAND applications of system of system of system of system of system of the system of system of system of the system of	tems of equations and solved integration techniques to or the experimental data. The experimental data is the experimental data. The experimental data is the experimental data is the experimental data. The experimental data is the experimental data. The experimental data is the experimental data is the experimental data. The experimental data is the experimental data is the experimental data is the experimental data. The experimental data is the experimental data is the experimental data is the experimental data. The experimental data is the experimental data is the experimental data. The experimental data is the experimental data is the experimental data. The experimental data is the experimental data is the experimental data. The experimental data is the experimental data is the experimental data is the experimental data. The experimental data is the experimental data is the experimental data is the experimental data. The experimental data is the experimental data is the experimental data is the experimental data is the experimental data. The experimental data is the experiment	o solve engineering appli a. ill be able to—	cations.	
Course (. UNDF . APPL . COMI . INTE . ANAI	Dbjectives: ERSTAND applications of systy numerical differentiation and PARE the system's behavior for RPRET Statistical measures for LYZE datasets using probability Dutcomes: On completion of the control of the cont	tems of equations and solve dintegration techniques to or the experimental data. The experimental data is or quantitative data. The experimental data is the experimental data is or quantitative data. The experimental data is or quantitative data is or quantitative data. The experimental data is or quantitative data is or quantitative data. The experimental data is or quantitative d	a. ill be able to— e able to; ications using direct	Bloom's Leve	
Course (UNDI APPL COMI INTE ANAI	Dbjectives: ERSTAND applications of systy numerical differentiation and PARE the system's behavior for RPRET Statistical measures for LYZE datasets using probability Dutcomes: On completion of the completion o	tems of equations and solve dintegration techniques to or the experimental data. The experimental data is equantitative data. The theory and linear algebrates of the course, students were the learner will be one for engineering applications and integration	a. ill be able to— e able to; ications using direct techniques to solve	Bloom's Leve	
Course (CO) CO1 CO2	Dbjectives: ERSTAND applications of systy numerical differentiation and PARE the system's behavior for RPRET Statistical measures for LYZE datasets using probability Dutcomes: On completion of the completion o	tems of equations and solve dintegration techniques to or the experimental data. The experimental data is equantitative data. The theory and linear algebrates of the course, students were the learner will be consecured to engineering applications and integration interpolating techniques.	a. ill be able to— e able to; ications using direct techniques to solve s to solve engineering	Bloom's Leve 3-Apply 3-Apply	

Unit I	Solution of Equations: Algebraic, Transdental	(07 hrs)	COs Mapped -
	and Simultaneous Equations		CO1

Algebraic, Transdental Equations: Bracketing method: Bisection Method, Open End Method: Newton-Raphson Method

Simultaneous Equations: Gauss Elimination Method with Partial pivoting, Gauss Seidel Method

Unit II	Numerical Differentiation and Integration	(08 hrs)	COs Mapped -
			CO1, CO2

Ordinary Differential Equations [ODE]: Euler Method, Runge-Kutta 2nd order method, Runge-Kutta 4thorder method

Partial Differential Equations [PDE]: Finite difference method, PDE's Parabolic explicit solution, Numerical Integration (1D): Trapezoidal rule, Simpson's 1/3rdRule, Simpson's 3/8thRule

Unit	Curve Fitting and Interpolation	(07 hrs)	COs Mapped -
III			CO1, CO3

Curve Fitting: Least square technique- first order, power equation, exponential equation and quadratic equation.

Interpolation: Lagrange's interpolation, Newton's forward interpolation method

Unit	Statistics	(07 hrs)	COs Mapped -
IV			CO1, CO4

Measures of central tendency: mean, median, mode. Measurement of variability and dispersion: Standard deviation, standard error, variance, range. Measure of shape: skewness, kurtosisStatistical diagram: scattered diagram, histogram, pie charts, and measure of association between two variables. Correlation: Karl Pearson's Coefficient of correlation and its mathematical properties, Spearman's Rank correlation and its interpretations

Unit V	Probability	(07 hrs)	COs Mapped -
			CO1, CO5

Probability: Joint, conditional and marginal probability, Bayes' theorem, independence, theorem of total probability, expectation and variance, random variables. Probability distributions: Binomial, Poisson, Geometric, Uniform, Exponential, Gamma, Normal and Chi square

Text Books

- 1. Steven C. Chapra, 'Applied Numerical Methods with MATLAB for Engineers and Scientist',
- 2. Tata Mc-Graw Hill Publishing Co. Ltd.
- 3. B. S. Grewal, 'Numerical Methods in Engineering and Science', Khanna Publication.
 - B. S. Grewal, 'Higher Engineering Mathematics', Khanna Publication.

- 1. Erwin Kreyszig, 'Advanced Engineering Mathematics', Wiley India
- 2. Joe D. Hoffman, 'Numerical Methods for Engineers and Scientists', CRC Press
- 3. Sheldon M. Ross, 'Introduction to Probability and Statistics for Engineers and Scientists', 5e, by Elsevier Academic Press
- 4. Deisentoth, Faisal, Ong, 'Mathematics for machine learning', Cambridge University Press.
- 5. Kandasamy, 'Numerical methods', S Chand.
- 6. Jason Brownlee, 'Statistical Methods for Machine Learning', Machine learning Mastery.

Strength of CO-PO Mapping														
		PO									PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	3	2	-	1	2	-	-	3	2	2
CO2	3	3	2	2	3	2	-	-	2	1	ı	3	2	2
CO3	3	3	2	2	3	2	-	1	2	1	I	3	2	2
CO4	3	3	2	2	3	2	-	1	2	1	I	3	2	2
CO5	3	3	2	2	3	2	-	-	2	-	-	3	2	2
Average	3	3	2	2	3	2	-	-	2	-	-	3	2	2

(Components for Continuous Comprehensive Evaluation of Theory Course					
Sr. No. Components for Continuous Comprehensive Evaluation Marks Allotted						
1	Assignment on each unit	10				
2	Test (Online/Offline) on each unit	10				
	Total	20				

T. Y. B. Tech. Pattern 2022 Semester: V (Mechanical Engineering)									
MI	MEC223004: Heat Transfer Lab								
	Credit Scheme:	Examination Scheme:							

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Practical: 02 hrs/week	01	Term work: 25 marks
		Oral Marks: 25 marks

Prerequisite Courses, if any: - Basic Thermodynamics, Fluid Mechanics and Applied Mathematics

Course Objectives:

- 6. To use conduction concepts in analyzing thermal systems
- 7. To analyse Natural and Forced convection systems
- 8. To use radiative heat transfer concepts in analyzing thermal systems
- 9. To Evaluate the performance of heat exchanger

Course Outcomes: On completion of the course, students will be able to—

	·	
	Course Outcomes	Bloom's Level
CO1	Analyze thermal systems using concept of 1-D heat conduction	3-Apply
CO2	Analyze Natural and Forced convection systems using convection basics	3-Apply
CO3	Analyze thermal systems using concept of Radiation heat transfer	3-Apply
CO4	Evaluate the performance of heat exchanger	3-Apply

List of Laboratory Experiments (Any Eight)					
Sr. No.	Laboratory Experiments / Visit	CO Mapped			
1.	Determination of Thermal Conductivity of metal rod	CO1			
2.	Determination of Thermal Conductivity of insulating powder	CO1			
3.	Determination of Thermal Conductivity of Composite wall	CO1			
4.	Determination of heat transfer coefficient in Natural Convection	CO2, CO3			
5.	Determination of heat transfer coefficient in Forced Convection	CO2			
6.	Determination of temperature distribution, heat transfer and fin efficiency in Natural / Forced Convection	CO1,CO2, CO3			
7.	Determination of Emissivity of a Test surface	CO2, CO3			
8.	Determination of overall heat transfer coefficient, heat transfer and effectiveness of heat exchanger	CO1,CO2, CO3, CO4			
9.	Study of pool boiling phenomenon and determination of critical heat flux	CO2			
10.	Visit to any industry related to heat transfer	CO1,CO2, CO3, CO4			
11.	Analysis of any heat transfer system using suitable software				
	Guidelines for Laboratory Conduction				

- 1. Teacher will brief the given experiment to students its procedure, observations, calculations, and outcome of the experiment.
- 2. Apparatus and equipments required for the allotted experiment will be provided by the lab assistant.
- 3. Students will perform the allotted experiment in a group under the supervision of faculty and lab assistant.
- 4. After performing the experiment students will check their readings, calculations from the teacher.
- 5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, setup diagram, working principle, procedure, observations, graphs, calculations and conclusions.

Guidelines for Assessment of Practical report

- 1. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

I. Y. B. Tech.							
Pattern 2022	Semester: V (Mechanical Engineering)						
MEC223005:	Numerical and Statistical Methods Lab						

TD X7 D TD

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Practical :02 hrs/week	01	Termwork : 25 Marks Practical: 25 Marks

Prerequisite Courses, if any: -System of linear equations, Partial differentiation, Statistics, Probability, Problemsolving and programming

Course Objectives:

- 1. UNDERSTAND applications of systems of equations and solve mechanical engineering applications
- 2. APPLY numerical differentiation and integration techniques to solve engineering applications.
- 3. COMPARE the system's behavior for the experimental data.
- 4. INTERPRET Statistical measures for quantitative data.
- 5. ANALYZE datasets using probability theory and linear algebra.

Course Outcomes: On completion of the course, students will be able to-

	Course Outcomes	Bloom's
	On completion of the course the learner will be able to;	Level
CO1	APPLY system of equations for engineering applications using direct	3-Apply
CO1	and iterative numerical methods	
CO2	APPLY numerical differentiation and integration techniques to solve	3-Apply
COZ	engineering applications.	
CO3	APPLY curve fitting and interpolating techniques to solve engineering	3-Apply
CO3	applications.	
CO4	ANALY7E quantitative data using statistical technique	4-
CO4	ANALYZE quantitative data using statistical technique	
COE	DELATE the data using the concents of probability and linear electron	4-
CO5	RELATE the data, using the concepts of probability and linear algebra	

List of Practical

Term Work shall consist of:

Group A – (Any four programs using suitable programming language)

- 1. Roots of equation
- 2. Simultaneous equations
- 3. Ordinary differential equation
- 4. Partial differential equation
- 5. Numerical Integration

Group B (Any two programs for simple dataset using suitable programing)

- 6. Curve fitting using least square technique
- 7. Determine statistical measures
- 8. Probability distribution

Group C (Mandatory)

10. One program based mini project using mechanical engineering application dataset

Text Books

- Steven C. Chapra, 'Applied Numerical Methods with MATLAB for Engineers and Scientist',
- Tata Mc-Graw Hill Publishing Co. Ltd.
- B. S. Grewal, 'Numerical Methods in Engineering and Science', Khanna Publication. B. S. Grewal, 'Higher Engineering Mathematics', Khanna Publication.

- Erwin Kreyszig, 'Advanced Engineering Mathematics', Wiley India
- Joe D. Hoffman, 'Numerical Methods for Engineers and Scientists', CRC Press
- Sheldon M. Ross, 'Introduction to Probability and Statistics for Engineers and Scientists', 5e, by Elsevier Academic Press
- Deisentoth, Faisal, Ong, 'Mathematics for machine learning', Cambridge University Press.
- Kandasamy, 'Numerical methods', S Chand.
- Jason Brownlee, 'Statistical Methods for Machine Learning', Machine learning Mastery.

Strength of CO-PO Mapping														
		PO								P	SO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	3	2	-	-	2	ı	1	3	2	2
CO2	3	3	2	2	3	2	-	-	2	ı	1	3	2	2
CO3	3	3	2	2	3	2	-	-	2	1	1	3	2	2
CO4	3	3	2	2	3	2	-	-	2	1	1	3	2	2
CO5	3	3	2	2	3	2	-	-	2	ı	ı	3	2	2
Average	3	3	2	2	3	2	-	-	2	-	-	3	2	2

Pattern 2022 Semester: V (Mechanical Engineering) MEC223006A:Machining Technology					
Teaching Scheme: Credit Scheme: Examination Scheme:					
Theory :03 hrs/week	03	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks			

T. Y. B. Tech.

Prerequisite Courses, if any: -Fundamentals of Mechanical Engineering - Knowledge of Materials and their properties, Stress-Strain Diagrams, Mechanics, Gear terminology, Degree of freedom etc.

Course Objectives:

- Know about fundamentals of metal cutting process, tool wear and tool life.
- Impart the knowledge of machining phenomenon like milling, gear and thread manufacturing.
- Select, describe and perform finishing of parts using standard tools
- Understand the basic concepts, importance and functions of Jigs, Fixtures.
- Select appropriate non-conventional machining process depending upon desired output characteristics

Course Outcomes: On completion of the course, students will be able to—

	Course Outcomes	Bloom's Level
CO1	Calculate the tool life for a single-point cutting tool based on the principles and mechanics of metal cutting	3-Apply
CO2	Apply appropriate gear and thread manufacturing processes.	3-Apply
CO3	Select appropriate grinding wheel and demonstrate the various surface finishing processes	4-Analyse
CO4	Analyze and interpret engineering drawings to determine the requirements for jigs and fixtures.	4-Analyse
CO5	Select various non-conventional machining processes such as electrochemical machining (ECM), electro discharge machining (EDM), laser cutting, abrasive jet machining (AJM), and ultrasonic machining (USM).	4-Analyse

COURSE CONTENTS

Unit I	Mechanics of Metal Cutting	(08hrs)	COs Mapped -
			CO1

Introduction to metal cutting, Geometry of single-point cutting tool, Orthogonal and Oblique cutting processes, Chip formation, Types of chips, Chip thickness ratio, Process parameters and their effect on machining, chip breakers, Merchant's Circle of forces analysis – forces and energy calculations, power consumed – MRR-Effect of Cutting variables on forces, Concepts of Machinability- Factors affecting machinability, Machinability Index, Tool Life, Tool life equation of Taylor, Tool wear and its types, Factors affecting on tool life.

Unit II	Gear and Thread Manufacturing	(07 hrs)	COs Mapped -
			CO2

Introduction, Materials of gears, Methods of gear manufacturing-casting, forging, forming etc, milling of gears (indexing methods and numerical), Helical gear cutting, Gear Shaping and Gear hobbling, Gear inspection. Thread Manufacturing: Various methods of thread manufacturing, thread rolling, die threading & tapping, Thread milling, Thread grinding etc.

Unit	Grinding and Finishing processes	(07 hrs)	COs Mapped –
III			CO3

Types and Operations of grinding machines, Grinding wheel– Shapes, Designation and selection, Abrasives & classification, Bond & bonding, Grit, Grade & Structure of wheels, Types of grinding wheels, mounting of grinding wheels, Glazing and loading of wheels, Dressing and truing of wheels, Balancing of wheels, Diamond wheels. Super-finishing processes – Introduction to Honing, Lapping, Buffing and Burnishing. (Construction, working and controlling parameters)

Unit	Jigs and Fixtures	(07 hrs)	COs Mapped –
IV			CO4

Significance and purpose of jigs and fixtures and their functions in the manufacturing processes, Concept of degree of freedom, 3-2-1 principle of location. General guidelines to design jigs and fixtures, advantages of jigs and fixtures. Jigs- Definition, Elements of jig with the types, Location guidelines, Principles of clamping, Principles of guiding, Channel jig, Template jig, Plate jig, Angle plate jig, Turn over jig, Box jig, Latch type jig. Fixtures: Definition. Elements of fixtures, Location guidelines, Principles of clamping, Principles of setting element, turning fixture, welding fixture, Milling fixture, Assembly and Inspection fixtures.

Unit V	Advanced Machining Processes	(07 hrs)	COs Mapped –
			CO5

Introduction, classification of advanced machining processes. Principles, Working, Process Parameters, Estimation of MRR (simple numerical), Advantages, Limitations and Application for following processes: Electric Discharge Machining (EDM), LASER Beam Machining (LBM), Abrasive Jet Machining (AJM), Ultra Sonic Machining (USM) and Electro Chemical Machining (ECM)

Text Books

- 1. A Text Book of Production Technology, P. C. Sharma, S.Chand Publications
- 2. A Text Book of Manufacturing Technology, R. K. Rajput, Laxmi Publications (p) LTD
- 3. A Text book of Manufacturing Technology, Metal Cutting and Machine Tools, P. N. Rao, Vol. 2, 2nd edition, Tata McGraw Hill Publishing Co. Ltd, New Delhi, 2002
- 4. Elements of Workshop Technology, Vol-II, S. K. HajraChaudhary, Media Promoters & Publications Pvt Ltd.

- 1. Theory of Metal Cutting, M. C. Shaw, 1st Edition, Oxford and I.B.H. publishing, 1994
- 2. Jigs & Fixtures, P.H. Joshi, Third edition, McGraw Hill, 2017
- 3. Production Technology Manufacturing Systems VOL-I & II, R. K. Jain, Khanna Publishers
- 4. Production Technology –HMT, Tata McGraw Hill publication
- 5. Manufacturing Science, Amitabh Ghosh and AshokKumar Mallik, Affiliated East-West Press, 2010

					Stı	rength o	f CO-P	O Mapp	oing						
		PO													
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	
CO1	3	2	1	-	-	-	-	-	2	-	-	2	2	-	
CO2	3	2	-	-	-	-	-	-	2	-	-	1	2	-	
CO3	2	2	-	2	-	-	-	-	2	-	-	2	2	-	
CO4	3	2	2	2	-	2	-	-	2	-	-	2	2	-	
CO5	3	-	-	-	3	-	2	-	2	-	-	2	2	-	
Average	3	2	2	2	3	2	2	_	2	-	-	2	2	-	

Guidelines for Continuous Comprehensive Evaluation of Theory Course									
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted							
1	Assignments on each Unit	10							
2	Test on Each Unit	10							
	Total	20							

	Third Year B. Tech. Pattern 2022 Semester: VI (Mechanical Engineering)											
		Semester: VI (Mechan 06B :Energy Audit and	<i>O O</i> ,									
Teaching S	Scheme: 3 Hrs /week	Credit Scheme: 03	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks									
Prerequisi	te Courses: Thermal Engi	ineering, Fundamental of	Electrical Engineer	ring and Applied								
Thermodyn	namics											
		Course Objectives										
2. To 3. To	introduce the concepts of end understand energy audit practacquire knowledge on energy understand the financial analysis	ctices y audit of thermal and elect	rical systems									
Course Ou	itcomes: On completion o		l be able to-	Bloom's Level								
	Course Outcomes											
CO1	UNDERSTAND the energy			2-Understand								
CO2	UNDERSTAND thermal ar	nd electrical systems		2-Understand								
CO3	APPLY the concepts to eva	luate the thermal systems a	and electrical systems	· 3-Apply								
CO4	SELECT and PREPARE th	e energy conservation option	ons	3-Apply								
CO5	DEMONSTRATE understa	anding of financing decision	ns of energy audit	3-Apply								
		COURSE CONTENT	rs .									
Unit I	Energy Scenario		(08 hrs)	COs Mapped – CO1								
energy cons	nary energy reserves and consumption, energy needs of gronservation and introduction	owing economy, energy pr	icing in India, energy	security importance ECSBC codes.								
Unit II	Energy Economics		(06 hrs)	COs Mapped – CO1,CO3								
internal rate Energy Au	nomics: Simple payback peri e of return. dit: Methodology, analysis a ey diagram and specific energ	and reporting, portable and		-								
Unit III	Audit of Thermal Syster	ms	(08 hrs)	COs Mapped – CO2,CO3,CO4								
	iency calculation by direct ar raps, energy conservation op											

furnace, heat losses and energy conservation opportunities in furnace, Refrigeration and air conditioning systems, pumps, fans, D. G. set and cooling tower.

Thermal insulation, types of insulation, economic thickness of insulation.

Unit VI Audit of Electrical systems (08 hrs) COs Mapped – CO2,CO3, CO4

Demand control, billing structure, power factor improvement, benefits and ways of improving PF, load scheduling.

Electric motors: Losses and efficiency, energy efficient motors, speed control methods of motor.

Lighting: Illumination level, fixtures, timers, energy efficient illumination. Compressed air systems.

Unit V Cogeneration and Waste Heat Recovery (06hrs) COs Mapped – CO3,CO5

Cogeneration: Concept, technical options, classification of cogeneration system i.e. topping and bottoming cycle, selection criteria, applications.

Waste Heat Recovery: Introduction, classification and applications, benefits, waste heat recovery equipments i. e. recuperator, regenerator, economizer, heat wheel, heat pipe, thermo-compressor, heat pump.

Text Books

- **1.** Guide Books for National Certification Examination vol.1, 2, 3 & 4 by Bureau of Energy Efficiency (BEE) (https://aipnpc.org/Guidebooks.aspx)
- 2. Practical Energy Audit Manual, Indo German Energy Efficient Project, Tata Energy Research Institute (TERI)

Reference Books

- 1. Albert Thumann, "Plant Engineers and Managers Guide to Energy Conservation", CRC Press.
- 2. Steve Doty "Commercial Energy Auditing Reference Handbook", Third Edition, River Publishers Series, 2016
- 3. Albert Thumann; Terry Niehus; William J. Younger "Handbook of Energy Audits" River Publishers
- 4. L. Ashok Kumar, Gokul Ganesan, "Energy Audit and Management-Concept, Methodologies, Procedures, and Case Studies", CRC press, 2023

Website:

1. https://beeindia.gov.in/en/about-bee

	Strength of CO-PO/PSO Mapping														
Strength			PSO												
of Cos	1	2	3	4	5	6	7	8	9	10	11	12	2	2	
CO 1	2	1	-	-	-	2	2	-	2	-	-	2	-	-	
CO 2	3	2	-	-	1	2	2	2	2	-	-	2	2	2	
CO 3	3	2	-	-	1	2	2	2	2	-	2	2	2	2	
CO 4	3	3	2	-	2	2	2	2	2	-	2	2	2	2	
CO 5	3	3	2	-	2	2	2	2	2	-	-	2	2	2	

Avg	3	2	2	2	2	2	2	2	-	2	2	2	2

Guidelines for Continuous Comprehensive Evaluation of Theory Course											
Sr. No.	No. Components for Continuous Comprehensive Evaluation Marks Allotted										
1	Assignment on each unit	10									
2	Test (Online/Offline) on each Unit	10									
	Total	20									

T. Y. B. Tech. Pattern: 2022 Semester: V (Mechanical Engineering) MEC223006C:Design of Pressure Vessel and Piping											
Teaching Scheme:	Credit Scheme:	Examination Scheme:									
Lecture: 03hr / week	03	Insem – 20Marks Endsem – 60 Marks CCE – 20 Marks									
Prerequisite Courses: -Mathematics for Mechanical Engineers, Design Thinking, Mechanics of Material, Geometric Modeling and Production Drawing, Manufacturing Processes, Engineering Metallurgy											

Course Objectives:

- 1. Understand pressure vessel and piping fundamentals, including types, design codes, and material selection.
- 2. Apply design criteria to develop pressure vessel designs suitable for various operating conditions.
- 3. Explore advanced topics like welding, corrosion protection, and recent innovations in pressure vessel design.
- 4. Gain proficiency in piping design, including stress analysis, support systems, and compliance with standards.

	Course Outcomes			Bloom's								
				Level								
CO1	Describe fundamental principles of pressure vesse	els and pipi	ng,	2- Understand								
	including types, design codes, and material selecti	on, demons	strating									
	knowledge.											
CO2	Apply ASME standards to develop pressure vesse			3- Apply								
	operating conditions, demonstrating proficiency in											
CO3	Analyze welding techniques, corrosion protection			4 - Analyze								
	innovations in pressure vessel design, demonstrati	ence in										
	nalysis. ynthesize piping design principles, integrating stress analysis, support 4 - Analyze											
CO4												
	systems, and compliance with standards to propos		solutions.									
	COURSE CONTENT	S										
I	Introduction to Pressure Vessels	(08hrs)	COs Mapp	oed – CO1								
Overview	of pressure vessels, Types of pressure vessels, Des	sign codes a	and standard	s for pressure								
	laterial selection for pressure vessels, Stress analys			-								
II	Design of Pressure Vessels	(07hrs)	COs Mapp	oed – CO2								
Pressure v	vessel design criteria, Design considerations for d	ifferent ope	erating cond	itions, Design								
	ical pressure vessels, Design of spherical pressur	-	-	_								
supports												
III	Advanced Topics in Pressure Vessel Design	(07hrs)	COs Mapp	oed – CO3								
Welding a	nd fabrication techniques, Heat treatment, Inspect	ions, Testin	g, and Qual	ity Assurance,								
Recent Tro	ends and Innovations in Pressure Vessel Design											

IV	Introduction to Piping Design	(07 hrs)	COs Mapped – CO1								
Basics of Piping Systems, Types of Pipes and Pipe Fittings, Piping Materials and Selection											
Criteria,	Piping Layout and Routing										
V	Design of Piping Systems	(07hrs)	COs Mapped – CO4								

Pipe Stress Analysis, Pipe Support and Hanger Design, Expansion Joints and Flexibility Analysis, Piping Codes and Standards, Pipe inspection

Text Books

- 1. Bhandari V.B. —Design of Machine Elements, Tata McGraw Hill Pub. Co. Ltd.
- 2. John F. Harvey, "Theory and Design of Pressure Vessels", CBS Publishers and Distributors, 1987. 53 53
- 3. Sam Kannapan, "Introduction to Pipe Stress Analysis". John Wiley and Sons, 1985.

Reference Books

- 1. Henry H. Bedner, "Pressure Vessels, Design Hand Book", CBS publishers and Distributors, 1987.
- 2. Charles Becht IV: Process Piping: The Complete Guide to ASME B31.3, ASME Press.
- 3. Stanley, M. Wales, "Chemical process equipment, selection and Design. Buterworths series in Chemical Engineering", 1988.

Codes / Handbooks

- 1. Roy A. Parisher and Robert A. Rhea Pipe Drafting and Design, Cengage Learning. Codes / Handbooks
- 2. Design Data- P.S.G. College of Technology, Coimbatore.
- 3. I.S. 2825: Code for unfired pressure vessels.

	Strength of CO-PO/PSO Mapping													
		PO's												SO
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	3	-	3	2	3	-	2	-	-	2	2	2
CO 2	3	3	3	-	3	2	3	-	2	-	-	2	2	2
CO 3	3	3	3	-	3	2	3	-	2	-	-	2	2	2
CO 4	3	3	3	-	3	2	3	-	2	-	-	2	2	2
Average	3	3	3	-	3	2	3	-	2	-	-	2	2	2
Level	3	3	3	-	3	2	3	-	2	-	-	2	2	2

Guidelines for Continuous Comprehensive Evaluation of Theory Course										
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation Marks Allotted									
1	Assignment on each unit	10								
2	Test on each unit	10								
	Total	20								

T.Y. B.Tech. Pattern2022Semester:V(B.Tech Mechancial) MEC223007A: Machining Technology Lab

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Practical:02hrs/week	01	Termwork:25Marks Oral :25Marks

Prerequisite Courses, if any: -

Course Outcomes: On completion of the course, students will be able to—

	Course Outcomes	Bloom's Level
CO1	Calculate the tool life for a single-point cutting tool based on the principles and mechanics of metal cutting	3-Apply
CO2	Apply appropriate gear and thread manufacturing processes.	3-Apply
CO3	Analyze and interpret engineering drawings to determine the requirements for jigs and fixtures.	4-Analyse
CO4	Select various non-conventional machining processes such as electrochemical machining (ECM), electro discharge machining (EDM), laser cutting, abrasive jet machining (AJM), and ultrasonic machining (USM).	

Sr.No.	Laboratory Experiments/Assignments	CO Mapped
1	Demonstration of cutting tool geometry and nomenclature of the tools used in conventional machines.(Cutting Inserts)	CO1
2	Machining of a mechanical component using conventional machines such as lathe, drilling, milling, grinding and any additional machine tool or processes as per requirement. Manufacturing drawing with appropriate geometrical and dimensional tolerances, detailed process planning to be included.	
3	Demonstration of Milling machine for Gear Manufacturing	CO2
4	Demonstration of Additive Machining technology (from modelling to printing) (To be performed Batch-wise)	CO4
5	Demonstration of various types of jigs and fixtures, and a case study on design and use of Jigs & Fixture for any given component.	CO3
6	Visit to an Industry which uses manufacturing processes	CO4
7	Preparing Online Calculator/Catalogue for selection of cutting parameters by	CO1

using any programming languages like C, Python etc

Guidelines for Laboratory Conduction

Practical are to be performed under the guidance of concerned faculty member.

Guidelines for Student's Lab Journal

Write-up should include title, aim, and diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Term work Assessment

- 1. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.
- 3. Journal should consist of Job, appropriate write-up and shall be part of term-work submission.
- 4. Job drawing essentially consisting of Geometric Dimensioning and Tolerance.

	Strength of CO-PO Mapping													
		PO												
	1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO								PSO2					
CO1	3	3	-	-	2	-	-	-	-	-	-	-	2	-
CO2	3	-	3	-	2	-	-	-	-	-	-	-	2	-
CO3	3	3	3	-	-	-	-	-	-	-	-	-	2	-
CO4	3	-	-	-	3	-	2	-	-	-	-	-	2	-
Average	3	3	3	-	2	-	2	-	-	-	-	-	2	-

T. Y. B. Tech.									
Pattern 2022 Semester: V (Mechanical Engineering)									
MEC22300	07B Energy Audit and N	Management Lab							
Teaching Scheme:	Credit Scheme:	Examination Scheme:							
Practical :02 hrs/week 01 Term work : 25 marks									
		Oral: 25 marks							

Prerequisite Courses, if any: - Thermal Engineering, Fundamental of Electrical Engineering and Applied Thermodynamics.

Course Objectives:

- 1. Theoretical insights in Energy conservation.
- 2. Practical exposure to energy audit
- 3. Skill building in Techno economic analysis of energy systems
- 4. Exposure to Industry and sustainable development goals

Course Outcomes: On completion of the course, students will be able to—

	Course Outcomes	Bloom's Level
CO1	Report technical and economical analytical findings from case studies.	3-Apply
CO2	Analyze theoretically thermal and electrical utilities	4-Analyze
CO3	Measure and analyze energy conservation in Thermal & Electrical utilities	4-Analyze

	List of Laboratory Experiments (Any Eight)								
Sr. No.	Laboratory Experiments / Assignments	CO Mapped							
1.	Electricity bill analysis(Residential, Commercial and Industrial)	CO1							
2.	Study of Tariff policy and analysis of MERC orders	CO1							
3.	Demonstration of Energy Audit instruments	CO2, CO3							
4.	Case study of energy performance assessment of Boiler/Furnace	CO2							
5.	Case study of energy performance assessment of Air compressor/HVAC system	CO2							
6.	Case study of energy performance assessment of Transformer/fans/blowers/motors/water pumps etc.	CO2							

7.	Case study of Energy conservation recommendations with financial analysis	CO2
8.	Illumination study of Classroom/ office building/auditorium etc.	CO2, CO3
	Identifying energy saving opportunities in Educational institute/commercial establishment/Industry	CO2, CO3

Guidelines for Laboratory Conduction

- 1. Teacher will brief the given experiment to students its procedure, observations, calculation, and outcome of this experiment.
- 2. Apparatus and equipment's required for the allotted experiment will be provided by the lab assistants.
- 3. Students will perform the allotted experiment in a group under the supervision of faculty and lab assistant.
- 4. After performing the experiment students will check their readings, analysis, visit report from the teacher.
- 5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, setup diagram/layout, working principle, procedure, observations, graphs, calculations-technical and economics and conclusion.

Guidelines for Term work Assessment

- 6. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 7. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

T. Y. B. Tech.										
Pattern: 2022 Semester: V (Mechanical Engineering)										
MEC223007C:Design of Pressure Vessel and Piping Lab										
Teaching Scheme:	Credit Scheme:	Examination Scheme:								
Lecture: 02hr / week	01	Term Work – 25Marks								
		Oral – 25 Marks								

Prerequisite Courses: -Mathematics for Mechanical Engineers, Design Thinking, Mechanics of Material, Geometric Modeling and Production Drawing, Manufacturing Processes, Engineering Metallurgy

Course Objectives:

- 1. Understand pressure vessel and piping fundamentals, including types, design codes, and material selection.
- 2. Apply design criteria to develop pressure vessel designs suitable for various operating conditions.
- 3. Explore advanced topics like welding, corrosion protection, and recent innovations in pressure vessel design.
- 4. Gain proficiency in piping design, including stress analysis, support systems, and compliance with standards.

	Course Outcomes	Bloom's					
		Level					
CO1	Describe fundamental principles of pressure vessels and piping, including types, design codes, and material selection, demonstrating knowledge.	2- Understand					
CO2	Apply ASME standards to develop pressure vessel designs for diverse operating conditions, demonstrating proficiency in application.	3- Apply					
CO3	Analyze welding techniques, corrosion protection methods, and recent innovations in pressure vessel design, demonstrating competence in analysis.	4 - Analyze					
CO4	Synthesize piping design principles, integrating stress analysis, support systems, and compliance with standards to propose effective solutions.	4 - Analyze					
	COURSE CONTENTS						

Term Work shall consist of following assignments:

One Design Project on pressure Vessel:

The design project shall consist of two imperial size sheets (Preferably drawn with 3D/2D CAD software) - one involving assembly drawing with a part list and overall dimensions and the other sheet involving drawings of individual components, manufacturing tolerances, surface finish symbols and geometric tolerances must be specified so as to make it working drawing. A design report giving all necessary calculations of the design of components and assembly should be submitted.

Each student shall complete any two of the following assignments.

- 1. Write assignment on codes and standard used in piping design
- 2. A case study on piping design calculations for any system.
- 3. An assignment on specialty components used in piping system.
- 4. An assignment on occasional loads calculations for the piping system.
- 5. Use any suitable software and complete one design project on piping system.

Text Books

- 4. Bhandari V.B. —Design of Machine Elements, Tata McGraw Hill Pub. Co. Ltd.
- 5. John F. Harvey, "Theory and Design of Pressure Vessels", CBS Publishers and Distributors, 1987. 53 53
- 6. Sam Kannapan, "Introduction to Pipe Stress Analysis". John Wiley and Sons, 1985.

Reference Books

- 4. Henry H. Bedner, "Pressure Vessels, Design Hand Book", CBS publishers and Distributors, 1987.
- 5. Charles Becht IV: Process Piping: The Complete Guide to ASME B31.3, ASME Press.
- 6. Stanley, M. Wales, "Chemical process equipment, selection and Design. Buterworths series in Chemical Engineering", 1988.

Codes / Handbooks

- 4. Roy A. Parisher and Robert A. Rhea Pipe Drafting and Design, Cengage Learning. Codes / Handbooks
- 5. Design Data- P.S.G. College of Technology, Coimbatore.
- 6. I.S. 2825: Code for unfired pressure vessels.

Strength of CO-PO/PSO Mapping														
		PO's											PS	SO
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	3	-	3	2	3	-	2	-	-	2	2	2
CO 2	3	3	3	-	3	2	3	-	2	-	-	2	2	2
CO 3	3	3	3	-	3	2	3	-	2	-	-	2	2	2
CO 4	3	3	3	-	3	2	3	-	2	-	-	2	2	2
Average	3	3	3	-	3	2	3	-	2	-	-	2	2	2
Level	3	3	3	-	3	2	3	-	2	-	-	2	2	2

Guidelines for Continuous Comprehensive Evaluation of Lab Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Timely completion of Assignments/Sheet	10			
2	Understanding of Assignments/Sheet	10			
3	Presentation / Writing of Assignments/Sheet	05			
	Total	25			

T. Y. B. Tech. Pattern 2022 Semester: V (Mechanical Engineering) MEC223008:Environmental Economics Teaching Scheme: Examination Scheme: Theory:02 hrs/week 02 Continuous Comprehensive Evaluation: 50Marks --

Prerequisite Courses, if any: Economics for Sustainability

Course Objectives

- Understand the principles and importance of ESG factors in business and investment.
- Analyze ESG frameworks, standards, and reporting mechanisms.
- Evaluate the impact of ESG practices on corporate performance and stakeholder value.
- Develop skills to integrate ESG considerations into decision-making processes.
- Examine case studies of successful ESG implementation across various industries.
- Apply quantitative analysis to ESG data for informed decision-making.

Course Outcomes: On completion of the course, students will be able to-

	Course Outcomes	Bloom's Level
CO1	Understand the principles and importance of ESG factors in business and investment	2-Understand
CO2	Calculating Carbon Footprint and Emission Reductions	3- Apply
CO3	Analyze ESG data for informed decision-making	4- Analyze
CO4	Examine case studies of successful ESG implementation across various industries and recommend best practices	5- Evaluate

COURSE CONTENTS

Unit I	Environmental Social and Governance :ESG	(04hrs)	COs Mapped -
			CO1. CO2

- Definition and Importance of ESG
- Historical Context and Evolution
- Key Drivers of ESG Integration
- Overview of ESG Frameworks (e.g., GRI, SASB, TCFD)
- ESG Rating Agencies and Methodologies
- Understanding ESG Scores and Ratings

Environmental Risk Assessment

Unit II Environmental factors	(05hrs)	COs Mapped -
		CO1, CO2
 Climate Change and Sustainability 		
 Resource Management and Efficiency 		

• Qu	antitative Analysis: Measuring Carbon Footprint and	Emission Reduc	ctions
Unit	Social factors	(05hrs)	COs Mapped -
III			CO1, CO3, CO4
• Hu	man Rights and Labor Practices		
 Co 	mmunity Engagement and Social Impact		
• Di	versity, Equity, and Inclusion		
• Qu	antitative Analysis: Social Impact Metrics and Diver	sity Indices	
Unit IV	Governance factors	(05hrs)	COs Mapped - CO1, CO3, CO4
• Co	rporate Governance Structures		1
 Bo 	ard Composition and Responsibilities		
 Eth 	nical Business Practices and Compliance		
• 🗆	Quantitative Analysis: Governance Scorecards and C	Compliance Metr	rics
Unit V		(5hrs)	COs Mapped - CO1, CO4
			C04

- ESG Integration in Portfolio Management
- Impact Investing and Socially Responsible Investing (SRI)
- Quantitative Analysis: ESG Portfolio Performance Metrics

ESG Risk Management

- Identifying and Assessing ESG Risks
- ESG Risk Mitigation Strategies
- Quantitative Analysis: Risk Assessment Models

ESG in Different Industries

- ESG Challenges and Opportunities in Various Sectors (e.g., Energy, Finance, Technology)
- Sector-Specific ESG Strategies
- Quantitative Analysis: Sectoral ESG Performance Comparison

Text Books

Outlast: How ESG Can Benefit Your Business" by Mukund Rajan and Col. Rajeev Kumar (HarperCollins India) (HarperCollins India).

"Sustainable Business: Key Issues" by Adrian Henriques and Julie Richardson (Earthscan India).

"Environmental Management Systems: Understanding Organizational Drivers and Barriers" by S.A. Abbasi (PHI Learning).

''Principles for Responsible Investment'' by James P. Hawley, Shyam J. Kamath, and Andrew T. Williams

• Publisher: Routledge

"Sustainable Investing: Revolutions in Theory and Practice" by Cary Krosinsky and Nick Robins

• Publisher: Routledge

Strength						P	O					
of COs	1	2	3	4	5	6	7	8	9	10	11	12
CO1	-	-	-	-	-	3	3	3	3	-	-	3
CO2	-	-	-	-	-	3	3	3	3	-	-	3
CO3	-	-	-	-	-	3	3	3	3	-	-	3
CO4	-	-	-	-	-	3	3	3	3	-	-	3
Avg	-	-	-	-	-	3	3	3	3	-	-	3

	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	Assignments on Each topic	30				
2	Quizzes/Tests	10				
3	Group Project and Presentation	10				
	Total	50				

T. Y. B. Tech.

Pattern 2022 Semester: V (Mechanical Engineering)

MEC223009	:	Mechatronics

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Theory: 03hrs/week	03	InSem Exam: 20 Marks EndSem Exam: 60 Marks Continuous Comprehensive Evaluation: 20 Marks

Prerequisite Courses, if any: -

Basics of Electrical and Electronics Engineering, Engineering Mathematics, Mechanics

Course Objectives:

- Understand the concept of sensors ,actuators & Data Acquisition system
- Understand the Physical system through Modelling and block diagram
- Understand the given system for Time, Frequency Domain and stability
- Understand the concept of PLC & PID controller for different applications.

Course Outcomes: On completion of the course, students will be able to-

	Course Outcomes	Bloom's Level
CO1	Demonstrate the concept of sensors ,actuators & Data Acquisition system	2- Understand
CO2	Interpret the Physical system through Modelling and block diagram	3 - Apply
CO3	Analyze the given system for Time, Frequency Domainand stability	4 - Analyze
CO4	Evaluate the concept of PLC & PID controller for different applications.	5 - Evaluate

COURSE CONTENTS

Unit I Actuators (8hrs) COs Mapped - C	Initi	Fundamentals of Instrumentation, Sensors and Actuators	(8hrs)	COs Mapped - CO
--	-------	--	--------	-----------------

Elements of Measurement System and Mechatronics, Static and Dynamic Characteristics of Measuring Instruments, Domains of Mechatronics

Sensors: Classification of sensors / Transducers; Motion Sensors – Encoder (Absolute & incremental), Lidar, Proximity (Optical, Inductive, Capacitive), Accelerometer (MEMS & Piezoelectric); Temperature sensor –Pyrometer, Infrared Thermometer; Force Sensors – Strain gauges, Flow sensors – Electromagnetic, Ultrasonic, Hot-wire anemometer;

Actuators: Linear (Solenoid) and Rotary (Stepper, Servo)

Unit II Data Acquisition and Signal Communication (7hrs) COs Mapped – CO1

Signal Communication: Serial, Parallel; Synchronous, Asynchronous

Introduction to DAQ, Types, Components of a Data Acquisition System

Data Conversion: Sampling, Aliasing, Sample and hold circuit, Quantization, Analog-to-digital converters (4 bit Successive Approximation type ADC), Digital-to-Analog converters (4 bit R2R type DAC)

Unit	Control systems & Transfer function based		
	modelling	(7hrs)	COs Mapped – CO2
III	_		

Introduction to control systems, need, Types- Open and Closed loop, Concept of Transfer Function, Block Diagram & Reduction principles and problems;

Transfer Function based Modeling of Electrical, Mechanical, Thermal and Fluid system;

Unit IV	System Analysis	(7hrs)	COs Mapped –CO3
_ ▼			

Time Domain Analysis - Unit step Response analysis via Transient response specifications (Percentage overshoot, Rise time, Delay time, Steady state error etc.)

Frequency Domain Analysis – Frequency Domain Parameters - Natural Frequency, Damping Frequency and Damping Factor;

Stability Analysis - Concept of Poles & Zeros; Pole zero plot, Mapping of Pole Zero plot with damping factor, natural frequency and unit step response, Stability Analysis using Routh Hurwitz Criterion, and Bode Plot

Unit V	Controllers	(7hrs)	COs Mapped – CO4
--------	-------------	--------	------------------

Classification of Controllers

PID Controller - PI, PD and PID control systems in parallel form; Manual tuning of PID control, Ziegler–Nichols method,

PLC Controller - Introduction to PLC; Architecture of PLC; Ladder Logic programming for different types of logic gates; Latching; Timers, Counters;

Text Books

Text Books:

- 1. William Bolton, Mechatronics: Electronics Control Systems in Mechanical and Electrical Engineering, 6th Ed, 2019
- 2. K.P. Ramchandran, G.K. Vijyaraghavan, M.S. Balasundaram, Mechatronics: Integrated Mechanical Electronic Systems, Willey Publication, 2008

- **1.** Alciatore and Histand, Introduction to Mechatronics and Measurement Systems, 5th Ed, 2019
- 2. Bishop (Editor), Mechatronics An Introduction CRC 2006
- 3. Mahalik, Mechatronics Principles, concepts and applications, Tata Mc-Graw Hillpublication, New Delhi
- 4. C.D.Johnson, Process Control Instrumentation Technology, Prentice Hall, New Delhi
- 5. Bolton, Programmable Logic Controller, 4th Ed, Newnes, 2006

	Strength of CO-PO/PSO Mapping														
		PO													
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO 1	2	2	2	2	2	2	-	2	2	2	2	2	2	2	
CO 2	2	2	2	2	2	-	-	-	2	-	-	2	3	2	
CO 3	3	3	2	2	2	-	-	-	2	-	-	2	3	2	
CO 4	3	3	2	2	2	2	2	2	2	2	2	2	3	2	
Average	2.5	2.5	2	2	2	2	2	2	2	2	2	2	2.75	2	
Level	3	3	2	2	2	2	2	2	2	2	2	2	3	2	

	Guidelines for Continuous Comprehensive Evaluation of Theory Course										
Sr.	Components for Continuous	Marks	Evaluation Rubrics								
No.	Comprehensive Evaluation	Allotted									
1	One Assignment on each unit	10	R1 – Timely Completion (10marks) R2 – Understanding (10marks) R3 – Presentation & Clarity (10marks) 5 Assignments each of 30 marks, total 150 marks converted to 10 marks								

			Pre Insem – 30 Marks,
2	Class Test	05	Pre end Sem – 60
			Total 100 marks converted to 05 marks
			MCQ test marks, 5 test one on each
3	LMS Test on Each Unit	05	Unit of 10 marks each
			Total 50 converted into 5 marks
	Total	20	

T. Y. B. Tech. Pattern 2023 Semester: III (Mechanical Engineering) MEC223010 PBL									
Teaching Scheme:	Credit Scheme:	Examination Scheme:							
Tutorial:01hrs/week	01	Tutorial (TU) 25							
Practical: 02hrs/week	01	Term Work (TW) 25							

Prerequisite Courses, if any: - Machine Design-I, Machine Design-II, Mechatronics etc.

Course Objectives

- 1. INTRODUCE the skills required in an industry such as design, development, assembly & disassembly.
- 2. DEVELOP the skills required for fault diagnose of engine and transmission of different automotive and various home appliances.
- 3. ESTABLISH the skills required for maintenance of any machine tool.
- 4. CREATE awareness about industrial environment.

Course Outcomes: On completion of the course, students will be able to-

	Course Outcomes	Bloom's Level
CO1	Understand procedure of assembly & disassembly of various machines.	2
CO2	Examine & Model a working/model of machine parts or any new product.	3
CO3	Illustrate fault with diagnosis on the machines, machine tools and home appliances.	3
CO4	Analyze the various activities performed in an industry such asmaintenance, design of components, material selection.	4

COURSE CONTENTS

- 1. Assembly and Disassembly of any of the following mechanical systems/ subsystems: bicycle (Geared), e-Bikes, e-Motor Cycles, Drones, Flying devices, gear box, IC engines, centrifugal pump etc.
- 2. Assembly- Disassembly/ Fault diagnosis of home appliances such as mixer, grinder, washing machine, fan, ovens, gas geyser, chopping machine, kneading machine, exercise machines, etc.
- 3. Development and demonstration of working/animation model of any mechanism.
- 4. Design a circuit of electric and hydraulic system of 4 wheelers and its verification.

OR

Circuit design /PCB design using software for control of BLDC electric motors used in e-Vehicles.

- 5. Undertake total preventive maintenance for any machine tool or mechanical system.
- 6. Visit to an industry for awareness about preventive maintenance.
- 7. Use of ergonomic principles for the design of hand tools, control in automobile dashboards, human operated mobile devices.
- 8. Use of alternative materials in the construction of daily activity machine and toolcomponents
- 9. Interpretation of Drawings; Exercises in identifying the type of production, extracting important functional dimensions, checking the number of parts in an assembly. Checking and listing missing dimensions.
- 10. Exercises in -preparation of detailed production drawings as per BIS standard of simple machine parts having relevant notes and indications (limits/tolerances, surface finish, the process of production, relevant tools, materials, measuring instruments).

The documentation activity as a part of the Term work shall not be restricted to merelygeneration of 2D/3D CAD Drawings with dimensions (as applicable), Exploded View, Flowchartof Maintenance Work etc. but can be beyond.

Skill Development Documentation Diary must be maintained by every student.

	Strength of CO-PO/PSO Mapping													
Strength	PO									PS	О			
of Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	2	2	2	-	-	2	-	-	-	-	2	2	2	2
CO 2	2	2	2	-	-	2	-	-	-	-	2	2	2	2
CO 3	2	2	2	-	-	2	-	-	-	-	2	2	2	2
CO4	2	2	2	-	-	2	-	-	-	-	2	2	2	2
Avg.	2	2	2	-	-	2	-	-	-	-	2	2	2	2

Unit

Sliding and Rolling Contact Bearing

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

	Pattern 2022	T. Y. B. Tech. Semester: VI (Mechan	ical Engineering)						
		EC223011 : Machine De							
Teaching	g Scheme:	Credit Scheme:	Examination Scheme:						
Theory:	heory :03 hrs/week 03 Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks								
	isite Courses, if any: -Class tual number of teeth. Classif								
	Objectives:								
 To 	apply fundamentals of the o	design and/or selection of	f elements in mechan	nical systems.					
cha	understand the philosophy allenging. demonstrate design skills for								
	develope an attitude of team neduling through design proj		communication, pla	nning and					
Course (Outcomes: On completion of	of the course, students wil	ll be able to-						
		Course Outcomes		Bloom's Level					
CO1	Apply the principle of S application		_	3-Apply					
CO2	Categorize Rolling and catalogue for a particular a	-		rer's 3-Apply					
CO ₃	Illustrate design of variou	s drives for mechanical a	applications.	3-Apply					
CO4	Evaluate the stresses an for mechanical application	S.		ings 4-Analyze					
		COURSE CONTENT	CS .						
Unit I	Spur and Helical Gears		(08hrs)	COs Mapped - CO1,CO4					
Number o	on to gears: Material selection of teeth and face width, Force and concentration factor, Effective factors and concentration factors.	e analysis, Beam strength	(Lewis) equation, V	elocity factor, Service					
Unit II	Bevel and Worm Gear		(07hrs)	COs Mapped - CO1,CO4					
Gear. Des based on ' Worm Ge Worm ges	ars: Types of Bevel gears, Terrisign of Straight Bevel Gear batevel Velocity factor (Barth factor) arears: Terminology and proportars, efficiency of worm gears, tor, speed factor, surface stress	sed on Beam Strength, We and Buckingham's equation tions of worm and worm material selection, Strengt	ear strength and estim gears, Force analysis h and wear ratings of	of drives, Friction in worm gears (Bending					

(07hrs)

COs Mapped -

III CO2, CO4

Sliding contact bearing: Introduction to sliding contact bearing, classification, Reynolds's equation (2D), Petroff's equations, Sommerfeld number, Parameters of bearing design.

Rolling Contact Bearings: Types of rolling contact Bearings and its selection, Static and dynamic load carrying capacities, Stribeck's Equation, Equivalent bearing load, Load-life relationship, Selection of bearing life, Selection of rolling contact bearings from manufacturer's catalogue, Design for cyclic loads.

Unit Drives: Belt and Chain Drives (07hrs) COs Mapped – CO1, CO3

Belt Drives: Materials and construction of flat and V belts, geometric relationships for length of belt, power rating of belts, concept of slip & creep, initial tension, effect of centrifugal force, maximum power condition, Selection of Flat and V-belts from manufacturer's catalog, belt tensioning methods, relative advantages and limitations of Flat and V- belts, construction and applications of timing belts.

Chain Drives : Types of chains and its Geometry, selection criteria for chain drive, Polygon effect of chain, Modes of failure for chain, Lubrication of chains

Unit V Mechanical Springs (07hrs) COs Mapped – CO4

Types, applications and materials for springs, Stress and deflection equations for helical compression Springs, Style of ends, Design of helical compression and tension springs, Springs in series and parallel, Surge in springs, Design of Multi-leaf springs. Helical torsion Spring

Text Books

- 1. Shigley J.E. and Mischke C.R., Mechanical Engineering Design, McGraw Hill Publication Co. ltd.
- 2. Spotts M.F. and Shoup T.E., Design of Machine Elements, Prentice Hall International.
- 3. Bhandari V.B, Design of Machine Elements, Tata McGraw Hill Publication Co. Ltd.
- 4. Juvinal R.C, Fundamentals of Machine Components Design, John Wiley and Sons.

- 1. Design Data P.S.G. College of Technology, Coimbatore.
- 2. Vehicle Powertrain Systems by Behrooz Mashadi, David Crolla. A John Wiley & Sons, Ltd
- 3. Automobiles—Power trains and Automobiles—Dynamics by Crolla, David, A John Wiley &Sons, Ltd
- 4. Automotive Engineering Powertrain, Chassis System and Vehicle Body by David A Crolla, Elsevier B H New York, London, Oxford.
- 5. lack P.H. and O. Eugene Adams, Machine Design, McGraw Hill Book Co. Inc.
- 6. Willium C. Orthwein, Machine Components Design, West Publishing Co. and Jaico Publications House.
- 7. P. Kannaiah, Design of Transmission systems, SCIETCH Publications Pvt Ltd.
- 8. C.S. Sharma and Kamlesh Purohit, Design of Machine Elements, PHI Learning Pvt. Ltd.
- 9. D.K. Aggarwal& P.C. Sharma, Machine Design, S.K Kataria and Sons.
- 10. P. C. Gope, Machine Design: Fundamentals and Applications, PHI Learning Pvt. Ltd.
- 11. Bhandari, V. B. Machine Design data book, Tata McGraw Hill Publication Co. Ltd.
- 12. K. Mahadevan, K. Balveera Reddy, Design Data Handbook for Mechanical Engineers, CBS Publishers.

	Strength of CO-PO Mapping													
		PO												
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	3	3	2	-	2	2	-	3	2	-	2	2	2
CO2	3	3	3	-	-	2	2	2	3	2	-	2	2	-
CO3	3	3	3	3	-	-	-	2	3	2	-	2	2	2
CO4	3	3	2	2	-	2	-	-	3	2	-	2	2	-
Average	3	3	3	2	-	2	2	2	3	2	-	2	2	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course								
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted							
1	Assignments on each Unit	10							
2	Online/Offline Test on Each Unit	10							
	Total	20							

Third Year B. Tech. Pattern: 2022 Semester: VI (Mechanical Engineering) MEC223012: Energy Engineering										
Teaching Scheme:	Credit Scheme:	Examination Scheme:								
Lecture: 03 hr / week	03	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks								

Prerequisite Courses: -Linear algebra and calculus, Engineering Thermodynamics, Fluid Mechanics and Heat Transfer

Course Objectives:

- To study the energy scenario, the components of thermal energy based plant, improved Rankine cycle.
- To understand details of steam condensing plant, cooling tower system, analysis of condenser, the environmental impacts and methods to reduce various pollution from energy systems
- To study layout, component details of diesel engine power plant, hydel and nuclear energy systems
- To understand components; layout of gas and improved power cycles
- To learn basic principles of energy management, storage and economics of power Generation
- To study the working principle, construction of renewable energy systems

	Course Outcomes	Bloom's					
		Level					
CO1	EXPLAIN the power generation scenario, the layout components of	2					
	conventional and non-conventional power plants and their environment	ntal					
	impacts.						
CO2	Apply energy analysis for performance determination of power plants						
CO3	ANALYZE the performance of power plants from technical aspects	4					
CO4	Evaluate the actual performance of thermal and solar power plants through case studies.	5					
I	Energy Scenario and Thermal Power Plant (08 hr	s) COs Mapped –					
		CO1					

Energy Scenario: Global and Indian energy scenario, role of Government and Private Organizations, Energy crisis, energy security, energy policy.

Thermal Power Plant: layout of modern thermal energy based plant with different circuits, site selection, classification of coal, coal benefication, selection of coal for thermal power plant, slurry type fuels, coal handling plant, pulverized fuel handling systems, FBC systems, high pressure boilers, improved Rankine cycle with reheating and regeneration

Environmental impact of power plants:

Different pollutants produce by power plants, methods to control pollutants, carbon credits and footprints

II		Turbines	and	Condenser	and	Impact	on (07 hrs)	COs Mapped –
	Environ	ment						CO1, CO2,
								CO3

Steam Turbine: Principles of Working of Steam Turbines, Classifications of Steam Turbine, Simple and Compound Steam Turbines. Energy losses in Steam Turbines, Actual Reheat factor, Velocity diagrams, Graphical and analytical Methods, Work done, Thrust and Power, Efficiencies, Condition for Maximum Efficiency, Governing of Steam Turbine.

Condensers and Cooling Towers: Types of Condensers, Classification of Condenser, Quantity of cooling water Required, Daltons Law of Partial Pressures, vacuum efficiency, condenser efficiency, Sources of Air Leakage and Air Removal, Cooling Towers, Cooling Ponds.

III	Nuclear and Hydro-Electric Power Plant	(07 hrs)	COs Mapped –
			CO1

Nuclear Power plant: Nuclear fission/fusion, elements of nuclear reactor, types of nuclear reactor: PWR, BWR, CANDU, LMCR, GCR, Nuclear waste disposal, Nuclear power development programme of India.

Hydro-electric Power Plant:Introduction to hydrology, hydrograph, flow duration curve, mass curve, Hydroelectric power plant site selection, classification, criteria for turbine selection, Types hydraulic turbines, components of Hydroelectric power plant - dams; spillways; surge tank and forebay.

IV	Gas Turbine Power Plant	(07 hrs)	COs Mapped –
			CO1, CO2,CO3

Gas turbine power plant: components, general layout of GTPP, open and closed cycle gas turbine plant, Brayton cycle analysis for thermal efficiency, work ratio, maximum & optimum pressure ratio, methods to improve thermal efficiency of GTPP: inter-cooling, reheating, regeneration cycle.

Combined cycle:gas and steam combined cycle plant, Cogeneration, introduction to trigeneration, steam power plants with process heating, Integrated Gasification Combined Cycle (IGCC) plant, Kalina (Cheng) Cycle.

V	Renewable Energy Systems	(07 hrs)	COs Mapped –
			CO1, CO4

Introduction to various renewable energy technology: Tidal Energy, Ocean Thermal Energy, Biomass energy, Hydrogen Energy, etc

Solar thermal and photovoltaic energy: solar thermal plant based on flat plate collector; solar

photovoltaic systems, applications, economics and technical feasibility.

Wind Energy: wind availability, basic components of wind mills, performance operating characteristics, wind solar hybrid power plants, Cost economics and viability of wind farm.

Text Books

- 1. Domkundwar & Arora, Power Plant Engineering, Dhanpat Rai & Sons, New Delhi
- 2. R.K.Rajput, Power Plant Engineering, Laxmi Publications New Delhi
- 3. D. P. Kothari, K. C. Singal and Rakesh Ranjan, Renewable Energy Sources and Emerging Technologies, PHI Learning Pvt. Ltd., Delhi

Reference Books

- 1. E.I.Wakil, Power Plant Engineering, McGraw Hill Publications New Delhi
- 2. P.K.Nag, Power Plant Engineering, McGraw Hill Publications New Delhi.
- 3. R.Yadav, Steam and Gas Turbines, Central Publishing House, Allahabad.
- 4. G.D.Rai, Non-Conventional Energy Sources, Khanna Publishers, Delhi
- 5. S.P.Sukhatme, Solar Energy, Tata McGraw-Hill Publications, New Delhi
- 6. G R Nagpal, Power Plant Engineering, Khanna Publication.

CCE Assessment: Five assignment (unit wise

each of 20marks) including review, calculation, case study and design of system.

Strength of CO-PO/PSO Mapping														
		PO's											PS	SO
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	-	-	-	2	2	-	-	-	-	2	2	2
CO 2	3	3	1	-	-	-	-	-	-	-	-	2	2	-
CO 3	3	3	2	-	-	-	-	-	-	-	-	2	2	-
CO 4	3	3	2	-	-	2	-	-	-	-	-	2	2	2
Average	3	3	2	-	-	-	-	-	-	-	-	2		-
Level	3	3	2	-	-	2	2	-	-	-	-	2	2	2

T. Y.B.Tech. Pattern2022 Semester:VI (B.Tech Mechancial)									
MEC223013:	Machine Design Lab	(I & II)							
Teaching Scheme:	Credit Scheme:	Examination Scheme:							
Practical:02hrs/week	01	Termwork:25Marks Practical :25Marks							
Prerequisite Courses, if any: - M Metallurgy, MD-I	echanics of material, N	Manufacturing process, Engineering							

Course Outcomes: On completion of the course, students will be able to—									
	Course Outcomes	Bloom's Level							
CO1	Illustrate the simple machine elements as cotter, knuckle Joints, levers, shafts, keys and couplings under static /eccentric loading conditions.	4-Analyze							
CO2	Analyze the power screws for various engg. Application	4-Analyze							
CO3	Categorize the gear box for industrial application by using Spur, Helical, Bevel, Worm gear etc.	4-Analyze							
CO4	Select various drives for industrial application	4-Analyze							

Listof Laboratory Experiments /Assignments									
Sr.No.	Term Work	COMapped							
Student sha	all complete the following activity as a Term Work;								
	ssion shall consist of completion of Two Design projects and study Assignr n shall be based on the practical undertaken during the semester	ments. Oral							
1	Design a Simple Machine Elements : (Cotter Joints/ Knuckle Joint/ Lever etc.,)	CO1							
2	Design of Screw Jack/ C Clamp : (Automobile Application / Industrial Application, etc.,)	CO2							
3	Design of Gearbox for following any one problem statements or application 1. wind mill application or sluice gate	CO3							
	2. building Elevator								

	3. Industrial Hoist.4. Sugar Industry.	
4	5. Automobile drives etc. Design a Conveyer System for following any one application (Stone Crusher, Industry Pallet Transformation, Thermal power plant(Coal transportation), Sugar Industry (Sugar Bag transportation), Airport Luggage transportation etc.)	CO4

Guidelines for Laboratory Conduction

Practical are to be performed under the guidance of concerned faculty member.

Guidelines for Student's Lab Journal

Projects shall be in the form of design of mechanical systems, etc.

The design project shall consist of two full imperial (A1) size sheets involving assembly drawing with a part list and overall dimensions and drawings of individual components. (For sheets use software for Project 1 & 3 and sheets should be manually drawn for project 2 & 4)

Manufacturing tolerances, surface finish symbols and geometric tolerances should be specified for important surfaces. A design report giving all necessary calculations of the design of components and assembly should be submitted in a separate file.

Design data book shall be used where ever necessary to achieve selection of standard components.

GuidelinesforTermworkAssessment

- 1. Eachproject will beassessedforthirtymarksbasedonthreerubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for design report and sheetswhere each rubric carries ten marks.
- 3. File should consist of Design Report and Sheets for every project.

Strength of CO-PO/PSO Mapping														
		PO's												SO
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	-
CO 1	3	3	3	2	3	2	-	2	3	2	-	2	2	-
CO 2	3	3	3	2	-	2	-	2	3	2	-	2	2	-
CO 3	3	3	3	2	3	2	-	2	3	2	-	2	2	-
CO 4	3	3	3	2	-	2	-	2	3	2	-	2	2	-
Average	3	3	2	2	3	2	-	2	3	2	-	2	2	-

K.K.Wagh Institute of Engineering Education and Research, Nashik

	Pattarn 2022	T. Y. B. Tech. Semester: Vi (Mecha	nical Engineering)	
		223014A : Finite Eleme	_	
Teachin	g Scheme:	Credit Scheme:	Examination Sch	neme:
•	:03 hrs/week isite Courses, if any: -Med	03	Continuous Com Evaluation: 20M InSem Exam: 20 EndSem Exam:	larks Marks 60Marks
8. To 9. To 10. To 11. To	Objectives: o understand fundamentals of a understand the 1D structural o understand2D structural menor understand the heat transfer pounderstandthe mechanical control of the structural menor understand the heat transfer pounderstandthe mechanical control of the structural menor understand the the structural meno	member for displacement, mber for displacement, stre problems for temperature, t	stress ess thermal stress, heat flu	X
Course	Outcomes: On completion	of the course, students w	vill be able to—	
	On completion of the c	Course Outcomes ourse the learner will b	e able to;	Bloom's Level
CO1	Apply fundamentals of FEA	A for finite element formula	ation	3 (Apply)
	A 1 (1 1D) (1	ember for displacement st		1 (Analyza)

	Course Succomes	Diodii 5 Level
	On completion of the course the learner will be able to;	
CO1	Apply fundamentals of FEA for finite element formulation	3 (Apply)
CO2	Analyze the 1D structural member for displacement, stress	4 (Analyze)
CO3	Analyze the2D structural member for displacement, stress	4 (Analyze)
CO4	Analyze the heat transfer problems for temperature, thermal stress, heat flux	4 (Analyze)
CO5	Analyzethe mechanical component for dynamic conditions	4 (Analyze)

COURSE CONTENTS

Unit I Fundamentals Concepts of FEA	(08hrs)	COs Mapped –
		CO1

Introduction—Brief History of FEM, Finite Element Terminology (nodes, elements, domain, continuum, Degrees of freedom, loads & constraints) General FEM procedure, Applications of FEM in various fields, P & h formulation, Advantages and disadvantages of FEM. Consistent units system. Shape Function Introduction to different approaches used in FEA such as direct approach and energy approach

Unit II	1D Elements	(07 hrs)	COs Mapped -
			CO2

Types of 1D elements. Displacement function, Global and local coordinate systems, Order of element, primary and secondary variables, shape functions and its properties.

Formulation of elemental stiffness matrix and load vector for spring, bar, truss. Transformation matrix for truss, Assembly of global stiffness matrix and load vector, Properties of stiffness matrix, Boundary conditions elimination method, Symmetric boundary conditions, Stress calculations.

Unit	2D Elements	(07 hrs)	COs Mapped –
III			CO3

Types of 2D elements, Formulation of elemental stiffness matrix and load vector for Plane stress/strain such as

Linear Strain Rectangle (LSR), Constant Strain Triangles (CST), Pascal's triangle, primary and secondary variables, properties of shape functions. Assembly of global stiffness matrix and load vector, Boundary conditions, solving for primary variables (displacement)

Unit	1D Steady State Heat Transfer Problems	(07 hrs)	COs Mapped –
IV		, ,	CO4

Introduction, Governing differential equation, steady-state heat transfer formulation of 1D element for conduction and convection problem, boundary conditions and solving for temperature distribution

Unit V	Dynamic Analysis	(07 hrs)	COs Mapped –
			CO5

Types of dynamic analysis, General dynamic equation of motion, point and distributed mass, lumped and Consistent mass, Mass matrices formulation of bar and beam element.

Undamped-free vibration- Eigenvalue problem, Evaluation of eigenvalues and eigenvectors (natural frequencies and mode shapes).

Text Books

- 1. A First Course in the Finite Element Method, Daryl L. Logan
- 2. Concepts and Applications of Finite Element Analysis, R. D. Cook, et al. Wiley, India

- 1. Chandrupatla T. R. and Belegunda A. D., —Introduction to Finite Elements in Engineering, Prentice Hall India.
- 2. Seshu P., —Text book of Finite Element Analysis, PHI Learning Private Ltd. New Delhi, 2010.
- 3. Bathe K. J., —Finite Element Procedures, Prentice-Hall of India (P) Ltd., New Delhi.
- 4. Fagan M. J., —Finite Element Analysis, Theory and Practicel, Pearson Education Limited
- 5. Kwon Y. W., Bang H., —Finite Element Method using MATLABI, CRC Press, 1997
- 6. S. Moaveni, —Finite element analysis, theory and application with Ansys,
- 7. Fundamental of Finite Element Analysis, David V. Hutton, Tata McGraw-Hill
- 8. Gokhale N. S., Deshpande S. S., Bedekar S. V. and Thite A. N., —Practical Finite Element Analysis, Finite to Infinite, Pune

	Strength of CO-PO Mapping													
						I	90						P	SO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	ı	-	3	2	-	ı	2	ı	1	3	2	2
CO2	3	3	3	-	3	2	-	-	2	-	-	3	2	2
CO3	3	3	3	-	3	2	-	-	2	-	-	3	2	2
CO4	3	3	3	-	3	2	-	-	2	-	-	3	2	2
CO5	3	3	3	-	3	2	-	-	2	-	- 1	3	2	2
Average	3	3	3	-	3	2	-	-	2	-	-	3	2	2

	Components for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation						
1	Assignments 01 on Unit-1 &2, Assignments 02 on Unit-3, 4& 5	05					
2	Pre Insem on Unit-1 &2, Pre Endsem on Unit-3, 4& 5	10					
3	LMS on Each Unit	05					
	Total	20					

Third Year B. Tech.

Pattern: 2022 Semester: VI(Mechanical Engineering)

MEC223014B: Renewable Energy Engineering

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Lecture: 03 hr / week	03	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks
		EndSem Exam: 60Marks

Prerequisite Courses: -Engineering Thermodynamics, Fluid Mechanics and Heat Transfer

Course Objectives:

- 5. To understand the basics of renewable energy sources and technologies.
- 6. To design solar thermal conversion systems and solar photovoltaic systems for different applications.
- 7. To understand wind energy sources and technologies and also to design a wind energy systems.
- 8. To study the biomass energy conversion systems.
- 9. To study the Geothermal, Tidal and Wave energy
- 10. To explain principle and working of fuel cell and hydrogen energy technologies

	Course Outcomes		Bloom's
			Level
CO1	Understanding of solar systems for a given energy utility by apply	ing	
	principles of solar energy conversion.		
CO2	Estimate the wind energy potential and analyse the wind energy		
	conversion System.		
CO3	Design bio-energy based systems for a given utility by applying		
	principles of bio-mass to bio-energy conversion.		
CO4	Characterize energy conversion systems: Geothermal, Tidal and W	Vave	
	energy,Fuel Cells and Hydrogen Energy.		
	COURSE CONTENTS		1
I	Solar Radiation and Solar Systems (08	8 hrs)	COs Mapped –
			CO1
Extra-ter	restrial and terrestrial radiation, Solar radiation measuring instru	uments	, Estimation o

solar Radiation, solar geometry, Solar Energy Conversion Systems

Solar thermal systems: Basics, Flat plate collectors-liquid and air type. Theory of flat plate collectors, selective coating, advanced collectors, Concentrators: optical design of concentrators, solar water heater, solar dryers, solar stills, Solar ponds, solar cooling and refrigeration, Solar thermal power generation.

Solar Photovoltaic Systems: Principle of photovoltaic conversion of solar energy, Solar cells, Solar PV pumps, Govt. policies. Solar energy storage options: Electrical and Thermal Energy storage options

II	Wind Energy Conversion Systems	(07 hrs)	COs Mapped –
			CO2

History of wind energy and potential, Wind energy in India, Power available in the wind, Wind speed prediction and forecasting, Betz limit, Components of wind energy conversion systems, Horizontal and Vertical axis wind turbine, Wind turbine power and torque characteristics, Tip speed ratio,

III	Biomass Energy	(07 hrs)	COs Mapped –
			CO3

biochemical conversion: anaerobic digestion, ethanol fermentation, biogas production, types of biogas plant, installation, operation and maintenance of biogas plants, factors affecting biogas production, biogas utilization and storage, biogas for motive power generation, design calculations for biogas plants, Biodiesel, the mechanism of trans esterification, fuel characteristics of biodiesel, technical aspects of biodiesel/Ethanol utilization in engine. Biomass gasification system and types, producer gas. Pyrolysis

IV	Geothermal , Tidal and Wave energy	(07hrs)	COs Mapped –
			CO4

Geothermal Energy: structure of earth's interior, geothermal sites, geothermal field and gradients, types of geothermal resources, power generation by liquid dominated and vapor dominated sites, geothermal preheat to conventional plant, utilization of geothermal energy.

Tidal Energy: Tidal energy, tidal characteristics, range, power of tides, site selection types tidal power plant

Wave Energy: factors affecting wave energy, analysis of wave energy, wave energy conversion machines.

V	Fuel Cells and Hydrogen Energy	(07 hrs)	COs Mapped –
			CO4

Fuel cells: principle of operation of fuel cell, Technical parameters of fuel cell, hydrogen fuel cell, Methanol fuel cell, Types fuel cells, performance of fuel cell.

Hydrogen Energy: Benefits of hydrogen Energy, Hydrogen production Technologies, characteristics and applications of hydrogen, Hydrogen energy Storage, Problems associated with hydrogen energy.

Text Books

- 4. D. P. Kothari, K. C. Singal and Rakesh Ranjan, Renewable Energy Sources and Emerging Technologies, PHI Learning Pvt. Ltd., Delhi
- 5. Domkundwar & Domkundwar- Solar Energy and Non Conventional Sources of Energy, Dhanpat Rai& Sons, New Delhi.
- 6. R. K. Rajput, Non-Conventional Energy Sources and Utilization, S. Chand Publication.

Reference Books

- 7. G.D.Rai, Non-Conventional Energy Sources, Khanna Publishers, Delhi
- 8. S.P.Sukhatme, Solar Energy, Tata McGraw-Hill Publications, New Delhi
- 9. B. H. Khan, Non-conventional energy resources, Mc Graw Hill publication.

CCE Assessment: Five assignments (unit wise each of 20 marks) including review, calculation, case study and design of system.

	Strength of CO-PO/PSO Mapping													
		PO's										PS	SO	
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	2	-	-	2	1	-	-	-	-	2	2	2
CO 2	3	3	2	-	-	2	1	-	-	-	-	2	2	1
CO 3	3	3	2	-	-	-	1	-	-	-	-	2	2	2
CO 4	3	2	1	-	-		1	-	-	-	-	2	2	-
Average	3	3	2	-	-	2	1	-	-	_	-	2	2	2
Level	3	3	2	-	-	2	1	-	-	-	-	2	2	2

Final Year.B.Tech. Pattern2022 Semester:VI (B.TechMechancial) **MEC223014C: Computational Fluid Dyanamics TeachingScheme: CreditScheme: ExaminationScheme:** Theory:03 hrs/week 03 Continuous **ComprehensiveEvaluation:** 20MarksInSem Exam: 20MarksEndSem Exam: 60Marks **PrerequisiteCourses,ifany:** -Mathematics, Physics, Systems in Mechanical Engineering, Engineering Thermodynamics, Applied Thermodynamics, Fluid Mechanics, Numerical & Statistical Methods, Heat & Mass Transfer, Computer Aided Engineering CourseOutcomes:Oncompletion ofthecourse, students will be ableto-CourseOutcomes Bloom'sLevel CO₁ 2-Understand Recognize the fundamental principles of mass conservation CO₂ 2-Understand Comprehend the fundamental properties and behaviors of PDEs Apply error minimization techniques to assess the accuracy of numerical CO₃ 3-Apply solutions Apply the Finite Difference Method (FDM) to discretize differential CO4 3-Apply equations CO₅ 3-Apply Pertaining to the conceptual basics of steady-state diffusion problems COURSECONTENTS UnitI Introduction to computational fluid dynamics and (08)COs Mapped principles of conservation CO₁ hrs) Continuity Equation, Navier Stokes Equation, Energy Equation and Conservation Equations. UnitII (07 COsMapped -CO1,CO2 Classification of partial differential equations and hrs) physical behaviour

Mathematical classification of Partial Differential Equation, Illustrative examples of elliptic, parabolic and hyperbolic equations, Physical examples of elliptic, parabolic and hyperbolic partial differential equations.

Unit	Approximate solutions of differential equations	(07	COsMapped-
III		hrs)	CO1,CO2,CO3

Error Minimization Principles, Functional involving higher order derivatives, Approximate solution of differential equations through variation formulation, Boundary conditions in the variation form: Primary and secondary variables, Essential and natural boundary conditions, Approximate solutions of differential equations,

Unit IV	Fundamentals of discretization-	(07 hrs)	COs Mapped - CO1, ,CO3,CO4

Discretization principles: Pre-processing, Solution, Post-processing, Finite Element Method, 3 Finite difference method, Well posed boundary value problem, Possible types of boundary conditions, Conservativeness, Boundedness, Transportiveness, Finite volume method (FVM), Illustrative examples: 1-D steady state heat conduction without and with constant source term.

UnitV	Einita valuma mathad	(07 hrs)	COsMapped-
	Finite volume method		CO1,CO2,CO5

Some Conceptual Basics and Illustrations through 1-D Steady State Diffusion Problems: Physical consistency, Overall balance, FV Discretization of a 1-D steady state diffusion type problem, Composite material with position dependent thermal conductivity, Four basic rules for FV Discretization of 1-D steady state diffusion type problem, Source term linearization, Implementation of boundary conditions

TextBooks

- 1. Chung, T. J., "Computational Fluid Dynamics", 2nd Ed., 2014, Cambridge University Press.
- 2. Anderson J. D. (Jr)., "Computational Fluid Dynamics: The basic with applications", 2017, McGraw Hill Education

- 1. Patankar, S. V., "Numerical Heat Transfer and Fluid Flow", 2017, CRC Press.
- 2. Versteeg, H. K., Malalasekera, W., "An Introduction to Computational Fluid Dynamics", 2nd Ed., 2007, PHI. 3. Ferziger, J. H. and Peric, M., "Computational Methods for Fluid Dynamics", 3rd Ed., 2002, Springer.

Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No. Components for Continuous Comprehensive Evaluation Man						
1	Assignments on unit-1, Unit-2, Unit-3, Unit-4, Unit-5	15				
2	LearniCo Test on Each Unit	05				
	Total	20				

		T. Y. B. Tech. Semester: VI (Mechan C223014D : Operation 1	<i>O</i>				
Teaching	g Scheme:	Credit Scheme:	Examination Scheme:				
Theory:	03 hrs/week	03	Continuous Comp Evaluation: 20Ma InSem Exam: 20M EndSem Exam: 6	arks Marks			
Prerequi	isite Courses, if any: - Engi	neering Mathematics, Theo	ory of probability, Stat	istics			
To fami optimizat To famili applicabl	Dbjectives: liarize the students with tion functions in an organization function of the students with varied in particular scenarios in in the completion of	ous tools of optimization, ndustry for better manage	, probability, statisticement of various res	cs and simulation, as			
		Course Outcomes		Bloom's Level			
CO1	ApplyLPP and Decision	Theory to solve the problem	ems	3-Apply			
CO2	Apply the concept of tran resources	Apply the concept of transportation models to optimize available					
CO3	Apply the concept of Inve	3-Apply					
CO4	Evaluatethe process paramodels	meters for queuing theory	and sequencing	3-Apply			
CO5	Analyze the project mana	<u> </u>		4-Analyze			
		COURSE CONTENT	TS .				
Unit I	Introduction: Operation		(08 hrs)	COs Mapped - CO1			
Techniques of LPP, So	n: Definition, Evolution and s, Methodology, Advantages and lution of LPP by Two Phase Management Decisions, Decision Transportation & Assign	nd Limitations. Linear Prog Method only. Decision The on under Certainty, under R	gramming Problem: In ory: Meaning and Ste	troduction, Formulation ps in Decision Making,			
Introduction, Formulation, Basic Method of Solving Transportation Problem, Optimization Methods like U							
	ing Stone Method, Assignmen	<u>-</u>					
Unit III	Inventory Control and I	xepiacement Analysis	(07hrs)	COs Mapped - CO1, CO3			
Inventory Control - Deterministic Models- Shortage, without shortage; Probabilistic Inventory Mode Introduction to Concept of Service level. Replacement Analysis - Replacement of Items that Deteriorate Replacement of Items that Fail Suddenly							
Unit IV	Queuing Theory and	Sequencing Models	(07hrs)	COs Mapped - CO1, CO4			

Queuing Theory: Introduction, Basis Structure, Terminology (Kendal's Notations) and Applications. Queuing Model M/M/1: /FIFO, M/M/c. Sequencing models: Solution of sequencing Problem - Processing of n jobs through two machines, Processing of n jobs through three machines, Processing of two jobs through m Machines, Processing of n jobs through m Machines

	, C 3 C		
Unit V	Project Management	(07hrs)	COs Mapped -
			CO1, CO5

Network Models: Fulkerson's rule, concept and types of floats, CPM and PERT, Crashing Analysis Unit 5: Queuing Theory and Sequencing Models and Resource Scheduling. Simulation: Introduction, Monte-Carlo Simulation method, Simulation of Inventory and Queuing Problems.

Text Books

- 1. Prem Kumar Gupta, D. S. Hira, Problems in Operations Research: Principles and Solutions, S. Chand, 1991
- 2. J. K. Sharma, Operations Research: Theory and Application, Laxmi pub. India, 2010.
- 3. Operations Research, S. D. Sharma, Kedar Nath Ram Nath-Meerut, 2015.
- 4. L.C.Jhamb, Quantative Techniques Vol. I &II, Everest Publication, 2007.
- 5. Manohar Mahajan, Operation Research, Dhanpatrai Publication, 2006.
- 6. V. K. Kapoor, Operations Research: Quantitative Techniques for Management, Sultan Chand Publications, 2013.

- 1. Hillier F.S., and Lieberman G.J., Operations Research, Eight Edition, Mc. Tata McGraw Hill, India, 2011.
- 2. Ravindran, —Engineering optimization Methods and Applications, 2nd edition, Wiley, India
- 3. Ravindran, Phillips and Solberg, Operations Research Principles and Practice, Second Edition, Mc. WSE Willey,
- 4. Operations Research An introduction, Hamdy A Taha, Pearson Education, 2010

	Strength of CO-PO Mapping											
						P	O					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	2	=	-	1	-	-	-	-	=	1	2
CO2	2	2	=	=	1	-	-	-	-	-	1	2
CO3	2	2	-	-	1	-	-	-	-	-	1	2
CO4	2	2	-	-	1	-	-	-	-	-	1	2
CO5	2	2	-	-	1	-	-	-	-	-	1	2
Average	2	2	-	-	1	-	-	-	-	-	1	2

(Components for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation Man						
1	Assignments on Unit-1, Unit-2, Unit-3, Unit 4 & Unit 5	10					
2	LMS Test	10					
	Total	20					

		T. Y. B. Tech. Semester: VI (Mech A :Computer Integra	0	٠,		
Teachin	g Scheme:	Credit Scheme:	Examinat		ne:	
Theory	: 3 hrs/week	03	Insem – 20 Marks End Sem – 60 Marks Continuous Comprehensive Evaluation: 20Marks			
	site Courses, if any: -Geome	etric Modeling and Pro				
organizat	ional Behavior	Course Objective	<u> </u>			
Explore a manufac	integrate hardware, software dvanced manufacturing co turing, group technology, Theoretical concepts of IoT, I	ncepts, including flex	ible manufac	turing, cel		
Course	Outcomes: On completion o	f the course, students v	will be able to-	_		
		Course Outcomes			Bloom's Level	
CO1	Understand the Principles	of CIM			2-Understand	
CO2	Apply Data Integration Te		3-Apply			
CO3	Demonstrate Proficiency is				4-Analyze	
CO4	Analyze Computer-Aided	Process Planning (CA	PP) methodolo	gies	4-Analyze	
CO5	Analyze Theoretical Conce	epts of Future Manufa	cturing Techn	ologies	4 - Synthesize	
		COURSE CONTE	NTS			
Unit I	Unit 1: Foundations of CIN	Л	(08 hrs)	COs Ma	pped - CO1	
	Need and Evolution of CIM of CIM and Types of Auton Computerized Elements, Ac	nation, Functions in M		CIM Whee	el and	
Unit II	Data Integration in CIM		(07 hrs)	COs Ma	pped - CO1, CO2	
	CAD-CAM Integration, F Networked Environment, Management, EDM, PDM,	Networking in Manu	_			
Unit I			(07 hrs)		pped - CO3	
	Introduction to CAM, Coor Milling Machines, CNC P Cycles, Subroutines, Do Loo	art Programming, To ops, CIM Integral Mac	ol and Geome	etric Com	pensations, Canned	
Unit IV	Process Planning, Quality	·	(07 hrs)	_	oped – CO4	
	CAPP and Benefits, Logical and its Applications, Comp Inventory, Inspection, MES	•		•		

Unit V	FMS, Cellular Manufacturing, and Future Smart (07 hrs) Factories	COs Mapped – CO5
	Flexible Manufacturing Systems (FMS) FMS Components Layor	its and Applications

Flexible Manufacturing Systems (FMS), FMS Components, Layouts, and Applications Group Technology (GT) and Part Families, Industry 4.0 and Functions, IoT Applications in Manufacturing, Digital Manufacturing in Industry 4.0, Scheduling, Lean Manufacturing

Text Books

- **3.** Automation, Production system & Computer Integrated manufacturing, M. P. Groover Person India, 2007 2nd edition.
- 4. Principles of Computer Integrated Manufacturing, S. Kant Vajpayee, Prentice Hall India
- **5.** Harrington J, Computer Integrated Manufacturing Krieger Publications 1979.

- 1 Weatherall, A., 2013. Computer integrated manufacturing: from fundamentals to implementation. Butterworth-Heinemann.
- 2. Nanua Singh, Systems Approach to Computer Integrated Design and Manufacturing, John Wiley Publications.
- 3. Jha, N.K. "Handbook of Flexible Manufacturing Systems", Academic Press Inc., 1991.

	Strength of CO-PO/PSO Mapping													
Strength	PO										PSO			
of COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	-	-	-	-	3	-	-	-	2	2	-	2
CO 2	3	3	-	-	-	-	3	-	-	-	2	2	-	2
CO 3	3	3	3	3	3	-	-	-	2	-	2	2	2	2
CO 4	3	3	-	-	3	-	-	-	2	-	2	2	2	2
CO 5	3	3	3	3	-	-	2	-	2	-	2	2	2	2
Avg	3	3	3	3	3	-	3	-	2	-	2	2	2	2

G	Guidelines for Continuous Comprehensive Evaluation of Theory Course							
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation							
1	One Assignments on Unit-1, Unit-2, Unit-3, Unit-4, Unit-5	10						
2	Pre insem test and pre end em test	5						
3	LMS Test	5						
	Total	20						

	T. Y. B. Tech.
Pattern 2022	Semester: VI (Mechanical Engineering)
MEC2	23015B:Automobile Engineering

-	VILC223013D:ridtomobile L	ingineering
Teaching Scheme:	Credit Scheme:	Examination Scheme:
Theory :3 hrs/week	03	Insem – 20 Marks End Sem – 60 Marks Continuous Comprehensive Evaluation: 20Marks

Prerequisite Courses, if any: -Fundamentals of Mechanical Engineering,Mechanism and Machines, Energy Systems forMobility.

Course Objectives

To develop a comprehensive understanding of automobile systems and their fundamental principles.

To comprehend Chassis, Powertrain, and Mobility Components.

To analyze Suspension, Brake Systems, and Vehicle Performance.

To explore Automotive Safety Standards and Emerging Technologies.

To make students conservant about Electrical Systems and Vehicle Maintenance.

Course Outcomes: On completion of the course, students will be able to—

	Course Outcomes	Bloom's Level
CO1	Explain and Compare automotive system for the vehicle.	2-Understand
CO2	Describe different types of mobility components and their respective functionalities.	2-Understand
CO3	Classify vehicle safety systems and comprehend their roles in risk mitigation and occupant protection.	2-Understand
CO4	Apply knowledge of suspension and brake systems in automobiles for maintenance tasks.	3-Apply
CO5	Analyze factors impacting vehicle performance and evaluate testing methodologies.	4-Analyze

COURSE CONTENTS

Unit I	Introduction	(08hrs)	COs Mapped - CO1
--------	--------------	---------	---------------------

Introduction:History and evolution of automobiles, Current trends and challenges in the automotive industry.

Chassis and Frames: Types, layout and constructional features of chassis and frames, components and materials.

Vehicle Powertrain Systems: Necessity and selection of clutch, Necessity of gear box and different types of transmission systems- MT, AT, AMT, CVT, DCT, Hybrid Transmission. Overdrive, final drive and differential.

Unit II	Mobility Components	(07hrs)	COs Mapped – CO1,CO2
---------	---------------------	---------	-------------------------

Axles:Types of axles: solid, live, dead, semi-floating, and full-floating

Wheels and tyres: Wheel design and construction, Wheel alignment and balancing procedures, type of tyres, construction, materials. Factors influencing tyre performance: tread design, compound,

inflation pressure.

Steering system : Types of steering systems, Steering kinematics, Active and adaptive steering systemsSteer-by-wire technology and drive-by-wire systems, electronic stability control (ESC)

Unit III Suspension and Brake System (07hrs) COs Mapped – CO1,CO4

Suspension: Types of Suspension Systems- Independent, Dependent, types of suspension springs, self levelling suspension (active suspension), shock absorbers (hydraulic and air).

Brake systems: Drum, disc, mechanical, hydraulic, air brakes, vacuum, power assisted brakes, handbrake, ABS, EBD, Electronic stability control (ESC) and traction control systems (TCS)

Unit VI Automotive Performance & Safety (07 hrs) COs Mapped – CO1,CO5

Automotive performance:Performance testing methodologies and standards, Basic principles of vehicle dynamics: traction, stability, and control. Road performance curves, Factors Affecting Vehicle Performance.

Automotive safety: Types of active and passive safety, Emerging Technologies in Vehicle Performance and Safety.

Unit V Electrical System and Vehicle Maintenance (07 hrs) COs Mapped – CO1,CO3

Batteries : Principles and construction of lead-acid battery, characteristics of battery, rating capacity and efficiency of batteries, various tests on battery condition, charging methods, introduction to lithium batteries. Introduction to Electrical system and accessories.

Maintenance: Types of vehicle maintenance, servicing/overhauling of clutch, gear box, propellershaft, differential, axles, steering system, suspension system, break system, electrical system.

Text Books

- **6.** Hans Hermann Braess, Ulrich Seiffen, "Handbook of Automotive Engineering", SAEPublications.
- 7. William H. Crouse., "Automotive Mechanics", Tata McGraw Hill Publishing House.
- **8.** SAE Manuals and Standards.
- **9.** N. K. Giri, Automobile Mechanics
- **10.** P. S. Kohali, Automobile Electrical Equipment, Tata McGraw Hill Publishing House.
- 11. Narang G. B. S, "Automobile Engineering", S. Chand and Company Ltd.

- 1. Dr. Kirpal Singh, "Automobile Engineering", Volume 1, Standard Publishers distributors.
- 2. Automobile Mechanics, "Crouse/Anglin", TATA Mcgraw-Hill.
- 3. R. B. Gupta, Automobile Engineering, Satya Prakashan. Faculty of Science and Technology Mechanical Engineering Page 25 of 62
- 4. Chris Mi, M .Abul Masrur, Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, ,Willey.
- 5. Electric and Hybrid Vehicles, Tom Denton, Routledge.
- 6. Hybrid Electric Vehicle Technology, Automotive Research and Design, American Technical.

	Strength of CO-PO/PSO Mapping													
Strength	PO										PS	Ю		
of COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	1	-	-	-	-	-	-	-	-	-	-	-	2
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	-	2
CO 3	3	2	2	-	-	2	-	-	2	-	-	-	2	2
CO 4	3	2	2	-	-	2	2	-	2	-	-	-	2	2
CO 5	3	2	2	2	-	-	2	-	2	-	-	-	2	2
Avg	3	2	2	2	-	2	2	-	2	-	-	-	2	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course							
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation							
1	One LMS Test on each Unit (10 marks) Total 50 marks will be converted into 10 marks	10						
2	Pre Insem test (30 marks) and Pre Endsem test (60 marks) Total marks will be converted into 10 marks	10						
	Total	20						

		T. Y. B. Tech.		
	Pattern 2022	Semester: VI (Mechan	ical Engineering)	
	MEC223015C : Prod	luct Design, Innovation,	, and Entrepreneu	rship
Teaching	g Scheme	Credit Scheme:	Examination Sch	ieme:
Theory:	3 hrs/week		Insem – 20 Mark	
-		03	End Sem – 60 M	arks
			Continuous Com	-
	11. 0 10 7		Evaluation: 20M	
_	isite Courses, if any: -Engir			
1 nermou Engineer	lynamics, Manufacturing Pro	icesses, Engineering Ecol	nomics, Materiais S	science and
Liigineer	mg	Course Objectives		
nderstan	d the principles of design t		echniques to foster	r innovative
	solving skills.	·	•	
	ciples of design thinking a	nd creativity techniques	to generate innov	ative solutions to
_	ng challenges.	1	g	
U	narket trends, consumer ne e	eds, and competitor offe	rings to identify o	pportunities for
-	nnovation and entrepreneu			P P 01 101
	e feasibility and viability of		gh nratatyning tes	sting and iterative
•	it processes.	product designs through	sn prototyping, tes	, and her acre
	it processes.			
Course	Outcomes: On completion o	f the course students wil	l ba abla to	
Course	Jucomes. On completion of	·		
		Course Outcomes		Bloom's Level
CO1	Describe design thinking a	and creativity principles t	o foster innovative	2-Understand
	problem-solving skills.		4:	
CO2	Apply design thinking tech			3-Apply
CO3	Analyze market trends for	product innovation and e	4-Analyze	
	opportunities.	thuoyah muototymina fou f		
CO4	Evaluate product designs viability.	inrough prototyping for i	easibility and	5-Analyze
	viaointy.	COURSE CONTENT	'S	
	<u> </u>			T
Unit I	Unit 1: Introduction to Pr	O ,	(08 hrs)	COs Mapped -
	Innovation, and Entrepre			CO1
	of Product Design, Innovation	1		
	e and Role in Mechanical En			
	ding Design Thinking Proce			
	nalysis and Identifying Oppo			
	on to Intellectual Property R			
	r Manufacturing and Assemb ng Techniques and Rapid Pro			
	Design Fundamentals and		(07 hrs)	COs Mapped -
Omt II	Design rundamentais and	Concept Development	(U/ IIIS)	COs Mapped - CO1, CO2
undamen	ntals of Engineering Design			001,002
	Generation and Selection			

Design Optimization Techniques
Ergonomics and Human Factors in Design
Material Selection for Product Design
Design Validation and Testing
Sustainability in Product Design

Uni	Innovation Strategies and Creativity Techniques	(07 hrs)	COs Mapped –
III			CO3

Understanding Innovation and its Types

Innovation Strategies in Mechanical Engineering

Creativity Techniques and Brainstorming

Design Thinking in Practice: Ideation Phase

Value Proposition and Business Model Canvas

Lean Startup Methodology

Unit VI	Entrepreneurship in Engineering	(07 hrs)	COs Mapped –
			CO4

Introduction to Entrepreneurship in Engineering

Business Plan Development

Financial Management for Startups

Marketing Strategies for Engineering Ventures

Sales and Distribution Channels

Intellectual Property Strategy for Startups

Unit V	Product	Development	Lifecycle	and	Project(07 hrs)	COs Mapped –
	Managen	nent				CO5

Overview of Product Development Lifecycle (PDLC)

Project Management Techniques for Product Development

Risk Management in Product Development

Quality Control and Assurance in Product Design

Agile Methodology in Product Development

Scaling Up Production and Manufacturing

Post-Launch Evaluation and Continuous Improvement

Text Books

- **12.** Idris Mootee, 2013, Design Thinking for Strategic Innovation: What They Can't Teach You at Business or Design School, Publisher: Wiley
- **13.** Tom Kelley, 2001, The Art of Innovation: Lessons in Creativity from IDEO, America's Leading Design Firm, Publisher: Crown Business
- **14.** Eric Ries, 2011, Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses, Publisher: Currency

- 1. Jeanne Liedtka, 2011, Designing for Growth: A Design Thinking Tool Kit for Managers, Publisher: Columbia University Press
- 2. Dan Olsen, 2015, The Lean Product Playbook: How to Innovate with Minimum Viable Products and Rapid Customer Feedback, Publisher: Wiley
- 3. Heidi M. Neck, Christopher P. Neck, Emma L. Murray, 2017, Entrepreneurship: The Practice and Mindset, Publisher: SAGE Publications, Inc

	Strength of CO-PO/PSO Mapping													
Strength	PO									PSO				
of COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	3	-	2	2	-	2	-	-	2	2	2	2
CO 2	3	3	3	-	3	2	-	-	-	3	-	2	2	2
CO 3	3	3	3	-	2	2	-	-	-	-	-	2	2	2
CO 4	3	3	3	-	3	2	-	-	-	-	-	2	2	2
Avg	3	3	3	-	3	2	-	2	-	3	2	2	2	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted					
1	One Assignments on Unit-1, Unit-2, Unit-3, Unit-4, Unit-5	5					
2	Pre insem test and pre end em test	10					
3	Use of LMS	5					
	Total	20					

T. Y. B. Tech. Pattern 2022 Semester: VI (Mechanical Engineering) MEC223016A: Finite Element Analysis Lab

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Practical :02 hrs/week	01	Term Work : 25 Marks Oral : 25 Marks

Prerequisite Courses, if any: - Mechanics of materials, Thermodynamics, Machine Design

Course Objectives:

- 13. To understand fundamentals of FEA for finite element formulation
- 14. To understand the 1D structural member for displacement, stress
- 15. To understand2D structural member for displacement, stress
- 16. To understand the heat transfer problems for temperature, thermal stress, heat flux
- 17. To understandthe mechanical component for dynamic conditions

Course Outcomes: On completion of the course, students will be able to—

	Course Outcomes On completion of the course the learner will be able to;	Bloom's Level
CO1	Apply fundamentals of FEA for finite element formulation	3 (Apply)
CO2	Analyze the 1D structural member for displacement, stress	4 (Analyze)
CO3	Analyze the2D structural member for displacement, stress	4 (Analyze)
CO4	Analyze the heat transfer problems for temperature, thermal stress, heat flux	4 (Analyze)
CO5	Analyzethe mechanical component for dynamic conditions	4 (Analyze)

List of Practical

The term work shall consist of record of any eight from following topic using any suitable analysis software

- 1. 1D Bar Element Structural Linear Analysis
- 2. Spring Structural Linear Analysis
- 3. Truss Analysis using 1D Element
- 4. Plate/Shell Element Structural Linear Analysis
- 5. Thermal Analysis Steady state Analysis
- 6. Coupled Analysis- (Structural + Thermal)
- 7. Modal Analysis Spring -Mass system, simply supported/Cantilever beam, etc.
- **8.** Analysis of Machine Component using 3D Elements
- **9.** Eigen Value Buckling Analysis of Beam

Text Books

- 1. A First Course in the Finite Element Method, Daryl L. Logan
- 2. Concepts and Applications of Finite Element Analysis, R. D. Cook, et al. Wiley, India

- 1. Chandrupatla T. R. and Belegunda A. D., —Introduction to Finite Elements in Engineering, Prentice Hall India.
- 2. Seshu P., —Text book of Finite Element Analysis, PHI Learning Private Ltd. New Delhi, 2010.
- 3. Bathe K. J., —Finite Element Procedures, Prentice-Hall of India (P) Ltd., New Delhi.
- 4. Fagan M. J., —Finite Element Analysis, Theory and Practicell, Pearson Education Limited
- 5. Kwon Y. W., Bang H., —Finite Element Method using MATLABI, CRC Press, 1997
- 6. S. Moaveni, —Finite element analysis, theory and application with Ansysl,
- 7. Fundamental of Finite Element Analysis, David V. Hutton, Tata McGraw-Hill
- 8. Gokhale N. S., Deshpande S. S., Bedekar S. V. and Thite A. N., —Practical Finite Element Analysis, 11. Finite to Infinite, Pune

	Strength of CO-PO Mapping													
						I	20						PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	-	-	3	2	-	1	2	-	-	3	2	2
CO2	3	3	3	-	3	2	-	1	2	-	-	3	2	2
CO3	3	3	3	-	3	2	-	1	2	-	-	3	2	2
CO4	3	3	3	-	3	2	-	1	2	-	-	3	2	2
CO5	3	3	3	-	3	2	-	-	2	-	-	3	2	2
Average	3	3	3	-	3	2	-	-	2	-	-	3	2	2

	T. Y. B. Tech.
Pattern 2022	Semester: VI (Mechanical Engineering)
MEC223016	B: Renewable Energy Engineering Lab

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Practical :02 hrs/week	01	Term work : 25 marks Oral : 25 marks

Prerequisite Courses, if any: - Engineering Thermodynamics, Fluid Mechanics, Heat Transfer

Course Objectives:

- 11. To understand the basics of Solar PV system.
- 12. To design the solar thermal conversion systems and solar photovoltaic systems for different applications.
- 13. To understand wind energy sources and technologies
- 14. To analyse the liquid bio-fuel and gasifier system

Course Outcomes: On completion of the course, students will be able to-

	Course Outcomes	Bloom's Level
CO1	Apply the knowledge of solar thermal and solar PV systems	2-Understand
CO2	Understand the wind energy conversion systems and wind energy resources	1- Knowledge
CO3	Analyse the liquid bio-fuels and gasifier systems	3-apply
CO4	Understand the working of Fuel Cell	2-Understand

	List of Laboratory Experiments (Any Five)						
Sr. No.	Laboratory Experiments / Assignments	CO Mapped					
1	Visit to Solar thermal Systemand it's technical and economic analysis.	CO1					
2	Study and plotting I-V characteristics of PV solar cell.	CO1					
3	Visit to solar PV grid connected system and it's technical and economic analysis.	CO1					
4	Design of solar PV roof top standalone and grid connected system.	CO1					
5	Study of wind energy conversion systems and study of it's case studies.	CO2					
6	Analysis of waste management plant	CO3					
7	Analysis of gasifier systems or Cooking stove or liquid bio-fuels.	CO3					
8	Performance characteristics study of fuel cell.	CO4					

Guidelines for Laboratory Conduction

- 1. Teacher will brief the given experiment to students its procedure, observations, calculation, and outcome of this experiment.
- 2. Apparatus and equipment's required for the allotted experiment will be provided by the lab assistant.

- 3.Students will perform the allotted experiment in a group under the supervision of faculty and lab assistant.
- 4. After performing the experiment students will check their readings, analysis, visit report from the teacher.
- 5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, setup diagram/layout, working principle, procedure, observations, graphs, calculations-technical and economics and conclusion.

Guidelines for Term work Assessment

Each experiment from lab journal is assessed for thirty marks based on three rubrics.

Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

T.Y.B.Tech. Pattern2022Semester:VI(B.TechMechancial) MEC223016C: Computational Fluid Dynamics Lab

TeachingScheme:	Credit Scheme:	ExaminationScheme:
Practical:02hrs/week	01	Termwork:25Marks Oral :25Marks

PrerequisiteCourses,ifany: -

CourseOutcomes:Oncompletion ofthecourse, students will be ableto—

	CourseOutcomes	Bloom'sLevel
CO1	Recognize the importance of CFD in Heat and Fluid flow	1-Knowledge
CO2	Recognize forced convection heat transfer coefficient over regular bodies like sphere, cylinder.	2-Understand
CO3	Assessment of drag coefficient in circular pipe under turbulent flow and bent pipe.	3-Apply
CO4	Pertain how to handling moving boundaries and wall effects in motion of fluid	3-Apply
CO5	Analyze how to handle power law fluids in CFD.	4-Analyze

Sr.No.	LaboratoryExperiments/Assignments	COMapped
1	Turbulent flow in a circular pipe: generating the friction coefficient versus Reynolds number	CO1,CO3
2	Flow of a power law non Newtonian fluid over an elliptic cylinder	CO1,CO5
3	Natural convection over a sphere.	CO1
4	Mixed convection over a sphere.	CO1,CO2
5	Forced convection over a sphere.	CO1,CO2
6	Forced convection over two cylinders in tandem arrangement.	CO1,CO2
7	Calculation of flow and heat transfer in a lid driven cavity.	CO1,
8	Wall effect on a sphere in a cylindrical tube.	CO1,CO4
Guideline	esforLaboratoryConduction	

Student should also submit a detailed report for all the above laboratorypracticals.

All simulation results should be validated with correlations available.

The student is expected to attach the simulation predictions and theliterature results when he presents the record.

GuidelinesforStudent'sLabJournal

Write-upshouldincludetitle, aim, diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

GuidelinesforTermworkAssessment

- 5. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 6. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journalwritingwhere eachrubriccarries ten marks.

	T. Y. B. Tech.
Pattern 2022	Semester: VI (Mechanical Engineering)
MEC2	23016D : Operation Research Lab

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Practical: 02 hrs/week	01	Termwork: 25Marks Oral: 25Marks

Prerequisite Courses, if any: -Engineering Mathematics, Theory of probability, Statistics

Course Objectives:

To familiarize the students with the use of practice oriented mathematical applications for optimization functions in an organization.

To familiarize the students with various tools of optimization, probability, statistics and simulation, as applicable in particular scenarios in industry for better management of various resources.

Course Outcomes: On completion of the course, students will be able to-

	Course Outcomes	Bloom's Level
CO1	ApplyLPP and Decision Theory to solve the problems	3-Apply
CO2	Apply the concept of transportation models to optimize available resources	3-Apply
CO3	Apply the concept of Inventory control and replacement analysis	3-Apply
CO4	Evaluate the process parameters for queuing theory and sequencing models	3-Apply
CO5	Analyzethe project management techniques.	4-Analyze

List of Laboratory Experiments / Assignments

Sr. No.	Laboratory Experiments / Assignments Practical/Lab to be performed on a computer using OR/Statistical packages	CO Mapped
1	To solve Linear Programming Problem using Graphical Method with (i) Unbounded solution (ii) Infeasible solution (iii) Alternative or multiple solutions.	CO1
2	Solution of LPP with simplex method and Big – M method.	CO1
3	Solution of Transportation Problem	CO2
4	Solution of Assignment Problem.	CO2
5	Problems based on selective inventory classification (ABC analysis).	CO3
6	To determine the performance measures for M/M/1 queuing model	CO4
7	To perform Project scheduling of a given project (Deterministic case-CPM).	CO5
8	To perform Project scheduling of a given project (Probabilistic case-PERT).	CO5
	Guidelines for Laboratory Conduction	•

- 4. Teacher will brief the given experiment/assignment to students its procedure, observations calculation, and outcome of this experiment/assignment.
- 5. Apparatus and equipment's required for the allotted experiment/assignment will be provided by the lab assistants using SOP.
- 6. Students will perform the allotted experiment/assignment in a group (two students in each group) under the supervision of faculty and lab assistant.
- 7. After performing the experiment/assignment students will check their readings, calculations from the teacher.
- 8. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, and diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Term work Assessment

- 18. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 19. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

Text Books

- . 1. Prem Kumar Gupta, D. S. Hira, Problems in Operations Research: Principles and Solutions, S. Chand, 1991
- 2. J. K. Sharma, Operations Research: Theory and Application, Laxmi pub. India, 2010.
- 3. Operations Research, S. D. Sharma, Kedar Nath Ram Nath-Meerut, 2015.
- 4. L.C.Jhamb, Quantative Techniques Vol. I &II, Everest Publication, 2007.
- 5. Manohar Mahajan, Operation Research, Dhanpatrai Publication, 2006.
- . 6. V. K. Kapoor, Operations Research: Quantitative Techniques for Management, Sultan Chand Publications, 2013.

- 1. Hillier F.S., and Lieberman G.J., Operations Research, Eight Edition, Mc. Tata McGraw Hill, India, 2011.
- 2. Ravindran, —Engineering optimization Methods and Applications, 2nd edition, Wiley, India
- 3. Ravindran, Phillips and Solberg, Operations Research Principles and Practice, Second Edition, Mc. WSE Willey,
- 4. Operations Research An introduction, Hamdy A Taha, Pearson Education, 2010

Strength of CO-PO Mapping												
						P	O					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	2	-	-	1	-	-	-	-	-	1	2
CO2	2	2	-	-	1	-	-	-	-	-	1	2
CO3	2	2	-	-	1	-	-	-	-	-	1	2
CO4	2	2	-	-	1	-	-	-	-	-	1	2
CO5	2	2	-	-	1	=	-	-	-	-	1	2
Average	2	2	-	-	1	-	-	-	-	-	1	2

T.Y.B.Tech. Pattern2022

MEC223017 : Machine Intelligence

MEC225017 :Machine Intelligence				
TeachingScheme:	Credit Scheme:	ExaminationScheme:		
Theory:03hrs/week	03	Continuous Comprehensive Evaluation:20Marks In Sem Exam: 20 Marks End SemExam:60 Marks		

PrerequisiteCourses:-Engineering Mathematics, Linear Algebra, Probability, Basic Statistics

CourseObjectives:

- 1. UNDERSTAND the fundamentals of Artificial Intelligence and Machine Learning.
- 2. APPLY Feature Extraction and Selection techniques to process datasets.
- 3. APPLY fundamental of classification and regression algorithms.
- 4. DEMONSTRATE the ability to develop machine learning models by outlining and executing essential steps, emphasizing practical application in mechanical engineering contexts.
- 5. EXPLORE the concepts of reinforced and deep learning, digital twin and Transfer learning.

CourseOutcomes: On completion of the course, students will be able to—

	CourseOutcomes	Bloom'sLevel
CO1	APPLY fundamental principles of Artificial Intelligence and Machine Learning.	2-Understanding
CO2	EXPLORE emerging technologies in solving engineering problems using Machine Learning.	2-Understanding
CO3	APPLY feature extraction and selection techniques to preprocess the given dataset	3-Apply
CO4	DEMONSTRATE classification and regression Algorithms in the context of mechanical engineering, enabling them to choose and implement suitable solutions	3-Apply
CO5	DEVELOP machine learning models, to address complex problems in mechanical engineering by following systematic and well-defined steps.	4-Analyze

COURSECONTENTS

UnitI Introduction to AI & ML (08	hrs) COs Mapped -CO1
-----------------------------------	----------------------

Introduction to AI- Definition and history of AI, Comparison of AI with Data Science and Machine learning Basics of AI: Reasoning, Knowledge representation, Planning, Learning, Perception, Motion and manipulation. Approaches to AI: Cybernetics and brain simulation, Symbolic, Sub-symbolic, Ethical considerations in AI, Societal Impact and Responsible AI

Introduction

to Machine Learning.

Approaches to ML: Supervised learning, Unsupervised learning, Reinforcement learning.

UnitII	Feature Engineering	(07 hrs)	COsMapped -CO3
--------	---------------------	----------	----------------

Feature selection: Filter Method, Wrapper Method, Embedded Methods, Greedy forward & backward methods, feature Ranking techniques, Decision tree

Feature extraction: Statistical features, Principal Component Analysis. (Numerical based on Statistical features and PCA)

UnitIII	Machine Learning Algorithms	(07 hrs)	COsMapped –CO4					
Classification: Decision tree- Entropy reduction and information gain, Random Forest, Naive Bayes,								
Support vector	machine. (Numerical based on Decision tree us	ing IG and Ba	nys theorem only)					

Regression: Logistic Regression, K-Means, K-Nearest Neighbor (KNN), Time series forecasting Algorithms (ARIMA, SARIMA, LSTM)

Unit IV	Development of Machine Learning Model	(07 hrs)	COs Mapped – CO4,
			CO5

Problem identification: classification, clustering, regression, ranking. Steps in ML modeling, Data Collection, Data pre-processing, Model Selection, Model training (Training, Testing, K-fold Cross Validation), parameters for Model evaluation of classification and regression algorithms (confusion matrix, Accuracy, Precision, Recall, True positive, false positive etc.), Hyper parameter Tuning. Introduction to Artificial Neural Network, Convolution Neural Network.

Unit V	Introduction to Emerging Technologies	(07 hrs)	COs Mapped –CO2
--------	---------------------------------------	----------	-----------------

Characteristics of reinforced learning Algorithms: Value Based, Policy Based, Model Based; Positive vs Negative Reinforced Learning Models, Markov Decision Process, Deep Learning, Introduction to digital twin (Definition, Components, Characteristics, Applications) and basics of Transfer Learning. Application of Artificial Intelligence and Machine Learning

Text Books

- 1. B Joshi, Machine Learning and Artificial Intelligence, Springer, 2020.
- 2. Parag Kulkarni and Prachi Joshi, "Artificial Intelligence Building Intelligent Systems", PHI learning Pvt. Ltd., ISBN 978-81-203-5046-5, 2015

- 1. Stuart Russell and Peter Norvig (1995), "Artificial Intelligence: A Modern Approach," Third edition, Pearson, 2003.
- 2. Solanki, Kumar, Nayyar, Emerging Trends and Applications of Machine Learning, IGI Global, 2018.
- 3. Mohri, Rostamizdeh, Talwalkar, Foundations of Machine Learning, MIT Press, 2018.
- 4. Kumar, Zindani, Davim, Artificial Intelligence in Mechanical and Industrial Engineering, CRC Press, 2021.

	StrengthofCO-POMapping											
						PO	О					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	1	2	2	2	-	1	2	2	-	2
CO2	3	3	1	2	2	2	-	1	2	2	-	2
CO3	3	3	1	2	2	2	-	1	2	2	-	2
CO4	3	3	1	2	2	2	-	1	2	2	-	2
CO5	3	3	1	2	2	2	-	1	2	2	-	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course							
Sr.No.	ComponentsforContinuousComprehensiveEvaluation	Marks Allotted						
1	Assignments- Total5Assignment	10						
	Assignment on each unit for 10 Marks							
	(These 50 markswill beconverted to 10 Marks)							
2	Testsoneachunitusing LMS \ Learni-Co	10						
	(Each test for 10 Mandtotal 50 marks will beconverted to 10M)							

T. Y. B. Tech.							
Pattern 2022	Pattern 2022 Semester: VI (Mechanical Engineering)						
MEC	223018 : Financial Man	agement					
Teaching Scheme:	Credit Scheme:	Examination Scheme:					
Theory: 2 Hrs /week	02	Continuous Comprehensive					
		Evaluation: 50Marks					

Prerequisite Courses, if any: -Fundamentals of Statistics, Basics of finance

Course Objectives

- 5. To introduce the concepts of economics & finance in industry.
- 6. To understand cost analysis and pricing
- 7. To acquire knowledge on basic financial management aspects and develop the skills to analyze financial statements
- 8. To understand the budgetary process and control.
- **9.** To introduce the entrepreneurial financial aspects.

Course Outcomes: On completion of the course, students will be able to-

	Course Outcomes	Bloom's Level
CO1	UNDERSTAND the business environment, concepts of economics and demand-supply scenario.	2-Understand
CO2	UNDERSTAND accounting systems and analyze financial statements using ratio analysis	2-Understand
CO3	APPLY the concepts of costing and pricing to evaluate the pricing of mechanical components.	3-Apply
CO4	SELECT and PREPARE the appropriate type of budget and understand the controlling aspects of budget	3-Apply
CO5	DEMONSTRATE understanding of financing decisions of new ventures and performance	4-Analyze

COURSE CONTENTS

to Economics	(04hrs)	Cos Mapped – CO1
ì	to Economics	to Economics (04hrs)

Economics: Significance of Economics, Micro and Macro Economic Concepts, Various terms and Concepts, Importance of National Income, Inflation, Money Supply in Inflation, Factors of Production, Business Cycle, Features and Phases of Business Cycle. Nature and Scope of Business Economics, Role of Business Economist, Multidisciplinary nature of Business Economics

Demand and Supply: Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making, Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting

Unit II	Costs and Cost Accounting	(05hrs)	Cos Mapped – CO1,CO3
---------	---------------------------	---------	-------------------------

Costs: Standard cost, estimated cost, First cost, Fixed cost, Variable cost, Incremental cost, Differential cost, Sunk and marginal cost, Cost curves, Breakeven point and breakeven chart, Limitations of breakeven chart,

Interpretation of breakeven chart, margin of safety, Angle of incidence and multi product break even analysis, Cost Output Decision and Estimation of Cost, Zero Based Costing and numerical

Cost Accounting: Objectives of cost accounting, elements of cost: material cost, labor cost, and expenses, allocation of overheads by different methods, Costing based on direct and indirect costs, Overheads apportionment and absorption, Different Models of Depreciation. Numerical on costing

Unit III Financial Accounting (5hrs) Cos Mapped – CO1,CO2

Accounting, Cost accounting & Management accounting, Various types of business entities, Accounting principles, postulates & meaning of accounting standards, Accounting cycle, Capital and revenue, Revenue, Expenses, Gains & Losses, Types of accounts & their rules, Journal Entries Create ledger, Preparation of Trial Balance, Finalizations, Preparation of Trading & Profit & Loss account, Understanding of Assets & Liabilities Balance sheet and related concepts – Profit & Loss Statement and related concepts, Financial Ratio Analysis, Cash flow analysis, Funds flow analysis, Comparative financial statements, Analysis & Interpretation of financial statements, Concept of Ratio Analysis, Preparation of Balance sheet (numerical)

Unit VI	Budget and Budgetary Control	(05hrs)	Cos Mapped –
CIII VI	Budget and Budgetary Control	(051113)	CO1,CO4

Budgeting and Budgetary Control: Concept of budget, Types and classification of budgets, Advantages and limitations, Methods of budgeting

Budgetary Control: objectives, merits and limitations, Budget administration. Functional budgets. Fixed and flexible budgets, Installation of Budgetary Control System, Zero base budgeting, Taxes and Financial Planning, Impact of Taxation and Inflation on Financial Management

Unit V Entrepreneurial Finance (05 hrs) Cos Mapped – CO1,CO5

Sources of Funds for Entrepreneurs and Start Ups: Entrepreneurial Finance Vs. Corporate Finance; Traditional Sources of Funds, Early-Stage Sources of Funds- Incubators, Accelerators, Crowd Funding, Business Angels, Mezzanine Funds, Venture Capitals, Private Equity, LBO, Funding Process – Deal Sourcing, Deal Negotiation, Deal Agreement, Term Sheet

Investment Decisions for Start Ups: Time Value of Money, Types of Investment Decisions, Capital Budgeting Process – Investment Evaluation, Risk Analysis in Capital Budgeting – Risk Adjusted Discount Rate, Certainty Equivalent, Decision Tree, Sensitivity Analysis, Scenario Analysis

Valuation and Measurement of Financial Performance: Pre Money and Post Money Valuation, Factors Influencing Valuation, Valuation Methods, Dilution and Valuation of Equity, Metrics used for Performance Evaluation, Harvesting-Exit Strategies

Text Books

- **15.** Hay, Donald A. and Derek J. Morris. Industrial Economics and Organization: Theory and Evidence, 2nd Edition (Oxford: Oxford University Press), 1991.
- 16. Lall, Sanjaya. Competitiveness, Technology and Skills (Cheltenham: Edward Elgar), 2001.
- **17.** Scherer, F. M. and D. Ross. Industrial Market Structure and Economic Performance, 3rd Edition (Houghton: Mifflin), 1990
- **18.** Financial Accounting", Dr. Kaustubh Sontakke [Himalaya Publishing House] 4.Chandra, Prasanna (2004). Financial Management: Theory and Practice. New Delhi: TATA McGraw Hill.

- 1. Accounting Theory & Practice Prof Jawahar Lal [Himalaya Publishing House].
- 2. Brearley, Richard A. and Myers, Stewart C. (1988). "Principles of Corporate Finance", New Delhi:

McGraw-Hil

- 3. Engineering Economics, Tara Chand, Nem Chand and Brothers, Roorkee
- **4.** Engineering Economy, Thuesen, G. J. and Fabrycky, W. J., Prentice Hall of India Pvt. Ltd.
- **5.** Mechanical Estimating and Costing, T. R. Banga and S. C. Sharma, Khanna Publishers, Delhi

Strength of CO-PO/PSO Mapping														
Strength			PO								PSO			
of Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	1	1	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	1	1	-	1	-	-	-	-	-	-	-	-	-	-
CO 4	1	1	-	-	-	-	2	-	-	-	-	-	-	-
CO 5	1	1	-	2	-	-	2	-	-	-	-	-	-	-
Avg	1	1	-	2	-	-	2	-	-	-	-	-	-	-

	Guidelines for Continuous Comprehensive Evaluation of Theory Course							
Sr. No.	Marks Allotted							
1	One LMS Test on each Unit (10 marks) Total 50 marks will be converted into 25 marks	25						
2	Test- I (25 marks) and Test-II (25 marks) Total marks will be converted into 20 marks	20						
3	Certification course using any Mooc's platform	05						
	Total	50						

T. Y. B. Tech Pattern 2022 Semester: VI (Mechanical Engineering) MEC223019: Measurement and Automation Laboratory

Teaching Scheme:	Credit Scheme:	Examination Scheme:			
Tutorial: 01 hrs / week	01	Tutorial: 25Marks			
Practical: 02 hrs / week	01	Oral : 25 Marks			

Prerequisite Courses: - Basics of linear measurement, Physics, Fundamentals of Mechanical Engineering.

Course Objectives:

- To develop essential skills for calibrating and testing instruments.
- To apply basics of measurement methods through the gathering of data, analysis, and interpretation and expertise in designing limiting gauges.
- To demonstrate various robotic configurations using industrial robot
- To select appropriate hydraulic and pneumatic components by considering specified system requirements, performance criteria, and compatibility with existing infrastructure.
- To summarize troubleshooting techniques essential for identifying and resolving common issues encountered in fluid power systems

	Course Outcomes	Bloom's Level	
CO1	Selection of measurement methods and standards, carryout data collection and its analysis.	2-Understanding	
CO2	Determine limits, fits, tolerances, geometric tolerances and Design of Gauges.	3- Apply	
CO3	Demonstrate of various robotic configurations using industrial robot	3- Apply	
CO4	Construct Industrial circuits using suitable hydraulic and pneumatic components	3- Apply	
CO5	Design an industrial fluid power system	5 - Evaluate	

COURSE CONTENTS

The student shall complete the following activity as a Term Work,

- 1. Demonstrate and compute linear and angular measurements employing tools such as Vernier Caliper, Screw Gauge, Dial Gauge, Height Gauge, Bevel Protector, etc. Analyze measurement errors using OER software, Minitab, or Excel sheets.
- 2. Determine Parameters of screw thread using floating carriage micrometer.
- 3. Determine the geometry and dimensions of a given composite object or a single-point tool using an Optical Projector or Tool Maker's Microscope. Evaluate and distinguish its practical utility in real-life applications.

- 4. Measurement of the any one characteristics from the following using any suitable measurement system,
 - a. Surface roughness
 - b. Gear tooth Parameter
 - c. Verification of composite geometry.
- 5. Limit Gauges: Concepts, uses and applications of Go –No Go Gauges, Taylor's principle andDesign of gauges (Numerical and student activity)
- 6. Demonstration of various robotic configurations using industrial robot
- 7. Demonstrate industrial circuits on Hydraulic trainers
- 8. Demonstrate industrial circuits on Pneumatic trainers
- 9. Design an industrial fluid power system to address a specified problem by selecting components from manufacturer catalogs.
- 10. Exploring Industrial Automation Systems: Site Visit.

Important Note:

Industry visit for advanced in measurement and automation to provide exposure to students.

Text Books

- 1. Jain R.K., Engineering Metrology, Khanna Publication.
- 2. I.C.Gupta, Engineering Metrology, Dhanpath Rai.
- 3. Bewoor A. K. and Kulkarni V. A., Metrology and Measurements, McGraw hill Publication.
- 4. Esposito A, Fluid Power with application, Prentice Hall
- 5. Majumdar S.R, Oil Hydraulic system- Principle and maintenance, Tata McGraw Hill
- 6. Majumdar S.R, Pneumatics Systems Principles and Maintenance, Tata McGraw Hill
- 7. Stewart H. L, Hydraulics and Pneumatics, Taraporewala Publication

- 1. Narayana K.L., Engineering Metrology.
- 2. Galyer J.F & Shotbolt C.R., Metrology for engineers
- 3. Judge A.W., Engineering Precision Measurements, Chapman and Hall
- 4. ASTME, Handbook of Industrial Metrology, Prentice Hall of India Ltd.
- 5. Connie Dotson, Fundamentals of Dimensional Metrology, ThamsonPubln. 4th Edition.
- 6. Pipenger J.J, Industrial Hydraulics, McGraw Hill
- 7. Pinches, Industrial Fluid Power, Prentice Hall
- 8. ISO 1219, Fluid Systems and components, Graphic Symbols
- 9. Fundamentals of Pneumatics, Vol I, II and III. FESTO
- 10. Fundamentals of fluid power control, John Watton Cambridge University press

- 11. Introduction to Fluid power, Thomson Prentcie Hall
- 12. Hydraulic Control Systems Herbert E. Merritt John Wiley and Sons, Inc

Codes / Handbooks

Francis T. Farago, Mark A. Curtis, Handbook of dimensional measurement

E- resources

- 1. nptel.ac.in/courses/112106179
- 2. www.nptelvideos.in/2012/12/mechanical-measurements-and-metrology.html
- 3. https://nptel.ac.in/courses/112/107/112107242/
- 4. freevideolectures.com > Mechanical > IIT Madras
- 5. https://nptel.ac.in/courses/112/106/112106139/
- 6. https://archive.nptel.ac.in/courses/112/106/112106175/#
- 7. https://archive.nptel.ac.in/courses/112/106/112106300/

		Strength of CO-PO/PSO Mapping												
		PO						PS	O					
Strength of CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	-	3	-	-	-	-	2	2	1	2	2	1
CO 2	3	2	-	3	3	-	-	-	2	2	1	2	2	1
CO 3	3	2	-	3	2	-	-	-	2	2	1	2	2	2
CO 4	3	2	-	3	2	-	-	2	2	2	1	2	2	2
CO 5	3	2	3	3	2	-	-	3	2	2	1	2	2	2

Guidelines for Teamwork Assessment Continuous Assessment Policy (Term work marks of 25 will be awarded based on the following policy)

Each laboratory assignment will be assessed for 30 Marks according to the following rubrics:

- R1- Timely completion of assignments (10 Marks)
- R2- Understanding of assignment (10 Marks)
- R3 Presentation/Clarity of journal writing (10 Marks)

For all 10 Experiments, total marks of 300 will be converted into 25 Marks.

Description	Weightage	Evaluation criteria
R1-Timely completion of	10 Marks	Each experiment/assignment will get 10 marks
assignments		for timely submission.
		Late submission will be valued as 5 in totality.
		Fail to submit will be valued as 0 in totality
R2- Understanding of assignment.	10 Marks	Understanding of assignments is based on oral questions based on assignment.
R3 – Presentation/Clarity of Drawing Sheets	10 Marks	Completed sheet with proper dimensioning, line work carries 10 marks.

ThirdYear.B.Teo	ch.Pattern2024 MEC223020 : Sem	inar
TeachingScheme:	Credit Scheme:	ExaminationScheme:
Practical: 2 hrs./week	1	TermWork: 50Marks
PrerequisiteCourses:	1	
CourseObjectives:		

- Apply problem-solving skills to real-world scenarios related to their specialization.
- Analyze the technical and practical challenges within their course specialization.
- Evaluate the implications of these challenges on industry practices and innovations.
- Demonstrate the ability to describe, interpret and analyze technical issues and develop competence in presenting

CourseOutcomes: With this seminar report and presentation, the student is expected to learn/achieve the following:

	CourseOutcomes						
1	Applying problem-solving techniques to real-world scenarios, demonstrating adaptability and creativity in finding effective solutions.						
2	Illustrate technical and practical issues relevant to their specialization.						
3	Comparing the potential impact of these challenges on various sectors or segments within the industry.						
4	Demonstrate enhanced soft skills and effective presentation.						

Course Overview:

This course is designed to enhance the intellectual and professional development of third-year mechanical engineering students by providing them with an opportunity to explore and present on advanced topics relevant to the field. This seminar aims to foster critical thinking, research skills, and effective communication abilities among the students.

Selection of Seminar Topic: (Week 1)

Choose topics that align with current trends, emerging technologies, and challenges in the field of mechanical engineering.

Encourage diversity in topic selection to cover a broad spectrum of sub-disciplines within mechanical engineering, such as thermodynamics, materials science, manufacturing, robotics, fluid mechanics, and sustainable design.

Literature Survey: (Week 2 to Week 4)

Allocate sufficient time for students to conduct in-depth research on their chosen seminar topic.

Encourage the use of reputable academic sources, journals, and research papers for information gathering.

Emphasize the importance of critical analysis and synthesis of information to form well-supported arguments.

Guidance for the Presentation: (Week 5)

Provide guidance on effective presentation techniques, including clear slides, proper use of visual aids, and engaging delivery.

Encourage students to practice their presentations to ensure they adhere to time limits and effectively convey their message.

Highlight the importance of maintaining eye contact, using confident body language, and responding to audience questions with clarity.

Stage I Presentation: (Week 6)

Follow the guidelines for the presentation

Stage I presentation slides should include introduction, literature review and concept.

Stage I presentation to be delivered to the seminar guide.

Report Preparation: (Week 7 to 9)

The students should get draft copy of the report checked from the allotted seminar guide.

Students are expected to maintain a high standard of originality, with a permissible similarity threshold limited to 10%.

Stage II Presentation: (Week 10)

Stage II presentation slides should be as per format and structure provided.

Stage II presentation to be delivered in front of the internal panel.

Report & PPT Editing: (Week 11 to 12)

Report and PPT should be modified as per the suggestions/corrections given by the internal panel.

Final Presentation:

The final presentation/viva will be assessed by a committee including an expert (preferably from industry with minimum 5 years' experience) and an internal panel. The internal panel will consist of the seminar guide and two subject experts, approved by the HOD and the principal of the institute.

Format and Structure for Seminar Report Writing:

Introduction: Provide a clear and concise introduction to the chosen topic, highlighting its relevance and significance in the field of mechanical engineering.

Literature Review: Summarize key findings from relevant literature and discuss the existing knowledge base on the selected topic.

Methodology (if applicable): Outline any experimental methods, simulations, or data analysis techniques employed in the research.

Results and Discussion: Present and analyze the findings, addressing any challenges or limitations encountered during the research process.

Conclusions: Summarize the key takeaways and contributions of the seminar, along with potential avenues for future research.

Q&A Session: Allow time for questions and discussions, promoting interaction and engagement with the audience.