

T. Y. B. Tech. Pattern 2022 Semester: V (Mechanical Engineering) MEC223001-: Machine Design-I						
Teaching Scheme:Credit Scheme:Examination Scheme:						
Theory :03 hrs/week03Continuous Comprehensive Evaluation: 20Marks In Sem Exam: 20Marks End Sem Exam: 60Marks						
Prerequisites: The basics of material elastic behavior, stress, strain, its relationship, failure modes, different theories of failure and its applications. The design cycle, basis of design considerations like strength, rigidity, manufacture, assembly and cost, standards and codes. The preferred sizes and series, tolerances and types of fits. Construction of SMD and BMD, Boots of equations. Interpolation rule						
Course Objectives: 1. UNDERSTAND the various design considerations, design procedure and select materials for a specific application 2. CALCULATE the stresses in machine components due to various types of loads and failure						

3. ANALYZE machine components subjected to variable loading for finite and infinite life

4. **DESIGN** various machine components such as shafts, couplings, keys, screws, joints.

Course Outcomes: On completion of the course, students will be able to-

	Course Outcomes					
C01	and ling 3-App	ply				
CO2	ANALYZE different stresses in power screws an procedure to design screw jack.	d APPLY those in	the 3-App	ply		
CO3	EVALUATE dimensions of machine components under fluctuating loads. 3-Apply					
CO4	CO4 EVALUATE & INTERPRET the stress developed on the different type of welded and threaded joints.					
	COURSE CONTENT	TS				
Unit I	COs Mapped CO1	1 -				
Factor of s	safety, Selection of Factor of Safety, Service factor, De	esign of Cotter joint,	Knuckle joint,	, Design		
of hand / : loading.	foot lever, lever for safety valve, bell crank lever, De	sign of components	subjected to ec	ccentric		
Unit IIDesign of Shafts, Keys and Couplings(07hrs)COs MappedCO1				1 -		
Shaft design on the Strength basis, torsional rigidity basis and lateral rigidity basis, Design of shaft as per						
A.S.M.E. code. Design of key and splines. Design of Rigid and Flexible Coupling.						
Unit	Design of Power Screws	(07hrs)	COs Mapped	i –		
III			CO1, CO3			

Terminology of Power Screw, Torque analysis and Design of power screws with square and trapezoidal threads, Collar friction torque, Self-locking screw, Efficiency of square threaded screw, Efficiency of self-locking screw, Design of screw, nuts and C-Clamp. Design of screw jack,

		1 0	5	
Unit	Design against Fluctuating loads		(07hrs)	COs Mapped –
IV				CO1, CO3

Stress concentration and its factors, Reduction of stress concentration factors, fluctuating stresses, fatigue failures, endurance limit, S-N curve, Notch sensitivity, Endurance limit, Endurance strength modifying factors, Reversed stresses – Design for Finite and Infinite life, Cumulative damage in fatigue failure, Soderberg, Gerber, Goodman Lines, Modified Goodman diagrams.

		/	0	
Unit V	Threaded and Welded joints		(07hrs)	COs Mapped –
				CO1,C04

Introduction to threaded joints, Bolts of uniform strength, locking devices, eccentrically loaded bolted joint in shear, Eccentric load perpendicular and parallel to axis of bolt, Eccentric load on circular base. Introduction to welded joints, Strength of butt, parallel and transverse fillet welds, Axially loaded unsymmetrical welded joints, Eccentric load in plane of welds, Welded joints subjected to bending and torsional moments.

Text Books

Text Books:

1. Bhandari V.B., Design of Machine Elements, Tata McGraw Hill Publication Co. Ltd.

2. Shigley J.E. and Mischke C.R., Mechanical Engineering Design, McGraw Hill Publication Co. Ltd.

Reference Books

1. Spotts M.F. and Shoup T.E., Design of Machine Elements, Prentice Hall International.

2. Juvinal R.C., Fundamentals of Machine Components Design, John Wiley and Sons.

3. Black P.H. and O. Eugene Adams, Machine Design, McGraw Hill Book Co. Inc.

 Willium C. Orthwein, Machine Components Design, West Publishing Co. and Jaico Publications House.
 Hall A.S., Holowenko A.R. and Laughlin H.G, Theory and Problems of Machine Design, Schaum's Outline Series.

6. C. S. Sharma and Kamlesh Purohit, Design of Machine Elements, PHI Learing Pvt. Ltd.

7. D. K. Aggarwal & P. C. Sharma, Machine Design, S.K Kataria and Sons.

8. P. C. Gope, Machine Design: Fundamentals and Applications, PHI Learing Pvt. Ltd.

9. Design Data - P.S.G. College of Technology, Coimbatore.

10. K. Mahadevan, K. Balveera Reddy, Design Data Handbook for Mechanical Engineers, CBS Publishers.

Strength of CO-PO Mapping														
		PO												
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	3	3		1	1		1	2			1	1	
CO2	3	3	3		1	1		1	2			1	1	
CO3	3	3	3		1	1		1	2			1	1	
CO4	3	3	3					1	2			1	1	
Average	3	3	3		1	1		1	2			1	1	

Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Assignments on each Unit	10			
2	LMS Test on Each Unit	10			
	Total	20			

T. Y. B. Tech. Pattern 2022 Semester: V (Mechanical Engineering) MEC223002 : Heat Transfer						
Teaching	Scheme:	Credit Scheme:	Examinat	ion Sch	ieme:	
Theory : 03 hrs/week 03 Continuous Comprehenere Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Mark					prehensive arks Marks 60Marks	
Prerequi	site Courses, if any:					
Course Objectives: Identify the important modes of heat transfer and their applications Formulate and apply the general three dimensional heat conduction equations Analyze the thermal systems with internal heat generation and lumped heat capacitance Understand the mechanism of convective heat transfer Determine the radiative heat transfer between surfaces Evaluate the performance of heat exchanger 						
	(Course Outcomes			Bloom's Level	
CO1	Apply heat transfer laws a dimensional Cartesian, cyl	and electrical analogy to a indrical and spherical cod	nalyze one ordinate syst	tems	3-understand	
CO2	CO2 Analyze thermal systems with and without internal heat generation 3- Analyze					
CO3	Evaluate heat transfer rate in convection and radiation heat transfer 3-Understand					
CO4 Apply heat transfer principles to design and estimate performance of thermal equipment's 4-Understan					4-Understand	
COURSE CONTENTS						
Unit I	Unit IFundamentals of Heat Transfer(8 hrs)COs Mapped - CO1CO2					

Basic Concepts: Different Modes and Laws of heat transfer, 3-D heat conduction equation in Cartesian coordinates (with derivation), and its simplified equations, simplified equations in cylindrical and spherical coordinates (simplified equations, no derivation) thermal conductivity, thermal diffusivity, electrical analogy, Thermal contact Resistance.

Boundary and initial conditions: Temperature boundary condition, heat flux boundary condition, convection boundary condition, radiation boundary condition.

1-D steady state heat conduction without and with heat generation: Heat conduction without heat generation in plane wall, composite wall, composite cylinder, composite sphere. Heat conduction with heat generation in Plane wall, Cylinder and Sphere with different boundary conditions.

Unit II Heat Transfer through Extended Surfaces & (7 hrs)	COs Mapped - CO2
Transient Heat Conduction	

Heat Transfer through Extended Surfaces: Types of fins and its applications, Governing Equation for constant cross sectional area fins, solution for infinitely long & adequately long (with insulated end) fins, efficiency & effectiveness of fins.

Transient heat conduction: Validity and criteria of lumped system analysis, Biot and Fourier number, Time constant and response of thermocouple, Transient heat analysis using charts. Introduction to Two Dimensional heat conduction

Fundamentals of convection: Mechanism of natural and forced convection, local and average heat transfer coefficient, concept of velocity and thermal boundary layers. Dimensionless numbers and their physical significance,

Forced convection: Empirical correlations for external and internal flow for both laminar and turbulent flows. (Numericals)

Jet impingement cooling, Film cooling

Natural convection: Empirical correlations for natural convection. (Numericals)

Condensation and Boiling: Boiling heat transfer, types of boiling, pool boiling curve and forced boiling phenomenon, condensation heat transfer, film wise and drop wise condensation

Fundamental concepts, Spectral and total emissive power, real and grey surfaces, Stefan Boltzmann law, Radiation laws – Plank's, Wien's, Kirchhoff's and Lambert's cosine law with simple applications, Irradiation and radiosity, Electrical analogy in radiation, Radiation shape factor, radiation heat exchange between two black and diffuse gray surfaces, radiation shield. Gas radiation –basic approach

Unit V Heat Transfer Equipment's	(7 hrs)	COs Mapped - CO4
----------------------------------	---------	------------------

Heat exchangers: Classification and applications, heat exchanger analysis – LMTD for parallel and counter flow heat exchanger, effectiveness– NTU method for parallel and counter flow heat exchanger, cross flow heat exchanger, Fouling factor, LMTD correction factor, design criteria for heat exchanger, Introduction to TEMA standards. Introduction to heat pipe, Loop heat pipe, pulsating heat pipe and Heat wheel

Heat Transfer Enhancement techniques used in heat exchanger

Text Books

1. F.P. Incropera, D.P. Dewitt, Fundamentals of Heat and Mass Transfer, John Wiley.

Y. A. Cengel and A.J. Ghajar, Heat and Mass Transfer: Fundamentals and Applications, Tata McGraw Hill Education Private Limited.

3. S.P. Sukhatme, A Textbook on Heat Transfer, Universities Press.

4. R.C. Sachdeva, Fundamentals of Engineering Heat and Mass Transfer, New Age Science. 5. P.K. Nag, Heat & Mass Transfer, McGraw Hill Education Private Limited.

6. M. M. Rathod, Engineering Heat and Mass Transfer, Third Edition, Laxmi Publications, New Delhi

Reference Books

1. A.F. Mills, Basic Heat and Mass Transfer, Pearson.

2. S. P. Venkatesan, Heat Transfer, Ane Books Pvt. Ltd.

3. Holman, Fundamentals of Heat and Mass Transfer, McGraw – Hill publication.

4. M. Thirumaleshwar, Fundamentals of Heat and Mass Transfer, Pearson Education India.

5. B. K. Dutta, Heat Transfer: Principles and Applications, Prentice Hall India.

6. C.P. Kothandaraman, S. V. Subramanyam, Heat and Mass Transfer Data Book, New Academic Science.

Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Four Assignments on unit-1, Unit-2, Unit-3 and Unit-4	10			
2	Group Presentation on Unit-5	05			
3	LMS Test on Each Unit	05			
	Total	20			

T. Y. B. Tech.								
Pattern 2022 Semester: V (Mechanical Engineering)								
Toophing Schemes Cuedit Schemes Energia the Schemes								
Teaching	Scheme:	Credit Scheme:	Examination Scheme:					
Theory :03 hrs/week 03 Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks Termwork: 25Marks PR/Oral: 25Marks Prerequisite Courses, if any: - System of linear equations, Partial differentiation, Statistics, Probability, Problem solving and programming Course Objectives: 1								
 APPLY COMP INTER ANAL 	 COMPLRSTAND applications of systems of equations and solve incentinear engineering applications APPLY numerical differentiation and integration techniques to solve engineering applications. COMPARE the system's behavior for the experimental data. INTERPRET Statistical measures for quantitative data. ANALYZE datasets using probability theory and linear algebra. 							
Course O	utcomes: On completion c	of the course, students will	l be able to-					
		Course Outcomes		Bloom's Level				
	APPI V system of equation	urse the learner will be	able to;	3 Apply				
CO1	and iterative numerical m	ethods	cations using uncer	5-дрргу				
CO2	APPLY numerical different engineering applications.	entiation and integration t	echniques to solve	3-Apply				
CO3	APPLY curve fitting and applications.	interpolating techniques	to solve engineering	3-Apply				
CO4	ANALYZE quantitative of	data using statistical tech	nique	4-Analyze				
CO5	RELATE the data, using	the concepts of probabili	ty and linear algebra	4-Analyze				
		COURSE CONTENT	ſS					
Unit I S a	Solution of Equations: Alg and Simultaneous Equatio	ebraic, Transdental ns	(07 hrs)	COs Mapped - CO1				
Algebraic,	Transdental Equations: H	Bracketing method : Bisec	ction Method, Open	End Method: Newton-				
Raphson Method								
Simultane	Simultaneous Equations: Gauss Elimination Method with Partial pivoting, Gauss Seidel Method							
	COS Mapped - CO1. CO2							
Ordinary	Differential Equations	ODE]: Euler Method, H	Runge-Kutta 2nd or	der method, Runge-				
Kutta 4 th o	order method			1 * *, 1 .*				
Partial Differential Equations [PDE]: Finite difference method, PDE's Parabolic explicit solution, Numerical Integration (1D): Trapezoidal rule, Simpson's 1/3-4Rule, Simpson's 3/84-Rule								

Numerical Integration (1D): Trapezoidal rule, Simpson's 1/3rdRule, Simpson's 3/8thRule

Unit	Curve Fitting and Interpolation	(08hrs)	COs Mapped -					
III			CO1, CO3					
Curve Fitting: Least square technique- first order, power equation, exponential equation and quadratic								
equation.								
Internola	tion Lagrange's interpolation Newton's forward int	erpolation method	1					

iter polation . Lagrange s interpolation, rewion s forward interpolation incurod							
Unit	Statistics	(08hrs)	COs Mapped -				
IV			CO1. CO4				

Measures of central tendency: mean, median, mode. Measurement of variability and dispersion: Standard deviation, standard error, variance, range. Measure of shape: skewness, kurtosisStatistical diagram: scattered diagram, histogram, pie charts, and measure of association between two variables. Correlation: Karl Pearson's Coefficient of correlation and its mathematical properties, Spearman's Rank correlation and its interpretations

Unit V	Probability	(08hrs)	COs Mapped - CO1, CO5
Probability	: Joint, conditional and marginal probability, Bayes'	theorem, independe	ence, theorem of total
muchobility	expectation and variance random variables. Drabability	distributional Dinomi	al Daisson Coomatria

probability, expectation and variance, random variables. Probability distributions: Binomial, Poisson, Geometric, Uniform, Exponential, Gamma, Normal and Chi square

Text Books

- 1. Steven C. Chapra, 'Applied Numerical Methods with MATLAB for Engineers and Scientist',
- 2. Tata Mc-Graw Hill Publishing Co. Ltd.
- 3. B. S. Grewal, 'Numerical Methods in Engineering and Science', Khanna Publication.
- B. S. Grewal, 'Higher Engineering Mathematics', Khanna Publication.

Reference Books

- 1. Erwin Kreyszig, 'Advanced Engineering Mathematics', Wiley India
- 2. Joe D. Hoffman, 'Numerical Methods for Engineers and Scientists', CRC Press
- 3. Sheldon M. Ross, 'Introduction to Probability and Statistics for Engineers and Scientists', 5e, by Elsevier Academic Press
- 4. Deisentoth, Faisal, Ong, 'Mathematics for machine learning', Cambridge University Press.
- 5. Kandasamy, 'Numerical methods', S Chand.
- 6. Jason Brownlee, 'Statistical Methods for Machine Learning', Machine learning Mastery.

Strength of CO-PO Mapping														
		PO									PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	-	2	-	-	-	-	-	3	2	2
CO2	3	3	2	2	-	2	-	-	-	-	-	3	2	2
CO3	3	3	2	2	-	2	-	-	-	-	-	3	2	2
CO4	3	3	2	2	-	2	-	-	-	-	-	3	2	2
CO5	3	3	2	2	-	2	-	-	-	-	-	3	2	2
Average	3	3	2	2	-	2	-	-	-	-	-	3	2	2

Components for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	Assignments 01 on Unit-1 & 2, Assignments 02 on Unit-3, 4 & 5	05				
2	Pre Insem on Unit-1 & 2, Pre Endsem on Unit-3, 4 & 5	10				
3	LMS on Each Unit	05				
	Total	20				

S. Y. B. Tech. Pattern 2022 Semester: IV (Mechanical Engineering) MEC223004 : Heat Transfer lab								
Teaching	Teaching Scheme:Credit Scheme:Examination Scheme:							
Practical	Practical :02 hrs/week 01 Term Work : 25 marks Oral: 25 marks							
Prerequi	site Courses, if any: - Bas	ic Thermodynamics						
Course C Course C 6. To us 7. To an 8. To us 9. To Ev Course C	Course Objectives: Course Objectives: 6. To use conduction concepts in analyzing thermal systems 7. To analyse Natural and Forced convection systems 8. To use radiative heat transfer concepts in analyzing thermal systems 9. To Evaluate the performance of heat exchanger Course Outcomes: On completion of the course, students will be able to-							
		Course Outcomes		Bloom's Level				
CO1	Analyze thermal systems	s using concept of 1-D l	neat conduction	2-Understand				
CO2	Analyze Natural and Forced convection systems using convection2-Understandbasics2-Understand							
CO3	Analyze thermal systems	s using concept of Radi	ation heat transfer	2-Understand				
CO4	Evaluate the performance	ce of heat exchanger		2-Understand				

List of Laboratory Experiments (Any Eight)						
Sr. No.	Laboratory Experiments / Assignments	CO Mapped				
1.	Determination of Thermal Conductivity of metal rod	CO1				
2.	Determination of Thermal Conductivity of insulating powder	CO1				
3.	Determination of Thermal Conductivity of Composite wall	CO1				
4.	Determination of heat transfer coefficient in Natural Convection	CO2, CO3				
5.	Determination of heat transfer coefficient in Forced Convection	CO2, CO3				
6.	Determination of temperature distribution, fin efficiency in Natural / Forced Convection	CO1,CO2, CO3				
7.	Determination of Emissivity of a Test surface	CO2, CO3				
8.	Determination of effectiveness of heat exchanger	CO1,CO2, CO3, CO4				
9.	Study of pool boiling phenomenon and determination of critical heat flux	CO2				
10.	Visit to any industry related to heat transfer	CO4				

Guidelines for Laboratory Conduction

1. Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.

2. Apparatus and equipment's required for the allotted experiment will be provided by the lab assistants using SOP.

3. Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant.

4. After performing the experiment students will check their readings, calculations from the teacher.

5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, setup diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Termwork Assessment

- 1. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

- 2. Simultaneous equations
 3. Ordinary differential equation
- 4. Partial differential equation
- 5. Numerical Integration
- Group B (Any two programs for simple dataset using suitable programing)
- 6. Curve fitting using least square technique
- 7. Determine statistical measures
- 8. Probability distribution

Group C (Mandatory)

10. One program based mini project using mechanical engineering application dataset

	Text Books						
4.	Steven C. Chapra, 'Applied Numerical Methods with MATLAB for Engineers and Scientist',						

- 5. Tata Mc-Graw Hill Publishing Co. Ltd.
- B. S. Grewal, 'Numerical Methods in Engineering and Science', Khanna Publication.
 B. S. Grewal, 'Higher Engineering Mathematics', Khanna Publication.

Reference Books

- 7. Erwin Kreyszig, 'Advanced Engineering Mathematics', Wiley India
- 8. Joe D. Hoffman, 'Numerical Methods for Engineers and Scientists', CRC Press
- 9. Sheldon M. Ross, 'Introduction to Probability and Statistics for Engineers and Scientists', 5e, by Elsevier Academic Press
- 10. Deisentoth, Faisal, Ong, 'Mathematics for machine learning', Cambridge University Press.
- 11. Kandasamy, 'Numerical methods', S Chand.
- 12. Jason Brownlee, 'Statistical Methods for Machine Learning', Machine learning Mastery.

Strength of CO-PO Mapping														
		PO									P	SO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	3	2	-	-	3	-	-	3	2	2
CO2	3	3	2	2	3	2	-	-	3	-	-	3	2	2
CO3	3	3	2	2	3	2	-	-	3	-	-	3	2	2
CO4	3	3	2	2	3	2	-	-	3	-	-	3	2	2
CO5	3	3	2	2	3	2	-	-	3	-	-	3	2	2
Average	3	3	2	2	3	2	-	-	3	-	-	3	2	2

T. Y. B. Tech. Pattern 2022 Semester: V (Mechanical Engineering) MEC223006A : Machining Technology							
Teaching	Scheme:	Credit Scheme:	Examination Sche	me:			
Theory :	03 hrs/week	03	Continuous Comprehensive Evaluation: 20Marks In Sem Exam: 20Marks End Sem Exam: 60Marks				
Prerequi Materials freedom c	Prerequisite Courses, if any: - Fundamentals of Mechanical Engineering - Knowledge of Materials and their properties, Stress-Strain Diagrams, Mechanics, Gear terminology, Degree of freedom etc.						
• Kn	ow about fundamentals of n	netal cutting process, tool	l wear and tool life.				
• Im	part the knowledge of mach	ining phenomenon like m	nilling, gear and three	ad manufacturing.			
• Sel	ect, describe and perform fi	nishing of parts using sta	ndard tools				
• Un	derstand the basic concepts	, importance and function	s of Jigs, Fixtures.				
• Sel	ect appropriate non-conv	entional machining pro	ocess depending u	pon desired output			
cha	racteristics						
Course C	Dutcomes: On completion of	f the course, students wil	l be able to–				
		Course Outcomes		Bloom's Level			
CO1	Calculate the tool life f principles and mechanics of	for a single-point cuttin	g tool based on th	e 3-Apply			
CO2	Apply appropriate gear an	d thread manufacturing p	rocesses.	3-Apply			
CO3	Select appropriate grindin finishing processes	g wheel and demonstrat	te the various surface	e 4-Analyse			
CO 4	Analyze and interpret requirements for jigs and f	engineering drawings ixtures.	s to determine th	e 4-Analyse			
CO5	Select various non-conventional machining processes such as electrochemical machining (ECM), electro discharge machining (EDM), laser cutting, abrasive jet machining (AJM), and ultrasonic machining (USM)						
		COURSE CONTENT	Γ S				
Unit I	Mechanics of Metal Cutt	f Metal Cutting (08 hrs) COs Mapped					
Introduction to metal cutting, Geometry of single-point cutting tool, Orthogonal and Oblique cutting processes, Chip formation, Types of chips, Chip thickness ratio, Process parameters and their effect on machining, chip breakers, Merchant's Circle of forces analysis – forces and energy calculations, power consumed – MRR- Effect of Cutting variables on forces, Concepts of Machinability- Factors affecting machinability, Machinability Index, Tool Life, Tool life equation of Taylor, Tool wear and its types, Factors affecting on tool life.							

Unit II	Gear and Thread Manufacturing	(07 hrs)	COs Mapped - CO2						
Introduct of gears (inspectio	ion, Materials of gears, Methods of gear manufacturi indexing methods and numerical), Helical gear cutting n. Thread Manufacturing: Various methods of thr	ng-casting, forging g, Gear Shaping and ead manufacturing	, forming etc, milling d Gear hobbling, Gear g, thread rolling, die						
threading	g & tapping, Thread milling, Thread grinding etc.	c							
Unit	Grinding and Finishing processes	(07 hrs)	COs Mapped –						
III			CO3						
Types and classificat grinding v wheels. S working a	Types and Operations of grinding machines, Grinding wheel– Shapes, Designation and selection, Abrasives & classification, Bond & bonding, Grit, Grade & Structure of wheels, Types of grinding wheels, mounting of grinding wheels, Glazing and loading of wheels, Dressing and truing of wheels, Balancing of wheels, Diamond wheels. Super-finishing processes – Introduction to Honing, Lapping, Buffing and Burnishing. (Construction, working and controlling parameters)								
Unit	Jigs and Fixtures	(07 hrs)	COs Mapped –						
IV			CO4						
Concept advantag Principle over jig, Principle Assembl	Concept of degree of freedom, 3-2-1 principle of location. General guidelines to design jigs and fixtures, advantages of jigs and fixtures. Jigs- Definition, Elements of jig with the types, Location guidelines, Principles of clamping, Principles of guiding, Channel jig, Template jig, Plate jig, Angle plate jig, Turn over jig, Box jig, Latch type jig. Fixtures: Definition. Elements of fixtures, Location guidelines, Principles of clamping, Principles of setting element, turning fixture, welding fixture, Milling fixture, Assembly and Inspection fixtures.								
Unit V	Advanced Machining Processes	(07 hrs)	COs Mapped –						
T	1	Duin in 1	CO5						
Estimation	on, classification of advanced machining processes.	s and Application f	g, Process Parameters,						
Electric D	ischarge Machining (EDM) I ASER Beam Machinin	g (I BM) Abrasive	Let Machining (AIM)						
Litera Soni	c Machining (USM) and Electro Chemical Machinin	g (ECM)	set Maeming (Asivi),						
	Text Books	<u> </u>							
1. A Text	Book of Production Technology, P. C. Sharma, S.Ch.	and Publications							
2. A Text	Book of Manufacturing Technology, R. K. Rajput, La	axmi Publications (p) LTD						
3. A Text	book of Manufacturing Technology, Metal Cutting a	nd Machine Tools,	P. N. Rao, Vol. 2, 2nd						
edition, Ta	ata McGraw Hill Publishing Co. Ltd, New Delhi, 200	2							
4. Elemen	ts of Workshop Technology, Vol-II, S. K. HajraChau	dhary, Media Prom	oters & Publications						
Pvt Ltd.									
1 171	Reference Books	11511 1111	1004						
1. Theory	of Metal Cutting, M. C. Shaw, 1st Edition, Oxford ar	id I.B.H. publishing	g, 1994						
2. Jigs & 1	Fixtures, P.H. Josni, Third edition, McGraw Hill, 201	/ D V Loin Vhamm	Dublishow						
D. Product	ion Technology HMT Tota McGraw Hill publication	к. к. jain, Knanna	a rudhsners						
5 Manufa	cturing Science, Amitabh Ghosh and AshokKumar M	n Iallik Affiliated Fa	st-West Press 2010						
J. Manula	searing Selence, Annual Shosh and Ashokkullar iv	imm, i iiiiiduud Le							

					Str	engtl	n of (CO-]	PO/F	SO N	Mapp	oing	g							
			PO's PSO																	
CO's		1	2		3	4	5	6	7	8	9	1	0	11	1	2	1	2	1	
CO 1		3	2		-	-	-	2	-	-	-	-		-	2		-	-		
CO 2		3	3		2	-	-	-	-	-	-	-		-	2		2	-		
CO 3		3	3		2	-	-	-	-	-	-	-		-	2		2	-		
CO 4		3	3		2	-	-	2	-	-	-	-		-	2		-	-		
Averag	e	3	3		2	-	-	-	-	-	-	-		-	2			-		
Level		3	3		2	-	-	2	-	-	-	-		-	2		2	-		
							S	treng	gth of	f CO-I	РО М	app	oing							
											PO									
	1	2	2	3		4	5		6	7	8		9		10	11		12	PSO1	PSO2
CO1	3	2	2	-		-	-		-	-	-		2		-	-		2	2	-
CO2	3	2	2	-		-	-		-	-	-		2		-	-		1	2	-
CO3	2	2	2	-		2	-		-	-	-		2		-	-		2	2	-
CO4	3	2	2	2		2	-		2	-	-		2		-	-		2	2	-
CO5	3	-		-		-	3		-	2	-		2		-	-		2	2	-
Average	3	2	2	2		2	3		2	2	-		2		-	-		2	2	-

	Guidelines for Continuous Comprehensive Evaluationof Theory Course							
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted						
1	Assignments on each Unit	10						
2	LMS Test on Each Unit	10						
	Total	20						

		Third Year B. Tech.									
	Pattern 2022 Semester: VI (Mechanical Engineering)										
	MEC2230	06B : Energy Audit and	Management								
Teaching So	Feaching Scheme: 3 Hrs /weekCredit Scheme: 03Continuous Comprehensive Evaluation: 20Marks In Sem Exam: 20Marks End Sem Exam: 60Marks										
Prerequisite Courses, if any: - Fundamentals of Thermal And Electrical Engineering											
		Course Objectives									
1. To in	troduce the concepts of en	ergy conservation.									
2. Tou	nderstand energy audit prac	ctices	miaal avatama								
3. 10 a 4. To u	nderstand the financial ana	y audit of thermal and elect	near systems								
		ijele el ellergy analu									
Course Out	comes: On completion o	f the course, students will	l be able to–								
		Course Outcomes		Bloom's Level							
CO1	UNDERSTAND the energ	y scenario.		2-Understand							
CO2	UNDERSTAND thermal a	nd electrical systems		2-Understand							
CO3	APPLY the concepts to eva	luate the thermal systems a	nd electrical systems	· 3-Apply							
CO4	SELECT and PREPARE th	e energy conservation optic	on	3-Apply							
CO5	DEMONSTRATE understa	anding of financing decision	s of energy audit	4-Analyze							
		COURSE CONTENT	S								
Unit I	Introduction		(08 hrs)	Cos Mapped – CO1							
Global prima energy consu	ry energy reserves and con mption, energy needs of gr	sumption pattern, Indian en rowing economy, energy pri	ergy scenario, sector icing in India, energy	wise v security importance							
of energy con	servation and introduction	of energy conservation act	2001, Introduction to	ECSBC codes.							
Unit II	Energy Economics		(07 hrs)	COS Mapped – CO1,CO3							
Energy econo	omics: Simple payback per	iod, time value of money, re	eturn on investment,	net present value and							
internal rate	of return.	1 11 1	1	. 10 1.							
Energy Audit	: Methodology, analysis an am and specific energy cor	d reporting, portable and on sumption.	line instruments requ	ired for energy audit,							
	Cos Mapped –										
Unit III	I hermal Audit		(07 hrs)	CO1,CO2							
Boiler efficie	ncy calculation by direct a	nd indirect method. Various	losses, steam distrib	ution							
and steam tra	ps, energy conservation op	portunities in boiler. Efficie	ncy calculation of oi	l fired							
furnace, heat	losses and energy conser	vation opportunities in fur	nace, Refrigeration	and air conditioning							

systems, Thermal	pumps, fans, D. G. set and cooling tower. insulation, types of insulation, economic thickness of in	sulation.						
Unit VI	Electrical audit	(07 hrs)	Cos Mapped – CO1,CO4					
Demand schedulin Electric Lighting	control, billing structure, power factor improvement, ng. motors: Losses and efficiency, energy efficient motors, : Illumination level, fixtures, timers, energy efficient ill	speed control me umination. Comp	ys of improving PF, load thods of motor. ressed air systems.					
Unit V	Cogeneration and Waste Heat Recovery	(07 hrs)	Cos Mapped – CO1,CO5					
Waste He equipmen heat pum 1. C E	eat Recovery: Introduction, classification and application ts i. e. recuperator, regenerator, economizer, heat whee p. Text Books Guide Books for National Certification Examination Efficiency (BEE) (<u>https://aipnpc.org/Guidebooks.as</u> troatical Energy Audit Manual Indo Cormon Energy	ns, benefits, waste l, heat pipe, therm ion vol.1, 2, 3 o px)	e heat recovery to-compressor, & 4 by Bureau of Energy					
Z. P It	nstitute (TERI)	ergy Efficient Pro	ojeci, Tata Energy Research					
	Reference Book	8						
1. A 2. St Se	lbert Thumann, "Plant Engineers and Managers Gu teve Doty "Commercial Energy Auditing Reference eries,2016	ide to Energy C Handbook", Th	onservation", CRC Press. ird Edition, River Publishers					
3. Albert Thumann; Terry Niehus; William J. Younger "Handbook of Energy Audits" River Publishers								
 L. Ashok Kumar, Gokul Ganesan, "Energy Audit and Management-Concept, Methodologies, Procedures, and Case Studies", CRC press, 2023 								
Webs	ite:							
1. ht	tps://beeindia.gov.in/en/about-bee							

				Stre	ength o	f CO-l	PO/PSO	O Map	ping					
Strength	РО													0
of Cos	1	2	3	4	5	6	7	8	9	10	11	12	2	2
CO 1	2	1	-	-	-	2	2	-	-	-	-	2	-	-
CO 2	3	2	-	3	1	2	2	1	-	1	2	2	2	2
CO 3	3	2	-	3	1	2	2	1	-	1	2	2	2	2
CO 4	3	3	2	3	3	2	2	1	-	-	-	2	2	2
CO 5	3	3	2	3	3	2	2	1	-	-	-	2	2	2
Avg	3	2	2	3	2	2	2	1	-	1	2	2	2	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted					
1	Three assignments on five units	10					
2	One LMS Test on each Unit (10 marks)	10					
	Total	20					

T. Y. B. Tech. Pattern: 2022 Semester: V (Mechanical Engineering) MEC223006C: Design of Pressure Vessel and Piping									
Teaching Scheme:	Credit Scheme:	Examination Scheme:							
Lecture: 03 hr / week	03	Insem – 20Marks Endsem – 60 Marks CCE – 20 Marks							
Prerequisite Courses: - Mechanism and Machines, Mathematics for Mechanical Engineers, Solid Mechanics, Machine Design-I, Machine Design-II.									

Course Objectives:

Understand pressure vessel and piping fundamentals, including types, design codes, and material selection.

Apply design criteria to develop pressure vessel designs suitable for various operating conditions. Explore advanced topics like welding, corrosion protection, and recent innovations in pressure vessel design.

Gain proficiency in piping design, including stress analysis, support systems, and compliance with standards.

	Course Outcomes		Bloom's
			Level
CO1	Understand basic concepts of pressure vessel and piping		2- Understand
CO2	Design pressures vessels and piping as per ISO standards		3- Apply
CO3	Analyze pressure vessels and piping design to effectively mana, and ensure efficient fluid transport.	ge stress	4 - Analyze
	COURSE CONTENTS		
Ι	Introduction to Pressure Vessels	(08hrs)	COs Mapped – CO1
Overview Pressure V	of Pressure Vessels, Types of Pressure Vessels, Design Codes an Vessels, Material Selection for Pressure Vessels, Stress Analysis	nd Standa Fundame	rds for ntals
II	Design of Pressure Vessels	(07 hrs)	COs Mapped – CO2
Pressure V of Cylind Supports	Vessel Design Criteria, Design Considerations for Different Opera rical Pressure Vessels, Design of Spherical Pressure Vessels, De	ting Con esign of I	ditions, Design Pressure Vessel
III	Advanced Topics in Pressure Vessel Design	(07 hrs)	COs Mapped – CO2, CO3
Welding a	and Fabrication Techniques, Corrosion and Erosion Protection	Method	s, Inspections,
Testing, a	nd Quality Assurance, Recent Trends and Innovations in Pressur	e Vessel	Design
	Introduction to Piping Design	(07 hrs)	COs Mapped – CO1, CO2
Basics o Criteria,	f Piping Systems, Types of Pipes and Pipe Fittings, Piping Piping Layout and Routing	Materials	and Selection
V	Design of Piping Systems	(07 hrs)	COs Mapped –
Pipe Stre Piping C	ss Analysis, Pipe Support and Hanger Design, Expansion Joints a odes and Standards	and Flexi	bility Analysis,
	Text Books		
1. Bhanda	ri V.B. —Design of Machine ElementsI, Tata McGraw Hill Pub	. Co. Ltd.	
	Reference Books		

- 1. Design Data- P.S.G. College of Technology, Coimbatore.
- 2. Bhandari V.B. —Design of Machine Elementsl, Tata McGraw Hill Pub. Co. Ltd.
- 3. Charles Becht IV: Process Piping: The Complete Guide to ASME B31.3, ASME Press.
- 4. Roy A. Parisher and Robert A. Rhea Pipe Drafting and Design, Cengage Learning.

Codes / Handbooks

- 1. Design Data- P.S.G. College of Technology, Coimbatore.
- 2. I.S. 2825: Code for unfired pressure vessels.

T. Y. B. Tech.							
Pattern 2022 Semester: V (B.Tech Mechancial)							
MEC223007A	: Machining Technology L	ab					
Teaching Scheme:	Credit Scheme:	Examination Scheme:					

Practical	: 02 hrs/week	01	Termwork:25Marks Oral : 25 Marks	
Prerequi	site Courses, if any: -			
Course O	utcomes: On completion of t	he course, students will be a	ble to –	
		Course Outcomes		Bloom's Level
CO1	Calculate the tool life for a s mechanics of metal cutting	3-Apply		
CO2	Apply appropriate gear and	3-Apply		
CO3	Select appropriate grindir finishing processes	4-Analyse		
CO4	Analyze and interpret engir jigs and fixtures.	4-Analyse		
CO5	Select various non-convent machining (ECM), electro c jet machining (AJM), and ul	ional machining processes su lischarge machining (EDM), trasonic machining (USM).	uch as electrochemical laser cutting, abrasive	4-Analyse

List of Lab	ooratory Experiments / Assignments	
Sr. No.	Laboratory Experiments / Assignments	CO Mapped
1	Demonstration of cutting tool geometry and nomenclature of the tools used in conventional machines. (Cutting Inserts)	CO1
2	Machining of a mechanical component using conventional machines such as lathe, drilling, milling, grinding and any additional machine tool or processes as per requirement. Manufacturing drawing with appropriate geometrical and dimensional tolerances, detailed process planning to be included.	CO1
3	Industrial Visit for Demonstration on gear manufacturing	CO2
4	Demonstration of Additive Machining technology (from modelling to printing) (To be performed Batch-wise)	CO5
5	Demonstration of various types of jigs and fixtures, and a case study on design and use of Jigs & Fixture for any given component.	CO4
6	Visit to an Industry which uses manufacturing processes	CO5
7	Preparing Online Calculator/Catalogue for selection of cutting parameters by using programming languages like C, Python etc	CO1

Practical are to be performed under the guidance of concerned faculty member.

Guidelines for Student's Lab Journal

Write-up should include title, aim, and diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Termwork Assessment

- 1. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journalwriting where each rubric carries ten marks.
- 3. Journal should consist of Job, appropriate write-up and shall be part of term-work submission.
- 4. Job drawing essentially consisting of Geometric Dimensioning and Tolerance.

		T V D Took							
	I. Y. B. 1000. Dottom 2022 Somoston V (Machanical Engineering)								
	MFC223007B Energy Audit and Management								
Teaching	Teaching Scheme: Credit Scheme: Examination Scheme:								
Practical	Term work : 25 ma Oral: 25 marks	marks							
Prerequi Electrica	site Courses, if any: - Bas l Engineering	sic Thermodynamics, Fl	uid Mechanics , Heat	Transfer , Basic					
Course C	Dbjectives: leoretical insights in Energ	y conservation.							
2. Pra	ctical exposure to energy a	udit							
3. Ski	ill building in Techno econ	omic analysis of energy s	systems						
4. Exp	posure to Industry and sust	ainable development goa	ls						
-									
Course C	Dutcomes: On completion	of the course, students w	ill be able to–						
		Course Outcomes		Bloom's Level					
CO1	Report technical and ecor	nomical analytical finding	gs from case studies.	3-Apply					
CO2	Analyze theoretically the	rmal and electrical utilitie	es.	4-Analyze					
CO3	Measure and analyze ener utilities	rgy conservation in Therr	nal & Electrical	4-Analyze					

	List of Laboratory Experiments (Any Five)	
Sr. No.	Laboratory Experiments / Assignments	CO Mapped
1.	Electricity bill analysis (Residential, Commercial and Industrial)	CO1
2.	Study of Tariff policy and analysis of MERC orders	CO1
3.	Demonstration of Energy Audit instruments	CO2, CO3
4.	Case study of energy performance assessment of Boiler/Furnace	CO2
5.	Case study of energy performance assessment of Air compressor/HVAC system	CO2
6.	Case study of energy performance assessment of Transformer /fans /blowers /motors / water pumps etc.	CO2
7.	Case study of Energy conservation recommendations with financial analysis	CO2
8.	Illumination study of Classroom/ office building/auditorium etc.	CO2, CO3
9.	Identifying energy saving opportunities in Educational institute/commercial establishment /Industry	CO2, CO3

Guidelines for Laboratory Conduction

1. Teacher will brief the given experiment to students its procedure, observations, calculation, and outcome of this experiment.

2. Apparatus and equipment's required for the allotted experiment will be provided by the lab assistants.

3. Students will perform the allotted experiment in a group under the supervision of faculty and lab assistant.

4. After performing the experiment students will check their readings, analysis, visit report from the teacher.

5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, setup diagram/layout, working principle, procedure, observations, graphs, calculations-technical and economics and conclusion.

Guidelines for Term work Assessment

3. Each experiment from lab journal is assessed for thirty marks based on three rubrics.

4. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

	N	T V D Task		
	Pattern: 2022	I. Y. B. IECH. Semester: V (Mechani	cal Engineering)	
	MEC223007C: D	esign of Pressure Vessel	and Piping Lab	
Teachin	ng Scheme:	Credit Scheme:	Examination Scho	eme:
Lecture:	02 hr / week	01	Term Work – Oral – 25 M	25Marks Aarks
Prerequi Mechanic	site Courses: - Mechanism an es, Machine Design-I, Machine	nd Machines, Mathematic ne Design-II.	s for Mechanical Engi	neers, Solid
Course C	Objectives:			
Understa	nd pressure vessel and piping	g fundamentals, including	, types, design codes	, and material
selection.		1 1 1		1
Apply de	sign criteria to develop press	ure vessel designs suitab	le for various operati	ng conditions.
Explore a	avanced topics like weiding,	corrosion protection, an	d recent innovations	in pressure
Gain prof standards	ficiency in piping design, inc	luding stress analysis, su	pport systems, and co	ompliance with
		Course Outcomes		Bloom's Level
CO1	Understand basic concepts	of pressure vessel and p	iping	2- Understand
CO2	Design pressures vessels an	d piping as per ISO stand	lards	3- Apply
CO3	Analyze pressure vessels an and ensure efficient fluid tra	d piping design to effect	ively manage stress	4 - Analyze
	(COURSE CONTENTS		
Term Wo	ork shall consist of following	g assignments:		
One De	sign Project on pressure Ve	ssel:		
The desi	ign project shall consist of tw	vo imperial size sheets (P	referably drawn with	n 3D/2D CAD
software	e) - one involving assembly d	rawing with a part list ar	nd overall dimensions	s and the other
sheet in	volving drawings of individ	lual components, manuf	acturing tolerances,	surface finish
symbols	and geometric tolerances m	ust be specified so as to	make it working drav	ving. A design
report g	iving all necessary calculati	ons of the design of con	nponents and assem	bly should be

submitted.

Each student shall complete any two of the following assignments.

- 1. Write assignment on codes and standard used in piping design
- 2. A case study on piping design calculations for any system.
- 3. An assignment on specialty components used in piping system.
- 4. An assignment on occasional loads calculations for the piping system.
- 5. Use any suitable software and complete one design project on piping system.

1. Bhandari V.B. —Design of Machine Elementsl, Tata McGraw Hill Pub. Co. Ltd.

Reference Books

- 5. Design Data- P.S.G. College of Technology, Coimbatore.
- 6. Bhandari V.B. —Design of Machine Elementsl, Tata McGraw Hill Pub. Co. Ltd.
- 7. Charles Becht IV: Process Piping: The Complete Guide to ASME B31.3, ASME Press.
- 8. Roy A. Parisher and Robert A. Rhea Pipe Drafting and Design, Cengage Learning.
- 9. Phillip Ellenberger Piping And Pipeline Calculations Manual

Codes / Handbooks

- 3. Design Data- P.S.G. College of Technology, Coimbatore.
- 4. I.S. 2825: Code for unfired pressure vessels.
- 5. Mohinder Nayyar Piping Handbook

	Guidelines for Continuous Comprehensive Evaluationof Theory Course								
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted							
1	Timely completion of Assignments/Sheet	10							
2	Understanding of Assignments/Sheet	10							
3	Presentation / Writing of Assignments/Sheet	05							
	Total	25							

	Pattern 2022	T. Y. B. Tech. Semester: V (Mechani	cal Engineering)			
	MEC2	23008: Environmental I	Economics			
Teaching	g Scheme:	Credit Scheme:	Examination Sche	me:		
Theory :	:02 hrs/week	02	Continuous Comp Evaluation: 50Ma 	rehensive rks		
Prerequ	isite Courses, if any: -Econ	omics for Sustainability	I			
		Course Objectives				
1.To expo	se the students to environme	ntal problems and concep	ot of sustainable deve	elopment		
2. To expl 3.To train 4.To help analysis, a	the students to analyze envir students internalize the tools and environmental impact	conmental damage needed for the evaluation	ns. n of projects such as	cost-benefit		
Course	Outcomes: On completion of	f the course students wil	l be able to_			
Course		Course Outcomes		Ploom's Loval		
	F	Course Outcomes		Diouin's Level		
CO1	limitations of applying econd	2-Understand				
CO2	Calculate carbon footprint and develop broader understanding of economics of climate change 4- Analyze					
CO3	Analyze environment policy benefit analysis	issues like environmental d	amage using cost	4- Analyze		
CO4	Design environmental policy the design and implementat	for local environmental pro ion of international environ	oblems and understan Iment policy	d 5- Create		
		COURSE CONTENT	'S			
Unit I	Economics and Financial c sector	oncept of electricity	(04hrs)	COs Mapped - CO1, CO2		
Understan financing	d basic investment concept power project	, making an investment	decision top built a	new power plant,		
Unit II	Electricity Traiff		(05hrs)	COs Mapped - CO1, CO2		
Method of	f cost and traiff determinatio	n, method of tariff deter	mination in India, co	onsumer traiff		
Unit III	Carbon fo	COs Mapped - CO1, CO3, CO4				
Carbon fo	otprint measurement and its n	umerical		, ,		
Unit IV	Coase theorem		(05hrs) C	COs Mapped - CO1, CO3, CO4		
	Coase theorem , introduc	ction, objective, advantage	s, limitation with case	study		
Unit V	Pigouvian taxes& subsidy		(5hrs) COs Mapped - C			

	CO4								
introduction, objective, advantages, limitation with case study	· · · · · ·								
Text Books									
3. 4. Kolstad, C. (2010). Intermediate environmental eco	nomics, 2nd ed. Oxford University Press.								
 Stephen Smith (2011) Environmental Economics: A Very Short Introduction ,Oxford Universit Press 									
Reference Books									
1 This Changes Everything: Capitalism vs. the Climate by	Naomi Klein								
2. Cropper, M., Oates, W. (1992). Environmental econom	ics: A survey, Journal of Economic								
Literature, 30, 675-740.									
3. Heal, G. (2012). Reflections – defining and measuring s	sustainability. Review of Environmental								
Economics and Policy, 6, 147-163.									
4. Newell, R., Pizer, W., Raimi, D. (2013). Carbon market	ts 15 years after Kyoto: Lessons learned,								
new challenges. Journal of Economic Perspectives, 27, 12	3-46.								
5. Perman, R., Ma, Y., McGilvray, J., Common, M. (2011). Natural resource and environmental								
economics, 3rd ed. Pearson Education/Addison Wesley.									
6. Stavins, R. (ed.) (2012). Economics of the environment	: Selected readings, 5th								
ed. W. W. Norton.									
Strength of CO-PO/PSO Mappin	g								

Strength of CO-PO/PSO Mapping														
Strength		РО											PSO	
or COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	2	2	1	-	-	3	3	1	2	2	2	2	2	2
CO 2	2	2	2	2	1	2	3	1	2	2	2	2	2	2
CO 3	2	2	2	2	1	2	3	1	2	2	2	2	2	2
CO 4	2	2	2	2	-	2	3	1	2	2	2	2	2	2
Avg	2	2	2	2	1	2	3	1	2	2	2	2	2	2

	Guidelines for Continuous Comprehensive Evaluationof Theory Course								
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted							
1	One Assignments on Unit-1, Unit-2, Unit-3	30							
2	Sincerity in class work	20							
	Total	50							

T. Y. B. Tech. Pattern 2022 Semester: V (Mechanical Engineering) MEC223009 : Mechatronics												
Teac	Teaching Scheme: Credit Scheme: Examination Scheme: In Som Exam: 20 Marks In Som Exam: 20 Marks											
Theor	y : 03hrs/week	03	InSem Exam: EndSem Exan Continuous Co Marks	InSem Exam: 20 Marks EndSem Exam: 60 Marks Continuous Comprehensive Ex								
Prereque Basics of	isite Courses, if a Electrical and Elect	ny: - tronics Engineering,	Engineering Math	ematics, N	Mecha	nics						
Course	Objectives:											
• l	Inderstand the con	cept of sensors ,act	uators & Data A	cquisitio	n sys	tem						
• l	Inderstand the Phy	vsical system throug	gh Modelling and	d block d	iagra	m						
• t	Inderstand the give	en system for Time	, Frequency Do	main and	stab	lity						
• [Inderstand the con	cept of PLC & PIE	controller for d	ifferent a	pplic	ations.						
Course	Outcomes: On con	mpletion of the cou	rse, students wil	l be able	to-							
	Course Outcome	s	actuators & Dat	A aguig	ition	Bloom's Level						
CO1	Demonstrate the concept of sensors ,actuators & Data Acquisition 2- Understand											
CO2	Interpret the Physi	cal system through N	Iodelling and bloc	ck diagram	1	3 - Apply						
CO3	Analyze the given s	system for Time , Fre	quency Domain a	nd stabilit	<u>y</u>	4 - Analyze						
CO4	Evaluate the conce	pt of PLC & PID con	troller for differen	it applicati	ions.	5 - Evaluate						
		COURSE	CONTENTS									
Unit I	Fundamentals of Actuators	of Instrumentation	, Sensors and	(7hrs)	CO	s Mapped - CO1						
Element	s of Measurement	System and Mech	atronics, Static	and Dyna	amic	Characteristics of						
Measuri	ng Instruments, Do	omains of Mechatro	onics		F	1 (11 1 . 0						
Sensors	Classification of	sensors / Transdu	icers; Motion S	ensors –	Enco	oder (Absolute &						
increment	ital), Lidar, Proxi	mity (Optical, Ind	uctive, Capaciti	ve), Acc	elero	meter (MEMS &						
Piezoele	ctric); Temperatur	e sensor – Pyromete	er, Infrared Therr	nometer;	Forc	e Sensors – Strain						
auges, I	riow sensors – Ele	oid) and P otory (S	Stepper Serve)	anemom	leter;							
Init II	Data Acquisitio	n and Signal Com	munication	(8hrs)	CO	Manned - CO1						
Signal C	ommunication: Se	rial. Parallel: Syncl	hronous. Asynch	ronous		s mapped – COI						
Introduc	tion to DAO. Type	es. Components of	a Data Acquisiti	on Syster	n							
Data Cor	nversion: Sampling	g, Aliasing, Sample	and hold circuit,	Quantiza	ation,	Analog-to-digital						
converte	rs (4 bit Successiv	ve Approximation	type ADC), Dig	ital-to-A	nalog	converters (4 bit						
R2R typ	e DAC)											
Unit III	Control systems modelling	s & Transfer funct	tion based	(7hrs)	CO	s Mapped – CO2						
Introduc	tion to control sv	stems, need, Types	s- Open and Clo	osed loor	, Co	ncept of Transfer						
Function	, Block Diagram d	& Reduction princip	ples and problem	ıs;	-	*						
Transfer	Function based M	lodeling of Electric	al. Mechanical. '	Thermal a	and F	luid system:						

Unit IV	System Analysis	(7hrs)	COs Mapped –CO3							
Time Do	Time Domain Analysis - Unit step Response analysis via Transient response specifications									
(Percenta	age overshoot, Rise time, Delay time, Steady state e	error etc.)								
Frequence	cy Domain Analysis – Frequency Domain Parameter	ers - Natura	al Frequency, Damping							
Frequence	cy and Damping Factor;									
Stability	Analysis - Concept of Poles & Zeros; Pole zero plo	ot, Mapping	g of Pole Zero plot with							
damping	factor, natural frequency and unit step response	e, Stability	Analysis using Routh							
Hurwitz	Criterion, and Bode Plot									
Unit V	Controllers	(7hrs)	COs Mapped – CO4							
Classific	ation of Controllers									
PID Con	troller - PI, PD and PID control systems in para	llel form;	Manual tuning of PID							
control, Z	Ziegler–Nichols method,									
PLC Con	ntroller - Introduction to PLC; Architecture of PLC	C; Ladder I	Logic programming for							
different	types of logic gates; Latching; Timers, Counters;									
	Text Books									
Text Bo	oks:									
1. Willia	m Bolton, Mechatronics: Electronics Control Syst	ems in Me	chanical and Electrical							
Engineer	ring, 6th Ed, 2019									
2. K.P. 1	Ramchandran, G.K. Vijyaraghavan, M.S. Balasur	ndaram, M	echatronics: Integrated							
Mechani	cal Electronic Systems, Willey Publication, 2008									
	Reference Books									
1. Alciat	ore and Histand, Introduction to Mechatronics an	d Measure	ment Systems, 5th Ed,							
2019	2019									
2. Bishop	2. Bishop (Editor), Mechatronics – An Introduction CRC 2006									
3. Maha	alik, Mechatronics – Principles, concepts an	d applicat	ions, Tata Mc-Graw							
Hillpubli	cation, New Delhi									
4. C.D.Jo	ohnson, Process Control Instrumentation Technolog	y, Prentice	Hall,New Delhi							
5. Boltor	n, Programmable Logic Controller, 4th Ed, Newnes	, 2006								

Strength of CO-PO/PSO Mapping														
		РО									PS	0		
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	2	2	2	2	2	2	-	2	2	2	2	2	2	2
CO 2	2	2	2	2	2	-	-	-	2	-	-	2	3	2
CO 3	3	3	2	2	2	-	-	-	2	-	-	2	3	2
CO 4	3	3	2	2	2	2	2	2	2	2	2	2	3	2
Average	2.5	2.5	2	2	2	2	2	2	2	2	2	2	2.75	2
Level	3	3	2	2	2	2	2	2	2	2	2	2	3	2

Guidelines for Continuous Comprehensive Evaluation of Theory Course							
Sr.	Components for Continuous	Marks	Evaluation Rubrics				
No.	Comprehensive Evaluation	Allotted					

			R1 – Timely Completion (10marks) R2 – Understanding (10marks)
1	One Assignment on each unit	10	R3 – Presentation & Clarity (10marks)
			5 Assignments each of 30 marks, total
			150 marks converted to 10 marks
			Pre Insem – 30 Marks,
2	Class Test	05	Pre end Sem – 60
			Total 100 marks converted to 05 marks
			MCQ test marks, 5 test one on each
3	LMS Test on Each Unit	05	Unit of 10 marks each
			Total 50 converted into 5 marks
	Total	20	

T. Y. B. Tech. Pattern 2023 Semester: III (Mechanical Engineering) MEC223010 PBL							
Teaching	Scheme:	Credit Scheme:	Examination Schem	ie:			
Tutorial Practical	: 01hrs/week : 02hrs/week	02	Tutorial (TU) 25 Term Work (TW) 2 Total : 50 Marks	5			
Prerequi	Prerequisite Courses, if any: - Machine Design-I, Machine Design-II, Mechatronics etc.						
		Course Objectives	5				
1. INTROI 2. DEVEL various ho 3. ESTABI 4. CREAT	DUCE the skills required in OP the skills required for fa me appliances. LISH the skills required for E awareness about industria	an industry such as desig ult diagnose of engine ar maintenance of any mac l environment.	gn, development, assen ad transmission of diffe hine tool.	ably & disassembly. Perent automotive and			
Course O	Dutcomes: On completion o	f the course, students wil	ll be able to-				
		Course Outcomes		Bloom's Level			
CO1	Understand procedure of a	ssembly & disassembly of	of various machines.	2			
CO2	Examine & Model a worki product.	ing/model of machine par	rts or any new	3			
CO3	J3 Illustrate fault with diagnosis on the machines, machine tools and home appliances. 3						
CO4	Analyze the various activit maintenance, design of con	ties performed in an indu mponents, material select	stry such as tion.	4			
		COURSE CONTEN	TS				
 Assemble e-Bikes, e Assemble Assemble fan, ovense Develo Design Circuit de 	bly and Disassembly of any e-Motor Cycles, Drones, Fly bly- Disassembly/ Fault dia s, gas geyser, chopping mac pment and demonstration o a circuit of electric and hyd esign /PCB design using sof	of the following mechan ving devices, gear box, IC gnosis of home appliance hine, kneading machine, f working/animation moo lraulic system of 4 wheel OR tware for control of BLD	ical systems/ subsyster C engines, centrifugal p es such as mixer, grind exercise machines, etc del of any mechanism. ers and its verification	ns: bicycle (Geared), pump etc. er, washing machine, in e-Vehicles.			
5. Underta	ake total preventive mainten	nance for any machine to	ol or mechanical system	m.			

6. Visit to an industry for awareness about preventive maintenance.

7. Use of ergonomic principles for the design of hand tools, control in automobile dashboards, human operated mobile devices.

8. Use of alternative materials in the construction of daily activity machine and tool components

9. Interpretation of Drawings; Exercises in identifying the type of production, extracting important

functional dimensions, checking the number of parts in an assembly. Checking and listing missing dimensions.

10. Exercises in -preparation of detailed production drawings as per BIS standard of simple machine parts having relevant notes and indications (limits/tolerances, surface finish, the process of production, relevant tools, materials, measuring instruments).

The documentation activity as a part of the Term work shall not be restricted to merely generation of 2D/3D CAD Drawings with dimensions (as applicable), Exploded View, Flowchart of Maintenance Work etc. but can be beyond.

	Strength of CO-PO/PSO Mapping													
Strength	РО												PSO	
of Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	2	2	2	-	-	2	-	-	-	-	2	2	2	2
CO 2	2	2	2	-	-	2	-	-	-	-	2	2	2	2
CO 3	2	2	2	-	-	2	-	-	-	-	2	2	2	2
CO4	2	2	2	-	-	2	-	-	-	-	2	2	2	2
Avg.	2	2	2	-	-	2	-	-	-	-	2	2	2	2

Skill Development Documentation Diary must be maintained by every student.

T. Y. B. Tech. Pattern 2022 Semester: VI (Mechanical Engineering) MEC223011 : Machine Design-II									
Teaching	Feaching Scheme: Credit Scheme: Examination Scheme:								
Theory :03 hrs/week03Continuous Comprehensive Evaluation: 20Marks In Sem Exam: 20Marks End Sem Exam: 60Marks									
Prerequi gear, Virt	site Courses, if any: - Clas ual number of teeth. Classif	sification of Gears, Gear fication, selection and app	Terminology, Term plication of Belt and	ninology of Helical d chain drives.					
Course C)bjectives:								
• To	apply fundamentals of the o	lesign and/or selection of	elements in mecha	nical systems.					
• To cha	understand the philosophy illenging.	that real engineering desi	gn problems are op	en-ended and					
• To	demonstrate design skills for	or the problems in real life	e industrial applicat	tions.					
• To sch	develope an attitude of tear eduling through design pro	n work, critical thinking, jects.	communication, pla	anning and					
Course C	Dutcomes: On completion of	f the course, students wil	l be able to–						
		Course Outcomes		Bloom's Level					
C01	Apply the principle of Sp for industrial application concepts of GD&T.	ur, Helical, Bevel, Worm and prepare a manufactu	gear and Drive de uring drawing with	sign the 3-Apply					
CO2	Categorize Rolling and catalogue for a particular a	Sliding Contact Bearing pplication using suitable	s from manufactu design parameters.	rer's 3-Apply					
CO3	Illustrate design of variou	s drives and spring for m	echanical application	ons. 3-Apply					
CO4	Analyze various concepts	of Gear box for design of	f different application	ons. 4-Analyze					
		COURSE CONTENT	Ϋ́S						
Unit I	Spur and Helical Gears		(08hrs)	COs Mapped - CO1, CO4					
Introduction to gears: Material selection for gears, Modes of gear tooth failure, Gear Lubrication Methods.Number of teeth and face width, Force analysis, Beam strength (Lewis) equation, Velocity factor, Service factor,Load concentration factor, Effective load on gear, Wear strength (Buckingham's) equation, design of gearUnit IIBevel and Worm Gear(07hrs)COs Manned -									
Bevel Gea	rs: Types of Bevel gears, Ter	minology, Virtual number of	of teeth, and force and	CO1,CO4 alysis of Straight Bevel					
Gear. Des based on V Worm Gea gears, effi	Bevel Gears: Types of Bevel gears, Terminology, Virtual number of teeth, and force analysis of Straight Bevel Gear. Design of Straight Bevel Gear based on Beam Strength, Wear strength and estimation of effective load based on Velocity factor (Barth factor) and Buckingham's equation. Worm Gears: Terminology and proportions of worm and worm gears, Force analysis of drives, Friction in Worm gears, efficiency of worm gears, material selection. Strength and wear ratings of worm gears (Bending stress								
factor, spe	ed factor, surface stress factor	factor, speed factor, surface stress factor, zone factor) IS 1443-1974, Thermal consideration in gear drive							

Unit III	Sli	ding aı	nd Roll	ing Co	ontact	Bearing	g		(0'	7hrs)	C C	Os Ma O2, C(pped —)4	
Sliding Petroff	conta s equa	et beari tions, S	ng: Intr ommerfe	oduction eld num	on to s nber, Pa	liding c arameter	contact bear	bearing, ring desi	classifio gn.	cation, 1	Reynolo	ds's equ	ation (21	D),
Rolling capaciti	Conta es, Str	ct Bear ribeck's	<i>ings</i> : Ty Equation	vpes of on, Eq	rolling uivalen	contact t bearin	Bearings g load,	s and its Load-li	selection fe relati	n, Static onship,	and dy Selecti	namic lo on of b	oad carryi bearing li	ng fe,
Unit	Dr	ives : F	Belt and	l Chai	n Driv	es		alogue,	(0)	7 hrs)		Os Ma 01. C(pped –)3	
Belt Dr rating o Selection limitation Chain I Modes	ives: N f belts n of F ons of Drives of failu	Aaterial concep lat and Flat and Types ire for c	s and co ot of slip V-belts f V- belt s of chai hain, Lu	nstruct & cree from ma s, const ns and lbricatio	ion of f p, initia anufact truction its Geo on of cl	lat and V al tensio urer's ca and app metry, s nains	V belts, g n, effect atalog, b plication election	geometri of centr elt tensio s of timi criteria	c relation ifugal for oning mo- ng belts for chain	onships f orce, max ethods, r n drive, l	or leng ximum elative Polygor	th of bel power c advanta	t, power condition, ges and of chain,	
Unit V	Me	echanic	al Spri	ings					(0)	7hrs)	C C	Os Ma O3	pped –	
Types, a Springs, Surge in	pplica Style sprin	ations a of end gs. Des	and mar s, Desig ign of I	terials gn of h Multi-l	for sp elical e eaf spr	rings, S compres ings, H	stress an ssion an elical to	nd defle ad tension orsion S	ection e on sprin pring	quation lgs, Spr	s for h ings in	series	compress and paral	sion llel,
~	opini	5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,				Te	ext Bool	ks	<u>, , , , , , , , , , , , , , , , , , , </u>					
4. Juvina	IR.C,	Funda	mentals	of Ma	chine C	Defe	ents Des	sign, Joh	n Wiley	y and Sc	ons.			
						Keiei	rence B	OOKS						
 Design Vehic Auton Auton Auton Source Iack P Willing Iack P Willing P. Kan C.S. S D.K. A P. C. Bhar K. M 	n Data le Pownobiles notive ck, Lon .H. an m C. (unaiah harma Aggary Gope dari, V ahade	- P.S.C /ertrain S-Powe Engine ndon, C d O. Eu Orthwe , Design and Ka val& P. , Machi V. B. M van, K.	G. Colle System r trains ering Po Dxford. ingene A in, Mac in,	ge of T s by Bo and Au owertra dams, I hine Co nsmiss Purohit ma, M gn: Fu Design ra Redo	echnol ehrooz itomob in, Cha Machin ompone ion sys c, Desig achine data b dy, Des	ogy, Co Mashac iles–Dy assis Sy assis Sy te Desig ents Des temsI, S gn of Ma Design, ntals and ook, Tat sign Dat	imbator li, Davio namics stem and sign, McG sign, We SCIETC achine E S.K Ka d Applic ta McGn ta Handl	e. I Crolla. by Croll d Vehicl raw Hill est Public H Public Elements taria an eations, T raw Hill pook for	A John la, Davi le Body l Book (shing C cations a, PHI L d Sons. PHI Lea PHI Lea Mecha	d, A Joh by Dav Co. Inc. Co. and J Pvt Ltd. earning arning P tion Co nical En	& Sons in Wile id A Ci aico Pu Pvt. Lt vt. Ltd. gineer	s, Ltd ey &Sor rolla, El ublicatio td. s, CBS	ns, Ltd sevier B ons House Publisher	H e. s.
					Str	ength o	of CO-P	O Mapp	oing					
	1	2	3	4	Str	rength o	of CO-P	O Mapp PO 8	oing 9	10	11	12	PSO1	
CO1	<u>1</u> 3	2	32	4	Str 5 -	ength o 6 -	of CO-P 7 2	O Mapp PO 8 -	oing 9 -	10	11	12 2	PSO1 2	PSO2
CO1 CO2	1 3 3	2 2 2	3 2 3	4 - -	Str 5 - -	rength o 6 - 1	of CO-P 7 2 1	O Mapp PO 8 -	9 - -	10 - -	11 - -	12 2 1	PSO1 2 2	PSO2 -

Average 3 2 3 1 - 1 1 - </th <th>2</th> <th>2</th> <th>2 1</th>	2	2	2 1
---	---	---	-----

	Guidelines for Continuous Comprehensive Evaluationof Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	Assignments on each Unit	10				
2	LMS Test on Each Unit	10				
	Total	20				

Pattern: 2022 Semester: VI (Mechanical Engineering)								
MEC223012: Energy Engineering								
Teaching Scheme:Credit Scheme:Examination Scheme:								
Lecture: 03 hr / week 03 INSEM : 20								
ENDSEM : 60								
CCE : 20								
Prerequisite Courses: - Linear algebra and calculus, Engineering Thermodynamics, Flux Mechanics and Heat transfer	id							
Course Objectives:								
• To study the energy scenario, the components of thermal energy based plant, in	nproved							
Rankine cycle.								
• To understand details of steam condensing plant, cooling tower system, and	lysis of							
condenser, the environmental impacts and methods to reduce various pollution from	n energy							
systems	ii eiieigj							
• To study layout, component details of diesel engine power plant, hydel and nuclea	r energy							
	r energy							
Systems								
• To understand components; layout of gas and improved power cycles								
• To learn basic principles of energy management, storage and economics of power								
Generation								
• To study the working principle construction of renewable energy systems								
• To study the working principle, construction of renewable energy systems								
Course Outcomes Blo	om's							
	evel							
CO1 EXPLAIN the power generation scenario, the layout components of 2								
conventional and non-conventional power plants and their environmental								
impacts								
CO2 Apply energy analysis for performance determination of power plants 3								
CO3 ANALYZE the performance of power plants from technical aspects 4								
CO4 Evaluate the actual performance of thermal and solar power plants 5								
COURSE CONTENTS								
I Energy Scenario and Thermal Power Plant (08 hrs) COs Ma	apped –							
CO1								
Energy Scenario: Global and Indian energy scenario, role of Government and Private Organizations, Energy crisis, energy security, energy policy.

Thermal Energy Based Plant: layout of modern thermal energy based plant with different circuits, site selection, classification of coal, coal benefication, selection of coal for thermal power plant, slurry type fuels, in-plant handling of coal, pulverized fuel handling systems, FBC systems, high pressure boilers, improved Rankine cycle with reheating and regeneration separately

II	Steam	Turbines	and	Condenser	and	Impact	on (07 hrs)	COs Mapped –
	Environ	ment						CO1, CO2,
								CO3

Steam Turbine: Principles of Working of Steam Turbines, Classifications of Steam Turbine, Simple and Compound Steam Turbines. Energy losses in Steam Turbines, Actual Reheat factor, Velocity diagrams, Graphical and analytical Methods, Work done, Thrust and Power, Efficiencies, Condition for Maximum Efficiency, Governing of Steam Turbine.

Condensers and Cooling Towers: Types of Condensers, Classification of Condenser, Quantity of cooling water Required, Daltons Law of Partial Pressures, vacuum efficiency, condenser efficiency, Sources of Air Leakage and Air Removal, Cooling Towers, Cooling Ponds. **Environmental impact of power plants:**

Different pollutants produce by power plants, methods to control pollutants, carbon credits and footprints

III	Nuclear and Hydro-Electric Power Plant	(07 hrs)	COs Mapped –
			CO1

Nuclear Power plant: Nuclear fission/fusion, elements of nuclear reactor, types of nuclear reactor: PWR, BWR, CANDU, LMCR, GCR, Nuclear waste disposal, Nuclear power development programme of India.

Hydro-electric Power Plant: Introduction to hydrology, hydrograph, flow duration curve, mass curve, Hydroelectric power plant site selection, classification, criteria for turbine selection, Types hydraulic turbines, components of Hydroelectric power plant - dams; spillways; surge tank and forebay.

IV	Gas Turbine and Diesel Engine Power Plant	(07 hrs)	COs Mapped –
			CO1, CO2,CO3

Diesel engine power plant: general layout; different systems of DEPP, plant layout of high/medium /low capacity DEPP, performance operating characteristics including heat rate and incremental heat rate.

Gas turbine power plant: components, general layout of GTPP, open and closed cycle gas turbine plant, Brayton cycle analysis for thermal efficiency, work ratio, maximum & optimum pressure ratio, methods to improve thermal efficiency of GTPP: inter-cooling, reheating, regeneration cycle. **Combined cycle:** gas and steam combined cycle plant, Cogeneration, introduction to tri-generation, steam power plants with process heating, Integrated Gasification Combined Cycle (IGCC) plant, Kalina (Cheng) Cycle.

V	Renewable Energy Systems	(07 hrs)	COs Mapped -
			CO1, CO4

Solar thermal and photovoltaic energy: solar thermal plant based on flat plate collector; solar photovoltaic systems, applications, economics and technical feasibility.

Wind Energy: wind availability, basic components of wind mills, performance operating characteristics, wind solar hybrid power plants, Cost economics and viability of wind farm. Geothermal Energy: typical geothermal field, superheated steam system, flash type, binary cycle plant, economics of geothermal energy.

Tidal Energy: components, single basin, double basin systems

Ocean Thermal Energy: working principle, Claude /Anderson /hybrid cycle

Wave Energy: dolphin type wave machines

MHD Power Generation: working principle, open/ close cycle MHD generator

Fuel cell: main components, working Principle

Biomass Energy: Biomass gasifier

Hydrogen Energy: principle of hydrogen production, hydrogen storage, applications.

Text Books

- 1. Domkundwar & Arora, Power Plant Engineering, Dhanpat Rai & Sons, New Delhi
- 2. R.K.Rajput, Power Plant Engineering, Laxmi Publications New Delhi
- 3. D. P. Kothari, K. C. Singal and Rakesh Ranjan, Renewable Energy Sources and Emerging Technologies, PHI Learning Pvt. Ltd., Delhi

Reference Books

- 1. E.I.Wakil, Power Plant Engineering, McGraw Hill Publications New Delhi
- 2. P.K.Nag, Power Plant Engineering, McGraw Hill Publications New Delhi.
- 3. R.Yadav, Steam and Gas Turbines, Central Publishing House, Allahabad.

4. G.D.Rai, Non-Conventional Energy Sources, Khanna Publishers, Delhi

5. S.P.Sukhatme, Solar Energy, Tata McGraw-Hill Publications, New Delhi

6. G R Nagpal, Power Plant Engineering, Khanna Publication.

CCE Assessment: Unit wise assignment (each of 20marks) including review, calculation, case study and design of system.

Strength of CO-PO/PSO Mapping														
		PO's												30
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	-	-	-	2	2	-	-	-	-	2	2	2
CO 2	3	3	1	-	-	-	-	-	-	-	-	2	2	-
CO 3	3	3	2	-	-	-	-	-	-	-	-	2	2	-
CO 4	3	3	2	-	-	2	-	-	-	-	-	2	2	2
Average	3	3	2	-	-	-	-	-	-	-	-	2		-
Level	3	3	2	-	-	2	2	-	-	-	-	2	2	2

T. Y. B. Tech. Pattern 2022 Semester: VI (B.Tech Mechancial) MEC223013 : Machine Design Lab I & II									
Teaching Scheme:Credit Scheme:Examination Scheme:									
Practical : 02 hrs/week	01	Term work : 25M Practical : 25 Mar	arks ·ks						
Prerequisite Courses, if any: - D	ME-I & DME-II								
Course Outcomes: On completion	n of the course, students	will be able to –							
	Bloom's Level								

List of Lab	List of Laboratory Experiments / Assignments								
Sr. No.	Term Work	CO Mapped							

Student shall complete the following activity as a Term Work;

The Submission shall consist of completion of Two Design projects and study Assignments. Oral examination shall be based on the practical undertaken during the semester

1	Design a Simple Machine Elements : (Cotter Joints/ Knuckle Joint/ Lever etc.,)	DME-I
---	---	-------

2	Design of Screw Jack/ C Clamp : (Automobile Application / Industrial Application, etc.,)	
3	Design of Gearbox for following any one problem statements or application 1. wind mill application or sluice gate 2. building Elevator 3. Industrial Hoist.	
	 Sugar Industry. Automobile drives etc. 	DME-II
4	Design a Conveyer System for following any one application (Stone Crusher, Industry Pallet Transformation, Thermal power plant(Coal transportation), Sugar Industry (Sugar Bag transportation), Airport Luggage transportation etc.)	

Guidelines for Laboratory Conduction

Practical are to be performed under the guidance of concerned faculty member.

Guidelines for Student's Lab Journal

Projects shall be in the form of design of mechanical systems, etc.

The design project shall consist of two full imperial (A1) size sheets involving assembly drawing with a part list and overall dimensions and drawings of individual components. (For sheets use software for Project 1 & 3 and sheets should be manually drawn for project 2 & 4)

Manufacturing tolerances, surface finish symbols and geometric tolerances should be specified for important surfaces. A design report giving all necessary calculations of the design of components and assembly should be submitted in a separate file.

Design data book shall be used wherever necessary to achieve selection of standard components.

Guidelines for Termwork Assessment

- 1. Each project will be assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for design report and sheets where each rubric carries ten marks.
- 3. File should consist of Design Report and Sheets for every project.

T. Y. B. Tech.											
Pattern 2022 Semester: Vi (Mechanical Engineering)											
MEC223014A : Finite Element Analysis											
Teaching Scheme:	Feaching Scheme:Credit Scheme:Examination Scheme:										
Theory :03 hrs/week03Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks											
Prerequisite Courses, if any: - Me	chanics of materials, The	rmodynamics, Machine	Design								
Course Objectives:											
15. To understand fundamentals of FE	A for finite element formula	ation									
16. To understand the 1D structural me	mber for displacement, stre	ess									
17. To understand 2D structural memb	er for displacement, stress										
18. To understand the heat transfer pro	blems for temperature, ther	mal stress, heat flux									
19. To understand the mechanical com	ponent for dynamic condition	ons									
Course Outcomes: On completion	of the course, students w	ill be able to–									
On completion of the c	Course Outcomes ourse the learner will be	e able to;	Bloom's Level								

CO1	Apply fundamentals of FEA for finite element formulati	on	3 (Apply)
CO2	Analyze the 1D structural member for displacement, stre	4 (Analyze)	
CO3	Analyze the 2D structural member for displacement, str	4 (Analyze)	
CO4	Analyze the heat transfer problems for temperature, then	4 (Analyze)	
CO5	Analyze the mechanical component for dynamic condition	ons	4 (Analyze)
	COURSE CONTENT	S	
Unit I	Fundamentals Concepts of FEA	(08 hrs)	COs Mapped – CO1
Introductio of freedom Advantage	n– Brief History of FEM, Finite Element Terminology (n , loads & constraints) General FEM procedure, Application s and disadvantages of FEM. Consistent units system. Sha	odes, elements, dom s of FEM in various f pe Function	ain, continuum, Degrees ields, P & h formulation,
Introductio	n to different approaches used in FEA such as direct appro	bach and energy approved (07 has)	oach
Unit II	COs Mapped -		
and second Formulatio Assembly of method, Sy	ary variables, shape functions and its properties. n of elemental stiffness matrix and load vector for spring of global stiffness matrix and load vector, Properties of stiff mmetric boundary conditions, Stress calculations.	g, bar, truss. Transfor ness matrix, Boundar	mation matrix for truss, ry conditions elimination
Unit III	2D Elements	(07 hrs)	COs Mapped – CO3
Linear Stravariables, p solving for	ain Rectangle (LSR), Constant Strain Triangles (CST), properties of shape functions. Assembly of global stiffness primary variables (displacement)	Pascal's triangle, matrix and load vector	primary and secondary or, Boundary conditions,
Unit IV	1D Steady State Heat Transfer Problems	(07 hrs)	COs Mapped – CO4
Introductio and convec	n, Governing differential equation, steady-state heat transition problem, boundary conditions and solving for temper	fer formulation of 1D ature distribution	element for conduction
Unit V	Dynamic Analysis	(07 hrs)	COs Mapped – CO5
Types of d	ynamic analysis, General dynamic equation of motion, po	int and distributed m	ass, lumped and
Consistent	mass, Mass matrices formulation of bar and beam elemen	t. 11:	
and mode s	-iree vibration- Eigenvalue problem, Evaluation of eigenvibanes)	alues and eigenvecto	ors (natural frequencies
	Text Books		
1 A First (Course in the Finite Element Method Daryl L. Logan		
2. Concept	s and Applications of Finite Element Analysis, R. D. Cool	, et al. Wiley, India	
• • • • •	Reference Books	, <u>,</u> ,	
1. Chandru	patla T. R. and Belegunda A. D., -Introduction to Finite	Elements in Engineer	ring , Prentice
Hall India.			1: 2010
2. Seshu P.	, — I ext book of Finite Element Analysis, PHI Learning	Private Ltd. New Del P) I td. New Delh:	hı, 2010.
4. Fagan M	I. J., —Finite Element Analysis. Theory and Practice Pea	rson Education Limit	ted
5. Kwon Y	. W., Bang H., —Finite Element Method using MATLAB	I, CRC Press, 1997	
6. S. Moav	eni, —Finite element analysis, theory and application with	Ansysl,	
7. Fundam	ental of Finite Element Analysis, David V. Hutton, Tata M	lcGraw-Hill	
8. Gokhale	N. S., Deshpande S. S., Bedekar S. V. and Thite A. N., –	Practical Finite Elem	nent Analysis ^{II} ,
Finita to In	finite Dune		

	Strength of CO-PO Mapping													
		РО												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	-	-	3	2	-	-	2	-	-	3	2	2
CO2	3	3	3	-	3	2	-	-	2	-	-	3	2	2
CO3	3	3	3	-	3	2	-	-	2	-	-	3	2	2
CO4	3	3	3	-	3	2	-	-	2	-	-	3	2	2
CO5	3	3	3	-	3	2	-	-	2	-	-	3	2	2
Average	3	3	3	-	3	2	-	-	2	-	-	3	2	2

Components for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Assignments 01 on Unit-1 & 2,	05			
1	Assignments 02 on Unit-3, 4 & 5	05			
2	Pre Insem on Unit-1 & 2,	10			
2	Pre Endsem on Unit-3, 4 & 5	10			
3	LMS on Each Unit	05			
	Total	20			

	Third Year B. Tech.							
	Pattern: 2022	Semester: VI (Mechar	nical Engineering)					
	MEC223014B : Renewable Energy							
Teac	ching Scheme:	Credit Scheme:	Examination Scheme:					
Lect	ure: 03 hr / week	03	INSEM : 20					
			ENDSEM: 60					
			CCE : 20					
Prere	quisite Courses: - Engineerin	g Thermodynamics, Fluid	d Mechanics and Heat Transfer					
Cour	se Objectives:	-						
5.	To understand the basics of r	enewable energy sources	and technologies.					
6.	To design solar thermal con	version systems and sola	ar photovoltaic systems for different					
	applications.							
7.	To understand wind energy	sources and technologies	s and also to design a wind energy					
	systems.							
8.	To study the biomass energy	conversion systems.						
9.	To study the Geothermal, T	idal and Wave energy						

10. To explain principle and working of fuel cell and hydrogen energy technologies

	Course Outcomes		Bloom's
			Level
CO1	Understanding of solar systems for a given energy utility by applyin	g	
	principles of solar energy conversion.		
CO2	Estimate the wind energy potential and analyse the wind energy		
	conversion System.		
CO3	Design bio-energy based systems for a given utility by applying		
	principles of bio-mass to bio-energy conversion.		
CO4	Characterize energy conversion systems: Geothermal, Tidal and Wa	ave	
	energy, Fuel Cells and Hydrogen Energy.		
	COURSE CONTENTS		
Ι	Solar Radiation and Solar Systems (08 h	ırs)	COs Mapped –
			CO1
Extra-terr	estrial and terrestrial radiation, Solar radiation measuring instruments	, Es	timation of solar
Radiation	, solar geometry, Solar Energy Conversion Systems		
Solar the	ermal systems: Basics, Flat plate collectors-liquid and air type.	Гhec	ory of flat plate
collectors	, selective coating, advanced collectors, Concentrators: optical desi	gn c	of concentrators,
solar wat	er heater, solar dryers, solar stills, Solar ponds, solar cooling and	refr	rigeration, Solar
thermal p	ower generation.		
Solar Ph	otovoltaic Systems: Principle of photovoltaic conversion of solar	ene	rgy, Solar cells,
Home lig	hting systems, Solar lanterns, Solar PV pumps, Govt. policies. Ir	itroc	luction to Solar
Photovolt	aic, Solar energy storage options: Electrical and Thermal Energy stor	age	options
II	Wind Energy Conversion Systems (07 h	ırs)	COs Mapped –
			CO2
History of	f wind energy and potential, Wind energy in India, Power available	e in '	the wind, Wind

speed prediction and forecasting, Betz limit, Components of wind energy conversion systems, Horizontal and Vertical axis wind turbine, Wind turbine power and torque characteristics, Tip speed ratio,

III	Biomass Energy	(07 hrs)	COs Mapped –
			CO3
biochemic	al conversion: anaerobic digestion, ethanol fermentation, bio	gas prod	uction, types of
biogas pla	ant, installation, operation and maintenance of biogas plants,	factors	affecting biogas
production	n, biogas utilization and storage, biogas for motive power gener	ation, des	sign calculations

for biogas plants, Biodiesel, the mechanism of trans esterification, fuel characteristics of biodiesel, technical aspects of biodiesel/Ethanol utilization in engine. Biomass gasification system and types, producer gas, biomass resources development in India.

IV	Geothermal , Tidal and Wave energy	(07hrs)	COs Mapped –
			CO4

Geothermal Energy: structure of earth's interior, geothermal sites, geothermal field and gradients, types of geothermal resources, power generation by liquid dominated and vapor dominated sites, geothermal preheat to conventional plant, utilization of geothermal energy.

Tidal Energy: Tidal energy, tidal characteristics, range, power of tides, site selection types tidal power plant

Wave Energy: factors affecting wave energy, analysis of wave energy, wave energy conversion machines.

V	Fuel Cells and Hydrogen Energy	(07 hrs)	COs Mapped -
			CO4

Fuel cells: principle of operation of fuel cell, Technical parameters of fuel cell, hydrogen fuel cell, Methanol fuel cell, Types fuel cells, performance of fuel cell.

Hydrogen Energy: Benefits of hydrogen Energy, Hydrogen production Technologies, characteristics and applications of hydrogen, Hydrogen energy Storage, Use of hydrogen Energy, Problems associated with hydrogen energy.

Text Books

- D. P. Kothari, K. C. Singal and Rakesh Ranjan, Renewable Energy Sources and Emerging Technologies, PHI Learning Pvt. Ltd., Delhi
- Domkundwar & Domkundwar- Solar Energy and Non Conventional Sources of Energy, Dhanpat Rai& Sons, New Delhi.
- 6. R. K. Rajput, Non-Conventional Energy Sources and Utilization, S. Chand Publication.

Reference Books

- 7. G.D.Rai, Non-Conventional Energy Sources, Khanna Publishers, Delhi
- 8. S.P.Sukhatme, Solar Energy, Tata McGraw-Hill Publications, New Delhi
- 9. B. H. Khan, Non-conventional energy resources, Mc Graw Hill publication.

CCE Assessment: Unit wise assignment (each of 20 marks) including review, calculation, case study

and design of system.

Strength of CO-PO/PSO Mapping														
		PO's								PS	SO			
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	2	-	-	2	1	-	-	-	-	2	2	2
CO 2	3	3	2	-	-	2	1	-	-	-	-	2	2	1
CO 3	3	3	2	-	-	-	1	-	-	-	-	2	2	2
CO 4	3	2	1	-	-		1	-	-	-	-	2	2	-
Average	3	3	2	-	-	2	1	-	-	-	-	2	2	2
Level	3	3	2	-	-	2	1	-	-	-	-	2	2	2

Final Year. B. Tech.							
	Pattern 2022 Semester: VI (B.Tech Mechancial)						
	MEC223014C : Computational Fluid Dyanamics						
Teaching	Teaching Scheme: Credit Scheme: Examination Scheme:						
Theory :03 hrs/week 03 Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks Exam: 60Marks							
Prerequis Thermod & Mass T	Prerequisite Courses, if any: -Mathematics, Physics, Systems in Mechanical Engineering, Engineering Thermodynamics, Applied Thermodynamics, Fluid Mechanics, Numerical & Statistical Methods, Heat & Mass Transfer, Computer Aided Engineering						
Course O	utcomes: On completion o	f the course, students wi	ll be able to –				
		Course Outcomes		Bloom's Level			
C01	01 Recognize the fundamental principles of mass conservation 2-Understand						
CO2	Comprehend the fundamental properties and behaviors of PDEs 2-Understand						

<u> </u>								
03	CO3 Apply error minimization techniques to assess the accuracy of numerical solutions							
CO4	CO4 Apply the Finite Difference Method (FDM) to discretize differential equations							
CO5	s 3-Apply							
	COURSE CONTENTS							
Unit I	Unit I Introduction to computational fluid dynamics and (08 hrs) C principles of conservation C							
Continuity	/ Equation, Navier Stokes Equation, Energy Equation and C	Conservation Equatio	ns.					
Unit ii	Classification of partial differential equations and physical behaviour	(07 hrs)	CO1, CO2					
Mathemat	ical classification of Partial Differential Equation, Illustration	ive examples of ellip	tic, parabolic and					
nyperbolic	e equations, Physical examples of emplic, parabolic and hy	perbolic partial diffe	erential equations.					
Unit	Approximate solutions of differential equations	(07 hrs)	COs Mapped - CO1, CO2, CO3					
Unit Unit III Error Min equations variables,	Approximate solutions of differential equations imization Principles, Functional involving higher order der through variation formulation, Boundary conditions in the Essential and natural boundary conditions, Approximate so	(07 hrs) (07 hrs) rivatives, Approxima variation form: Prim olutions of differentia	te solution of differential ary and secondary al equations,					
Unit III Error Min equations variables, Unit IV	Approximate solutions of differential equations imization Principles, Functional involving higher order der through variation formulation, Boundary conditions in the Essential and natural boundary conditions, Approximate so Fundamentals of discretization-	(07 hrs) rivatives, Approxima variation form: Prim olutions of differentia	COs Mapped - CO1, CO2, CO3 te solution of differential ary and secondary al equations, COs Mapped - CO1, ,CO3,CO4					
Unit III Error Min equations variables, Unit IV Discretiz difference Conserva steady st	Approximate solutions of differential equations imization Principles, Functional involving higher order der through variation formulation, Boundary conditions in the Essential and natural boundary conditions, Approximate so Fundamentals of discretization- ration principles: Pre-processing, Solution, Post-processing ce method, Well posed boundary value problem, Possible ativeness, Boundedness, Transportiveness, Finite volume r	(07 hrs) rivatives, Approxima variation form: Prim olutions of differentia (07 hrs) (07 hrs) s, Finite Element Met types of boundary co method (FVM), Illust rm.	COs Mapped - CO1, CO2, CO3 te solution of differential arry and secondary al equations, COs Mapped - CO1, ,CO3,CO4 thod, 3 Finite onditions, rative examples: 1-D					
Unit III Error Min equations variables, Unit IV Discretiz difference Conserva steady st	Approximate solutions of differential equations imization Principles, Functional involving higher order der through variation formulation, Boundary conditions in the Essential and natural boundary conditions, Approximate so Fundamentals of discretization- ration principles: Pre-processing, Solution, Post-processing ce method, Well posed boundary value problem, Possible rativeness, Boundedness, Transportiveness, Finite volume rate heat conduction without and with constant source ter Finite volume method	(07 hrs) rivatives, Approxima variation form: Prim olutions of differentia (07 hrs) (07 hrs) s, Finite Element Met types of boundary co method (FVM), Illust rm. (07 hrs)	COs Mapped - CO1, CO2, CO3 te solution of differential ary and secondary al equations, COs Mapped - CO1, ,CO3,CO4 chod, 3 Finite onditions, rative examples: 1-D COs Mapped - CO1, CO2, CO5					
Nyperbolic Unit III Error Min equations variables, Unit IV Discretiz difference Conserva steady st Unit V Some Co Overall b position type pro	Approximate solutions of differential equations imization Principles, Functional involving higher order der through variation formulation, Boundary conditions in the Essential and natural boundary conditions, Approximate so Fundamentals of discretization- ration principles: Pre-processing, Solution, Post-processing ce method, Well posed boundary value problem, Possible ativeness, Boundedness, Transportiveness, Finite volume r tate heat conduction without and with constant source ter Finite volume method onceptual Basics and Illustrations through 1-D Steady State page of the remaining the remainininining the remaining the remaining the remain	(07 hrs) rivatives, Approxima variation form: Primo olutions of differentia (07 hrs) (07 hrs) g, Finite Element Met types of boundary co method (FVM), Illust rm. (07 hrs) e Diffusion Problems ype problem, Compo Discretization of 1-D s dary conditions	COs Mapped - CO1, CO2, CO3 te solution of differential aary and secondary al equations, COs Mapped - CO1, ,CO3,CO4 thod, 3 Finite onditions, rative examples: 1-D COs Mapped - CO1, CO2, CO5 thos consistency, site material with steady state diffusion					

Chung, T. J., "Computational Fluid Dynamics", 2nd Ed., 2014, Cambridge University Press. Anderson J. D. (Jr)., "Computational Fluid Dynamics: The basic with applications", 2017, McGraw Hill Education

Reference Books

 Patankar, S. V., "Numerical Heat Transfer and Fluid Flow", 2017, CRC Press.
 Versteeg, H. K., Malalasekera, W., "An Introduction to Computational Fluid Dynamics", 2nd Ed., 2007, PHI. 3. Ferziger, J. H. and Peric, M., "Computational Methods for Fluid Dynamics", 3rd Ed., 2002, Springer.

Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No. Components for Continuous Comprehensive Evaluation Marks Allotted						
1	Assignments on unit-1, Unit-2, Unit-3 , Unit-4, Unit-5	15				
2	LearniCo Test on Each Unit	05				
	Total	20				

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

T. Y. B. Tech. Pattern 2022 Semester: VI (Mechanical Engineering) MEC223014D : Operation Research						
Teaching Scheme:	Credit Scheme:	Examination Scheme:				
Theory :03 hrs/week	03	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks				
Prerequisite Courses, if any: - Engineering Mathematics, Theory of probability, Statistics						
Course Objectives:						

To familiarize the students with the use of practice oriented mathematical applications for optimization functions in an organization.

To familiarize the students with various tools of optimization, probability, statistics and simulation, as applicable in particular scenarios in industry for better management of various resources.

Course Outcomes: On completion of the course, students will be able to-				
	Course Outcomes	Bloom's Level		
CO1	Apply LPP and Decision Theory to solve the problems	3-Apply		

CO2	Apply the concept of transportation models to opti resources	mize available	3-Apply
CO3	Apply the concept of Inventory control and replace	ement analysis	3-Apply
CO4	Evaluate the process parameters for queuing theor models	y and sequencing	3-Apply
CO5	Analyze the project management techniques.		4-Analyze
	COURSE CONTENT	TS .	
Unit I	Introduction: Operation Research	(08 hrs)	COs Mapped - CO1
Introductio Techniques of LPP, So Types of M	n: Definition, Evolution and Classification of Quant , Methodology, Advantages and Limitations. Linear Prog lution of LPP by Two Phase Method only. Decision The lanagement Decisions, Decision under Certainty, under R	titative Methods an ramming Problem: Ir ory: Meaning and Sto isk, under Uncertaint	d Operations Research atroduction, Formulation eps in Decision Making, y, Decision Trees
Unit II	Transportation & Assignment Model	(07hrs)	COs Mapped - CO1, CO2
Introduct	on, Formulation, Basic Method of Solving Transportation	Problem, Optimizatio	n Methods like UV and
Stepping	Stone Method, Assignment Problem- Hungarian Method	to solve Assignment I	Problem.
Unit	Inventory Control and Replacement Analysis	(07hrs)	COs Mapped - CO1, CO3
Inventory	Control - Deterministic Models- Shortage, without	shortage; Probabilis	tic Inventory Models,
	on to Concept of Service level. Replacement Analysis	- Replacement of]	tems that Deteriorate,
Replacem	ent of Items that Fail Suddenly		<u>CO M I</u>
IV	Queuing Theory and Sequencing Models	(0/nrs)	COs Mapped - CO1. CO4
			001)001
Queuing	Theory: Introduction, Basis Structure, Terminology (Kend	al's Notations) and A	pplications.
Queuing Queuing I	Model M/M/1: /FIFO, M/M/c. Sequencing models : Solution	al's Notations) and A ion of sequencing Pro	pplications. blem - Processing of n
Queuing I Queuing I jobs throu	Model M/M/1: /FIFO, M/M/c. Sequencing models : Solution for the sequencing models in the sequence of the seque	al's Notations) and A ion of sequencing Pro achines, Processing (pplications. blem - Processing of n of two jobs through m
Queuing Queuing I jobs throu Machines	Model M/M/1: /FIFO, M/M/c. Sequencing models : Solutions of n jobs through three m processing of n jobs through three m processing of n jobs through three m m machines.	al's Notations) and A ion of sequencing Pro achines, Processing	pplications. blem - Processing of n of two jobs through m
Queuing I jobs throu Machines Unit V	Model M/M/1: /FIFO, M/M/c. Sequencing models : Solution and two machines, Processing of n jobs through three m Processing of n jobs through m Machines Project Management	al's Notations) and A ion of sequencing Pro achines, Processing ((07hrs)	pplications. blem - Processing of n of two jobs through m COs Mapped - CO1, CO5
Queuing I jobs throu Machines Unit V Network M Queuing T Simulation	Andel M/M/1: /FIFO, M/M/c. Sequencing models : Solution and two machines, Processing of n jobs through three m processing of n jobs through m Machines Project Management Models: Fulkerson's rule, concept and types of floats, C theory and Sequencing Models and Resource Scheduli method. Simulation of Inventory and Queuing Problems	al's Notations) and A ion of sequencing Pro- achines, Processing of (07hrs) PM and PERT, Cras ng. Simulation: Intro	pplications. bblem - Processing of n of two jobs through m COs Mapped - CO1, CO5 shing Analysis Unit 5: oduction, Monte-Carlo
Queuing I jobs throu Machines Unit V Network M Queuing T Simulation	Ineory: Introduction, Basis Structure, Terminology (Kend Model M/M/1: /FIFO, M/M/c. Sequencing models : Soluti agh two machines, Processing of n jobs through three m Project Management Models: Fulkerson's rule, concept and types of floats, C heory and Sequencing Models and Resource Scheduli method, Simulation of Inventory and Queuing Problems. Text Books	al's Notations) and A ion of sequencing Pro- achines, Processing of (07hrs) PM and PERT, Cras ng. Simulation: Intro	pplications. bblem - Processing of n of two jobs through m COs Mapped - CO1, CO5 shing Analysis Unit 5: oduction, Monte-Carlo
Queuing I jobs throu Machines Unit V Network M Queuing T Simulation	Inforty: Introduction, Basis Structure, Terminology (Kend Model M/M/1: /FIFO, M/M/c. Sequencing models : Solution in two machines, Processing of n jobs through three magnetic former and the second structure of the second s	al's Notations) and A ion of sequencing Pro- achines, Processing of (07hrs) PM and PERT, Cras ng. Simulation: Intro search: Principles an	pplications. bblem - Processing of n of two jobs through m COs Mapped - CO1, CO5 bhing Analysis Unit 5: oduction, Monte-Carlo nd Solutions, S.
Queuing I jobs throu Machines Unit V Network M Queuing T Simulation 1. Prem I Chand, 1 2. J. K. S 3. Operat	Inforty: Introduction, Basis Structure, Terminology (Kend Model M/M/1: /FIFO, M/M/c. Sequencing models : Solution in two machines, Processing of n jobs through three m Project Management Models: Fulkerson's rule, concept and types of floats, C heory and Sequencing Models and Resource Scheduli method, Simulation of Inventory and Queuing Problems. Text Books Kumar Gupta, D. S. Hira, Problems in Operations Res 991 harma, Operations Research: Theory and Application ions Research, S. D. Sharma, Kedar Nath Ram Nath-	al's Notations) and A ion of sequencing Pro- achines, Processing of (07hrs) PM and PERT, Cras- ng. Simulation: Intro- search: Principles an n, Laxmi pub. India, Meerut, 2015.	pplications. bblem - Processing of n of two jobs through m COs Mapped - CO1, CO5 shing Analysis Unit 5: oduction, Monte-Carlo nd Solutions, S. 2010.
Queuing I jobs throu Machines Unit V Network M Queuing T Simulation 1. Prem I Chand, 1 2. J. K. S 3. Operat . 4. L.C.Jh	Ineory: Introduction, Basis Structure, Terminology (Kend Model M/M/1: /FIFO, M/M/c. Sequencing models : Soluti agh two machines, Processing of n jobs through three m Project Management Models: Fulkerson's rule, concept and types of floats, C theory and Sequencing Models and Resource Scheduli method, Simulation of Inventory and Queuing Problems. Text Books Kumar Gupta, D. S. Hira, Problems in Operations Res 991 harma, Operations Research: Theory and Application tions Research, S. D. Sharma, Kedar Nath Ram Nath- amb, Quantative Techniques Vol. I &II, Everest Publ	al's Notations) and A ion of sequencing Pro- achines, Processing of (07hrs) PM and PERT, Cras ng. Simulation: Intro- search: Principles an n, Laxmi pub. India, Meerut, 2015. lication, 2007.	pplications. bblem - Processing of n of two jobs through m COs Mapped - CO1, CO5 shing Analysis Unit 5: oduction, Monte-Carlo nd Solutions, S. 2010.
Queuing I jobs throu Machines Unit V Network M Queuing T Simulation 1. Prem I Chand, 1 2. J. K. S 3. Operat . 4. L.C.Jh . 5. Manoł	Ineory: Introduction, Basis Structure, Terminology (Kend Model M/M/1: /FIFO, M/M/c. Sequencing models : Solution in two machines, Processing of n jobs through three magnetic fields and the second sequencing models and types of floats, C Project Management Models: Fulkerson's rule, concept and types of floats, C Theory and Sequencing Models and Resource Scheduli method, Simulation of Inventory and Queuing Problems. Text Books Kumar Gupta, D. S. Hira, Problems in Operations Res 991 harma, Operations Research: Theory and Application ions Research, S. D. Sharma, Kedar Nath Ram Nath- amb, Quantative Techniques Vol. I &II, Everest Publica Mahajan, Operation Research, Dhanpatrai Publica	al's Notations) and A ion of sequencing Pro- achines, Processing of (07hrs) PM and PERT, Crass ng. Simulation: Intro- search: Principles an n, Laxmi pub. India, Meerut, 2015. lication, 2007. ation, 2006.	pplications. bblem - Processing of n of two jobs through m COs Mapped - CO1, CO5 shing Analysis Unit 5: oduction, Monte-Carlo nd Solutions, S. 2010.
Queuing I jobs throu Machines Unit V Network M Queuing T Simulation 1. Prem I Chand, 1 2. J. K. S 3. Operat . 4. L.C.Jh . 5. Manoł . 6. V. K. J	Ineory: Introduction, Basis Structure, Terminology (Kend Model M/M/1: /FIFO, M/M/c. Sequencing models : Soluti ingh two machines, Processing of n jobs through three m Project Management Models: Fulkerson's rule, concept and types of floats, C heory and Sequencing Models and Resource Scheduli method, Simulation of Inventory and Queuing Problems. Text Books Kumar Gupta, D. S. Hira, Problems in Operations Res 991 harma, Operations Research: Theory and Application ions Research, S. D. Sharma, Kedar Nath Ram Nath- amb, Quantative Techniques Vol. I &II, Everest Publica Kapoor, Operations Research: Quantitative Technique	al's Notations) and A ion of sequencing Pro- achines, Processing of (07hrs) PM and PERT, Cras- ng. Simulation: Intro- search: Principles an n, Laxmi pub. India, Meerut, 2015. lication, 2007. ation, 2006. es for Management,	pplications. blem - Processing of n of two jobs through m COs Mapped - CO1, CO5 shing Analysis Unit 5: oduction, Monte-Carlo nd Solutions, S. 2010. Sultan Chand
Queuing I jobs throu Machines Unit V Network M Queuing T Simulation 1. Prem I Chand, 1 2. J. K. S 3. Operat . 4. L.C.Jh . 5. Manoł . 6. V. K. I Publicati	Ineory: Introduction, Basis Structure, Terminology (Kend Model M/M/1: /FIFO, M/M/c. Sequencing models : Soluti agh two machines, Processing of n jobs through three m Project Management Models: Fulkerson's rule, concept and types of floats, C Theory and Sequencing Models and Resource Scheduli method, Simulation of Inventory and Queuing Problems. Text Books Kumar Gupta, D. S. Hira, Problems in Operations Res 991 harma, Operations Research: Theory and Application ions Research, S. D. Sharma, Kedar Nath Ram Nath- amb, Quantative Techniques Vol. I &II, Everest Publica Kapoor, Operations Research: Quantitative Technique ons, 2013.	al's Notations) and A ion of sequencing Pro- achines, Processing of (07hrs) PM and PERT, Cras ng. Simulation: Intro- search: Principles an n, Laxmi pub. India, Meerut, 2015. lication, 2007. ation, 2006. es for Management,	pplications. bblem - Processing of n of two jobs through m COs Mapped - CO1, CO5 shing Analysis Unit 5: oduction, Monte-Carlo nd Solutions, S. 2010. Sultan Chand
Queuing I jobs throu Machines Unit V Network M Queuing T Simulation 1. Prem I Chand, 1 2. J. K. S 3. Operat . 4. L.C.Jh . 5. Manoł . 6. V. K. I Publicati	Andel M/M/1: /FIFO, M/M/c. Sequencing models : Solution and Model M/M/1: /FIFO, M/M/c. Sequencing models : Solution and two machines, Processing of n jobs through three magnetic management Project Management Models: Fulkerson's rule, concept and types of floats, C theory and Sequencing Models and Resource Scheduli method, Simulation of Inventory and Queuing Problems. Text Books Kumar Gupta, D. S. Hira, Problems in Operations Research 1000 Second Application 1000 Second Application 1000 Second Second Application 1000 Second Second Second Second Application 1000 Second Second Second Second Second Second 1000 Second Second Second Second Second Second Second 1000 Second Secon	al's Notations) and A ion of sequencing Pro- achines, Processing of (07hrs) PM and PERT, Crass ng. Simulation: Intro- search: Principles an h, Laxmi pub. India, Meerut, 2015. lication, 2007. ation, 2006. es for Management,	pplications. bblem - Processing of n of two jobs through m COs Mapped - CO1, CO5 shing Analysis Unit 5: oduction, Monte-Carlo and Solutions, S. 2010. Sultan Chand
Queuing I jobs throu Machines Unit V Network M Queuing T Simulation 1. Prem I Chand, 1 2. J. K. S 3. Operat . 4. L.C.Jh . 5. Manoł . 6. V. K. I Publicati . 1. Hillier 2011	Andel M/M/1: /FIFO, M/M/c. Sequencing models : Solution Model M/M/1: /FIFO, M/M/c. Sequencing models : Solution processing of n jobs through m Machines Project Management Models: Fulkerson's rule, concept and types of floats, C theory and Sequencing Models and Resource Scheduli method, Simulation of Inventory and Queuing Problems. Text Books Kumar Gupta, D. S. Hira, Problems in Operations Research Solution Research: Theory and Application tions Research, S. D. Sharma, Kedar Nath Ram Nath- amb, Quantative Techniques Vol. I &II, Everest Publica Kapoor, Operations Research: Quantitative Technique ons, 2013. Reference Books F.S., and Lieberman G.J., Operations Research, Eight	al's Notations) and A ion of sequencing Pro- achines, Processing of (07hrs) PM and PERT, Crass ng. Simulation: Intro- search: Principles an n, Laxmi pub. India, Meerut, 2015. lication, 2007. ation, 2006. es for Management, nt Edition, Mc. Tata	pplications. bblem - Processing of n of two jobs through m COs Mapped - CO1, CO5 shing Analysis Unit 5: oduction, Monte-Carlo nd Solutions, S. 2010. Sultan Chand McGraw Hill, India,
Queuing I jobs throu Machines Unit V Network M Queuing T Simulation 1. Prem I Chand, 1 2. J. K. S 3. Operat . 4. L.C.Jh . 5. Manoł . 6. V. K. J Publicati . 1. Hillier 2011. . 2. Raving	Ineory: Introduction, Basis Structure, Terminology (Kend Model M/M/1: /FIFO, M/M/c. Sequencing models : Soluti agh two machines, Processing of n jobs through three m Project Management Models: Fulkerson's rule, concept and types of floats, C heory and Sequencing Models and Resource Scheduli method, Simulation of Inventory and Queuing Problems. Text Books Kumar Gupta, D. S. Hira, Problems in Operations Res 991 harma, Operations Research: Theory and Application ions Research, S. D. Sharma, Kedar Nath Ram Nath- amb, Quantative Techniques Vol. I &II, Everest Publica Kapoor, Operations Research: Quantitative Technique (Kend Mahajan, Operations Research: Quantitative Technique ons, 2013. Reference Books F.S., and Lieberman G.J., Operations Research, Eigh	al's Notations) and A ion of sequencing Pro- achines, Processing of (07hrs) PM and PERT, Cras- ng. Simulation: Intro- search: Principles an n, Laxmi pub. India, Meerut, 2015. lication, 2007. ation, 2006. es for Management, nt Edition, Mc. Tata cations. 2nd edition	pplications. bblem - Processing of n of two jobs through m COs Mapped - CO1, CO5 shing Analysis Unit 5: oduction, Monte-Carlo and Solutions, S. 2010. Sultan Chand McGraw Hill, India, n, Wiley, India
Queuing I jobs throu Machines Unit V Network M Queuing T Simulation 1. Prem I Chand, 1 2. J. K. S 3. Operat 4. L.C.Jh 5. Manoł 6. V. K. I Publicati 1. Hillier 2011. 2. Ravino 3. Ravino	Ineory: Introduction, Basis Structure, Terminology (Kend Model M/M/1: /FIFO, M/M/c. Sequencing models : Soluti agh two machines, Processing of n jobs through three m Project Management Models: Fulkerson's rule, concept and types of floats, C Theory and Sequencing Models and Resource Scheduli method, Simulation of Inventory and Queuing Problems. Text Books Kumar Gupta, D. S. Hira, Problems in Operations Res 991 harma, Operations Research: Theory and Application ions Research, S. D. Sharma, Kedar Nath Ram Nath- amb, Quantative Techniques Vol. I &II, Everest Publica Kapoor, Operations Research: Quantitative Technique ons, 2013. Reference Books F.S., and Lieberman G.J., Operations Research, Eigh dran, —Engineering optimization Methods and Appli fran, Phillips and Solberg, Operations Research Prince	al's Notations) and A ion of sequencing Pro- achines, Processing of (07hrs) PM and PERT, Crass ng. Simulation: Intro- search: Principles an n, Laxmi pub. India, Meerut, 2015. lication, 2007. ation, 2006. es for Management, nt Edition, Mc. Tata cationsl, 2nd edition piples and Practice, 5	pplications. bblem - Processing of n of two jobs through m COs Mapped - CO1, CO5 shing Analysis Unit 5: oduction, Monte-Carlo nd Solutions, S. 2010. Sultan Chand McGraw Hill, India, n, Wiley, India Second Edition, Mc.
Queuing I jobs throu Machines Unit V Network M Queuing T Simulation 1. Prem I Chand, 1 2. J. K. S 3. Operat . 4. L.C.Jh . 5. Manoł . 6. V. K. J Publicati . 1. Hillier 2011. . 2. Ravino WSE	Ineory: Introduction, Basis Structure, Terminology (Kend Model M/M/1: /FIFO, M/M/c. Sequencing models : Soluti agh two machines, Processing of n jobs through three m Project Management Models: Fulkerson's rule, concept and types of floats, C heory and Sequencing Models and Resource Scheduli method, Simulation of Inventory and Queuing Problems. Text Books Kumar Gupta, D. S. Hira, Problems in Operations Res 991 harma, Operations Research: Theory and Application ions Research, S. D. Sharma, Kedar Nath Ram Nath- amb, Quantative Techniques Vol. I &II, Everest Publica Kapoor, Operations Research: Quantitative Technique ons, 2013. Reference Books F.S., and Lieberman G.J., Operations Research, Eigh dran, —Engineering optimization Methods and Appli fran, Phillips and Solberg, Operations Research Princ Willey,	al's Notations) and A ion of sequencing Pro- achines, Processing of (07hrs) PM and PERT, Cras- ng. Simulation: Intro- search: Principles an n, Laxmi pub. India, Meerut, 2015. lication, 2007. ation, 2006. es for Management, nt Edition, Mc. Tata cationsl, 2nd edition ciples and Practice, 5	pplications. bblem - Processing of n of two jobs through m COs Mapped - CO1, CO5 shing Analysis Unit 5: oduction, Monte-Carlo ad Solutions, S. 2010. Sultan Chand McGraw Hill, India, n, Wiley, India Second Edition, Mc.

	<u> </u>											
				Stren	gth of C	CO-PO I	Mappin	g				
		PO										
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	2	-	-	1	-	-	-	-	-	1	2
CO2	2	2	-	-	1	-	-	-	-	-	1	2
CO3	2	2	-	-	1	-	-	-	-	-	1	2
CO4	2	2	-	-	1	-	-	-	-	-	1	2
CO5	2	2	-	-	1	-	-	-	-	-	1	2
Average	2	2	-	-	1	-	-	-	-	-	1	2

	Components for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	Assignments on Unit-1, Unit-2, Unit-3, Unit 4 & Unit 5	10				
2	LMS Test	10				
	Total	20				

Pattern 202	T. Y. B. Tech. 2 Semester: VI (Mecha	nical Engineering)	
MEC22301	5A : Computer Integrat	ed Manufacturing	
Teaching Scheme:	Credit Scheme:	Examination Schem	ne:
3 hrs/week 03 Insem – 20 Marks 03 End Sem – 60 Marks Continuous Comprehensive Evaluation: 20Marks			
Prerequisite Courses, if any: -Geo organizational Behavior	metric Modeling and Proc	duction Drawing, Industr	rial Psychology and
	Course Objectives	8	
Understand the importance of CIM Learn to integrate hardware, softw Explore advanced manufacturing manufacturing, group technology, Explore Theoretical concepts of IoT	I and factory automation vare, and generate CNC concepts, including flexil , , Industry 4.0, and cloud	1. programs for CIM. ble manufacturing, cel l-based manufacturing	lular 5.
	·		
Course Outcomes: On completion	of the course, students w	ill be able to–	
	Course Outcomes		Bloom's Level

CO1	Un	nderstand the Principles of CIM			2-Unde	erstand
CO2	Ap	pply Data Integration Techniques in CIM			3-Appl	у
CO3	De	emonstrate Proficiency in CAM and CNC Prog	ramming		4-Analy	ze
CO4	An	nalyze Computer-Aided Process Planning (CAI	PP) methodol	ogies	4-Anal	yze
CO5	An	nalyze Theoretical Concepts of Future Manufa	cturing Tech	nologies	4 - Syr	thesize
		COURSE CONTEN	NTS			
Unit I	Un	it 1: Foundations of CIM	(08 hrs)	COs N	/apped - (C O 1
	Nee of C	d and Evolution of CIM, CIM Hardware and S CIM and Types of Automation, Functions in Ma	oftware, Role anufacturing,	e of CIM CIM Wh	System, D neel and	efinition
	Con	nputerized Elements, Advantages of CIM	2,	1		
Unit II	Data	a Integration in CIM	(07 hrs)	COs N	Aapped - C	CO1, CO2
	CAI Env EDN	D-CAM Integration, Product Development thro ironment, Networking in Manufacturing, CI M, PDM, PLM in CIM	ugh CIM, De M Database	sign Acti and Da	vities in a l tabase Ma	Networked nagement,
Unit I	II (CAM in CIM	(07 hrs)	COs N	Aapped - C	C O3
	Intro Mill Cyc	oduction to CAM, Coordinate System and CN ling Machines, CNC Part Programming, Too les, Subroutines, Do Loops, CIM Integral Mac	C Principles, ol and Geom hines	CNC La netric Co	athe, Turni ompensatio	ng Centers, ns, Canned
Unit IV	Pro	cess Planning, Quality Control, and MRP	(07 hrs)	COs M	apped – C	04
	CAI and Inve	PP and Benefits, Logical Steps in CAPP, MRP its Applications, Computer-Aided Production entory, Inspection, MES	, Capacity Pla Scheduling,	anning, N Control	IRP-II, ER Systems: S	P Concepts Shop Floor,
Unit V	FM: Fact	S, Cellular Manufacturing, and Future Sma tories	art(07 hrs)		COs Mapj CO5	oed –
	Flex Grow Mar	tible Manufacturing Systems (FMS), FMS Conup Technology (GT) and Part Families, Industry nufacturing, Digital Manufacturing in Industry	nponents, Laystry 4.0 and 1 4.0, Scheduli	youts, and Functions ng, Lean	d Applicati s, IoT App Manufactı	ons lications in tring
		Text Books				
5.	Autor India,	nation, Production system & Computer Integra 2007 2nd edition.	ated manufact	uring, M	. P. Groov	er Person
6.] 7.]	Princi Harrii	iples of Computer Integrated Manufacturing, S ngton J, Computer Integrated Manufacturing K	. Kant Vajpa rieger Public	yee, Pren ations 19	tice Hall Ir 79.	ıdia
		Reference Books	8			
1 V	Neath	erall, A., 2013. Computer integrated manufact	uring: from f	undamen	tals to	
imp) 2.]	lemer Nanua Wiley	ntation. Butterworth-Heinemann. a Singh, Systems Approach to Computer Integ y Publications.	rated Design	and Man	ufacturing,	John
3	Jha, N	J.K. "Handbook of Flexible Manufacturing Sys	stems ", Acad	lemic Pre	ess Inc., 19	91.
		Strength of CO-PO/PSO Mapp	oing			
Streng	gth	РО			PSO	

Avg	3	3	3	3	3	-	3	-	2	-	2	2	2	2
CO 5	3	3	3	3	-	-	2	-	2	-	2	2	2	2
CO 4	3	3	-	-	3	-	-	-	2	-	2	2	2	2
CO 3	3	3	3	3	3	-	-	-	2	-	2	2	2	2
CO 2	3	3	-	-	-	-	3	-	-	-	2	2	-	2
CO 1	3	3	-	-	-	-	3	-	-	-	2	2	-	2
of COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
	2													

G	Guidelines for Continuous Comprehensive Evaluationof Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	One Assignments on Unit-1, Unit-2, Unit-3, Unit-4, Unit-5	10				
2	Pre insem test and pre end em test	5				
3	LMS Test	5				
	Total	20				

T. Y. B. Tech.						
Pattern 2022 Semester: VI (Mechanical Engineering)						
MEC223015B : Automobile Engineering						
Teaching Scheme:	Credit Scheme:	Examination Scheme:				
3 hrs/week		Insem – 20 Marks				
	03	End Sem – 60 Marks				
		Continuous Comprehensive				
		Evaluation: 20Marks				
Prerequisite Courses, if any: - Fund	lamentals of Mechanica	l Engineering, Mechanism and Machines,				
Energy Systems for Mobility.						
	Course Objectives	5				
To develop a comprehensive un principles.	derstanding of autor	nobile systems and their fundamental				
To comprehend Chassis, Powertra	in, and Mobility Com	ponents.				
To analyze Suspension, Brake Syst	tems, and Vehicle Perf	ormance.				
To explore Automotive Safety Star	idards and Emerging	Technologies.				
To make students conservant abou	t Electrical Systems a	nd Vehicle Maintenance.				

Course O	utcomes: On completion of the course, students wil	l be able to-	
	Course Outcomes		Bloom's Level
CO1	Explain and Compare automotive system for the v	vehicle.	2-Understand
CO2	Describe different types of mobility components a functionalities.	and their respective	2-Understand
CO3	Classify vehicle safety systems and comprehend the mitigation and occupant protection.	heir roles in risk	2-Understand
CO4	Apply knowledge of suspension and brake system maintenance tasks.	s in automobiles for	r 3-Apply
CO5	Analyze factors impacting vehicle performance ar methodologies.	nd evaluate testing	4-Analyze
	COURSE CONTENT	rs	
Unit I	Introduction	(08hrs)	COs Mapped - CO1
Chassis a and mater Vehicle P types of tr drive and	nd Frames: Types, layout and constructional feature ials. owertrain Systems: Necessity and selection of clut ansmission systems- MT, AT, AMT, CVT, DCT, 1 differential.	res of chassis and fi ch, Necessity of gea Hybrid Transmissic	rames, components ar box and different on. Overdrive, final
Unit II	Mobility Components	(07hrs)	COS Mapped – CO1,CO2
Wheels an of tyres, of inflation p Steering s systems St	and tyres : Wheel design and construction, Wheel align construction, materials. Factors influencing tyre p ressure. System : Types of steering systems, Steering kind teer-by-wire technology and drive-by-wire systems,	erformance: tread of ematics, Active and electronic stability	ng procedures, type design, compound, l adaptive steering control (ESC)
Unit III	Suspension and Brake System	(07hrs)	COs Mapped – CO1,CO4
Suspension self levelli Brake system handbrake	n: Types of Suspension Systems- Independent, Deng suspension (active suspension), shock absorbers stems: Drum, disc, mechanical, hydraulic, air brack, ABS, EBD, Electronic stability control (ESC) and	ependent, types of s (hydraulic and air) ikes, vacuum, pow traction control sys	er assisted brakes, stems (TCS)
Unit VI	Automotive Performance & Safety	(07 hrs)	COs Mapped – CO1,CO5
Automoti vehicle dy Vehicle Pe Automoti Performan	ve performance: Performance testing methodolog ynamics: traction, stability, and control. Road performance. ve safety: Types of active and passive safety, ace and Safety.	ies and standards, erformance curves, Emerging Techno	Basic principles of Factors Affecting ologies in Vehicle
Unit V	Electrical System and Vehicle Maintenance	(07 hrs)	COs Mapped – CO1,CO3
Batteries and efficient lithium ba	Principles and construction of lead-acid battery, chercy of batteries, various tests on battery condition to Electrical system and access	haracteristics of batt on, charging metho ories.	ery, rating capacity ds, introduction to

Maintenance: Types of vehicle maintenance, servicing/overhauling of clutch, gear box, propeller shaft, differential, axles, steering system, suspension system, break system, electrical system.

Text Books

- **8.** Hans Hermann Braess, Ulrich Seiffen, "Handbook of Automotive Engineering", SAE Publications.
- 9. William H. Crouse., "Automotive Mechanics", Tata McGraw Hill Publishing House.
- **10.** SAE Manuals and Standards.
- **11.** N. K. Giri, Automobile Mechanics
- 12. P. S. Kohali, Automobile Electrical Equipment, Tata McGraw Hill Publishing House.
- **13.** Narang G. B. S, "Automobile Engineering", S. Chand and Company Ltd.

Reference Books

- 1. Dr. Kirpal Singh, "Automobile Engineering", Volume 1, Standard Publishers distributors.
- 2. Automobile Mechanics, "Crouse/Anglin", TATA Mcgraw-Hill.
- 3. R. B. Gupta, Automobile Engineering, Satya Prakashan. Faculty of Science and Technology Mechanical Engineering Page 25 of 62
- 4. Chris Mi, M .Abul Masrur, Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, ,Willey.
- 5. Electric and Hybrid Vehicles, Tom Denton, Routledge.
- 6. Hybrid Electric Vehicle Technology, Automotive Research and Design, American Technical.

				Stre	ength o	f CO-I	PO/PSO	O Map	ping					
Strength]	90						PS	0
of COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	1	-	-	-	-	-	-	-	-	-	-	-	2
CO 2	3	-	-	-	-	-	-	-	-	-	-	-	-	2
CO 3	3	2	2	-	-	2	-	-	2	-	-	-	2	2
CO 4	3	2	2	-	-	2	2	-	2	-	-	-	2	2
CO 5	3	2	2	2	-	-	2	-	2	-	-	-	2	2
Avg	3	2	2	2	-	2	2	-	2	-	-	-	2	2

	Guidelines for Continuous Comprehensive Evaluation of Theory	Course
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted
1	One LMS Test on each Unit (10 marks) Total 50 marks will be converted into 10 marks	10
2	Pre Insem test (30 marks) and Pre Endsem test (60 marks) Total marks will be converted into 10 marks	10
	Total	20

		T. Y. B. Tech.			
	Pattern 2022	Semester: VI (Mechan	ical Engineering)		
	MEC223015C : Proc	luct Design, Innovation	, and Entrepreneur	ship	
Teaching	Scheme: 3 hrs/week	Credit Scheme: 03	Examination Sche	eme:	
			Insem – 20 Marks		
			End Sem – 60 Ma	rks	
			Continuous Comp	orehensive	
			Evaluation: 20Ma	rks	
Prerequi	site Courses, if any: - Engi	neering Design Fundame	ntals, Mechanics of	Materials,	
Thermody	ynamics, Manufacturing Pro	cesses, Engineering Eco	nomics, Materials Sc	eience and	
Engineen	lig	Course Objectives			
Understand	the principles of design t	hinking and creativity t	echniques to foster	innovative	
problem-s	olving skills.	initiang and creativity t	cenniques to loster		
Learn prin	ciples of design thinking a	nd creativity technique	s to generate innova	ative solutions to	
engineerin	ig challenges.	. 1	8		
Explore ma	arket trends, consumer nee	eds, and competitor offe	rings to identify op	portunities for	
product in	novation and entrepreneu	rship.			
Survey the	e feasibility and viability of	f product designs throug	gh prototyping, test	ing, and iterative	
refinemen	t processes.				
Course C	Dutcomes: On completion o	f the course, students wil	l be able to–		
		Course Outcomes		Bloom's Level	
CO1	Describe design thinking a	and creativity principles t	o foster innovative	2 Un densten d	
COI	problem-solving skills.			2-Onderstand	
CO2	Apply design thinking tech	nniques to engineer innov	vative solutions.	3-Apply	
CO3	Analyze market trends for opportunities.	product innovation and e	entrepreneurship	4-Analyze	
	Evaluate product designs through prototyping for feasibility and				
CO4	Evaluate product designs	through prototyping for f	easibility and	5-Analyze	
CO4	viability.	through prototyping for f	easibility and	5-Analyze	
CO4	viability.	through prototyping for f	s	5-Analyze	
CO4 Unit I	Unit 1: Introduction to P	through prototyping for f COURSE CONTENT roduct Design,	(07 hrs)	5-Analyze	
CO4 Unit I	Unit 1: Introduction to Pr Innovation, and Entrepre	through prototyping for f COURSE CONTENT roduct Design, eneurship	(07 hrs)	5-Analyze COs Mapped - CO1	
CO4 Unit I Overview	Unit 1: Introduction to Pu Innovation, and Entrepre	through prototyping for f COURSE CONTENT roduct Design, eneurship on, and Entrepreneurship	(07 hrs)	5-Analyze COs Mapped - CO1	
CO4 Unit I Overview of Importance	Unit 1: Introduction to Pr Innovation, and Entrepre of Product Design, Innovation e and Role in Mechanical Er	through prototyping for f COURSE CONTENT roduct Design, eneurship on, and Entrepreneurship ngineering	(07 hrs)	5-Analyze COs Mapped - CO1	
CO4 Unit I Overview of Importance Understand	Unit 1: Introduction to Pr Innovation, and Entrepre of Product Design, Innovatio e and Role in Mechanical Ending Design Thinking Proce	through prototyping for f COURSE CONTENT roduct Design, meurship on, and Entrepreneurship ngineering ss	(07 hrs)	5-Analyze COs Mapped - CO1	
CO4 Unit I Overview of Importance Understand Market An	Unit 1: Introduction to Pu Innovation, and Entrepre of Product Design, Innovatio e and Role in Mechanical En ding Design Thinking Proce alysis and Identifying Oppo	through prototyping for f COURSE CONTENT roduct Design, meurship on, and Entrepreneurship ngineering ss rtunities	(07 hrs)	5-Analyze COs Mapped - CO1	
CO4 Unit I Overview of Importance Understand Market An Introductio	Unit 1: Introduction to Pr Innovation, and Entrepre of Product Design, Innovatio e and Role in Mechanical En ding Design Thinking Proce alysis and Identifying Oppo on to Intellectual Property Ri-	through prototyping for f COURSE CONTENT roduct Design, eneurship on, and Entrepreneurship ngineering ss rtunities ights (IPR)	(07 hrs)	5-Analyze COs Mapped - CO1	
CO4 Unit I Overview of Importance Understand Market An Introduction Design for Prototymin	Unit 1: Introduction to Pr Innovation, and Entrepre of Product Design, Innovatio e and Role in Mechanical Er ding Design Thinking Proce alysis and Identifying Oppo on to Intellectual Property Ri Manufacturing and Assemb g Tachniques and Panid Pro	through prototyping for f COURSE CONTENT roduct Design, meurship on, and Entrepreneurship ngineering ss rtunities ights (IPR) bly (DFMA) Principles totyping	(07 hrs)	5-Analyze COs Mapped - CO1	
CO4 Unit I Overview of Importance Understand Market An Introductic Design for Prototypin	Unit 1: Introduction to Pr Innovation, and Entrepre of Product Design, Innovation e and Role in Mechanical Er ding Design Thinking Proce alysis and Identifying Oppo on to Intellectual Property Ri Manufacturing and Assemb g Techniques and Rapid Pro	through prototyping for f COURSE CONTENT roduct Design, meurship on, and Entrepreneurship ngineering ss rtunities ights (IPR) oly (DFMA) Principles ototyping Concent Development	(07 hrs)	5-Analyze COs Mapped - CO1	
CO4 Unit I Overview of Importance Understand Market An Introductic Design for Prototypin Unit II	Unit 1: Introduction to Pr Innovation, and Entrepre of Product Design, Innovatio e and Role in Mechanical Er ding Design Thinking Proce alysis and Identifying Oppo on to Intellectual Property Ri Manufacturing and Assemb g Techniques and Rapid Pro Design Fundamentals and	through prototyping for f COURSE CONTENT roduct Design, meurship on, and Entrepreneurship ngineering ss rtunities ights (IPR) oly (DFMA) Principles ototyping Concept Development	(07 hrs)	5-Analyze COs Mapped - CO1 COs Mapped - CO1, CO2	
CO4 Unit I Overview of Importance Understand Market An Introductic Design for Prototypin Unit II	Unit 1: Introduction to Pu Innovation, and Entrepre of Product Design, Innovatio e and Role in Mechanical Er ding Design Thinking Proce alysis and Identifying Oppo on to Intellectual Property Ri Manufacturing and Assemb g Techniques and Rapid Pro Design Fundamentals and tals of Engineering Design	through prototyping for f COURSE CONTENT roduct Design, meurship on, and Entrepreneurship ngineering ss rtunities ights (IPR) oly (DFMA) Principles ototyping Concept Development	(07 hrs)	5-Analyze COs Mapped - CO1 COs Mapped - CO1, CO2	

Design Optimization Techniques							
Ergonomics and Human Factors in Design							
Material Selection for Product Design							
Design Va	lidation and Testing						
Sustainability in Product Design							
Unit III	Unit Innovation Strategies and Creativity Techniques (07 hrs) COs Mapped -						
Understan	ding Innovation and its Types						
Innovation	Strategies in Mechanical Engineering						
Creativity	Techniques and Brainstorming						
Design Th	inking in Practice: Ideation Phase						
Value Pro	position and Business Model Canvas						
Lean Start	un Methodology						
Unit VI	Entrepreneurship in Engineering	(07 hrs)	COs Mapped – CO4				
Introduction	on to Entrepreneurship in Engineering	1					
Business I	Plan Development						
Financial	Management for Startups						
Marketing	Strategies for Engineering Ventures						
Sales and	Distribution Channels						
Intellectua	l Property Strategy for Startups						
Unit V	Product Development Lifecycle and Project	(07 hrs)	COs Mapped –				
Overview	of Product Development Lifequale (PDLC)						
Droject M	anagement Tachniques for Product Development						
Dick Mon	anagement rechniques for rioduct Development						
Ouglity C	agement in Froduct Development						
Quanty Co Agile Met	hodology in Product Development						
Aglie Mei Scoling U	nodology in Floduct Development						
Doct Lour	ah Evaluation and Continuous Improvement						
r ost-Laun							
	I ext Books						
14. Io B	dris Mootee, 2013, Design Thinking for Strategic In Jusiness or Design School, Publisher: Wiley	novation: What T	hey Can't Teach You at				
15. T	om Kelley, 2001, The Art of Innovation: Lessons in	Creativity from II	DEO, America's Leading				
16 E	· D' 2011 L Court LL T 1 - E C						
10.E	ric Ries, 2011, Lean Startup: How Today's Entrepren	eurs Use Continuo	ous innovation to Create				
K	adically Successful Businesses, Publisher: Currency						
	Keterence Books						
1. Jea Pu	nne Liedtka, 2011, Designing for Growth: A De blisher: Columbia University Press	esign Thinking T	ool Kit for Managers,				
2. Dan Olsen, 2015, The Lean Product Playbook: How to Innovate with Minimum Viable Products and Rapid Customer Feedback, Publisher: Wiley							
3. He Mi	idi M. Neck, Christopher P. Neck, Emma L. Murray, ndset, Publisher: SAGE Publications, Inc	2017, Entreprene	urship: The Practice and				
	·						

Strength of CO-PO/PSO Mapping														
Strength	РО												PSO	
of COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	3	-	2	2	-	2	-	-	2	2	2	2
CO 2	3	3	3	-	3	2	-	-	-	3	-	2	2	2
CO 3	3	3	3	-	2	2	-	-	-	-	-	2	2	2
CO 4	3	3	3	-	3	2	-	-	-	-	-	2	2	2
Avg	3	3	3	-	3	2	-	2	-	3	2	2	2	2

	Guidelines for Continuous Comprehensive Evaluationof Theory Course							
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation							
1	One Assignments on Unit-1, Unit-2, Unit-3, Unit-4, Unit-5	5						
2	Pre insem test and pre end em test	10						
3	Use of LMS	5						
	Total	20						

T. Y. B. Tech. Pattern 2022 Semester: VI (Mechanical Engineering) MEC223016A : Finite Element Analysis								
Teachin	g Scheme:	Credit Scheme:	Examination Sch	ieme:				
Practica	l :02 hrs/week	01	Term Work : 25 Marks OR/ Practical : 25 Marks					
Prerequ	isite Courses, if any: - Mec	hanics of materials, Ther	modynamics, Mach	ine Design				
20. To un 21. To un 22. To un 23. To un 24. To un	Iderstand fundamentals of FEA Iderstand the 1D structural mer Iderstand 2D structural member Iderstand the heat transfer prob Iderstand the mechanical comp	for finite element formula nber for displacement, stress er for displacement, stress lems for temperature, therm onent for dynamic conditio	tion ss nal stress, heat flux ns Il be able to–					
	1	ourse Outcomes		Bloom's				
	On completion of the cou	rse the learner will be a	ble to;	Level				
CO1	Apply fundamentals of FEA	for finite element formulati	on	3 (Apply)				
CO2	Analyze the 1D structural me	mber for displacement, stre	ess	4 (Analyze)				
CO3	Analyze the 2D structural me	ember for displacement, str	ess	4 (Analyze)				
CO4	Analyze the heat transfer pro	blems for temperature, ther	mal stress, heat flux	4 (Analyze)				
CO5	O5 Analyze the mechanical component for dynamic conditions 4 (Analyze)							
	List of Practical							

The term work shall consist of record of any eight from following topic using any suitable analysis software

- 1. 1D Bar Element Structural Linear Analysis
- 2. Spring Structural Linear Analysis
- 3. Truss Analysis using 1D Element
- 4. Plate/Shell Element Structural Linear Analysis
- 5. Thermal Analysis Steady state Analysis
- 6. Coupled Analysis- (Structural + Thermal)
- 7. Modal Analysis Spring Mass system, simply supported/Cantilever beam, etc.
- 8. Analysis of Machine Component using 3D Elements
- 9. Eigen Value Buckling Analysis of Beam

Text Books

1. A First Course in the Finite Element Method, Daryl L. Logan

2. Concepts and Applications of Finite Element Analysis, R. D. Cook, et al. Wiley, India

Reference Books

1. Chandrupatla T. R. and Belegunda A. D., —Introduction to Finite Elements in Engineering, Prentice Hall India.

2. Seshu P., —Text book of Finite Element Analysisl, PHI Learning Private Ltd. New Delhi, 2010.

3. Bathe K. J., —Finite Element Procedures, Prentice-Hall of India (P) Ltd., New Delhi.

4. Fagan M. J., —Finite Element Analysis, Theory and Practicel, Pearson Education Limited

5. Kwon Y. W., Bang H., —Finite Element Method using MATLABI, CRC Press, 1997

6. S. Moaveni, —Finite element analysis, theory and application with Ansysl,

7. Fundamental of Finite Element Analysis, David V. Hutton, Tata McGraw-Hill

8. Gokhale N. S., Deshpande S. S., Bedekar S. V. and Thite A. N., —Practical Finite Element Analysis, 17. Finite to Infinite, Pune

Strength of CO-PO Mapping														
		PO											P	SO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	-	-	3	2	-	-	2	-	-	3	2	2
CO2	3	3	3	-	3	2	-	-	2	-	-	3	2	2
CO3	3	3	3	-	3	2	-	-	2	-	-	3	2	2
CO4	3	3	3	-	3	2	-	-	2	-	-	3	2	2
CO5	3	3	3	-	3	2	-	-	2	-	-	3	2	2
Average	3	3	3	-	3	2	-	-	2	-	-	3	2	2

T. Y. B. Tech. Pattern 2022 Semester: VI (Mechanical Engineering) MEC223016B: Renewable Energy lab							
Teaching	g Scheme: Credit Scheme: Examination Scheme:						
Practical	:02 hrs/week	01	Term work : 25 marks Oral : 25 marks				
Prerequis	site Courses, if any: - Eng	ineering Thermodynan	nics, Fluid Mechanics	, Heat Transfer			
Course O 11. To 12. To app 13. To	 Course Objectives: 11. To understand the basics of Solar PV system. 12. To design the solar thermal conversion systems and solar photovoltaic systems for different applications. 13. To understand wind energy sources and technologies 						
14. To :	analyse the liquid bio-fuel a	and gasifier system					
Course O	utcomes: On completion of	of the course, students wi	ill be able to–				
		Course Outcomes		Bloom's Level			
CO1	Apply the knowledge of so	olar thermal and solar PV	/ systems	2-Understand			
CO2	Understand the wind energy resources	gy conversion systems ar	nd wind energy	1- Knowledge			
CO3	Analyse the liquid bio-fue	ls and gasifier systems		3-apply			
CO4	Understand the working of	f Fuel Cell		2-Understand			

List of Laboratory Experiments (Any Five)							
Sr. No.	Laboratory Experiments / Assignments	CO Mapped					
1	Visit to Solar thermal System and it's technical and economic analysis.	CO1					
2	Study and plotting I-V characteristics of PV solar cell.	CO1					
3	Visit to solar PV grid connected system and it's technical and economic analysis.	CO1					
4	Design of solar PV roof top standalone and grid connected system.	CO1					
5	Study of wind energy conversion systems and study of it's case studies.	CO2					
6	Analysis of liquid bio-fuels: biodiesel and ethanol.	CO3					
7	Analysis of gasifier systems.	CO3					
8	Performance characteristics study of fuel cell.	CO4					

Guidelines for Laboratory Conduction

6. Teacher will brief the given experiment to students its procedure, observations, calculation, and outcome of this experiment.

7. Apparatus and equipment's required for the allotted experiment will be provided by the lab assistants.

8. Students will perform the allotted experiment in a group under the supervision of faculty and lab assistant.

9. After performing the experiment students will check their readings, analysis, visit report from the teacher.

10. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, setup diagram/layout, working principle, procedure, observations, graphs, calculations-technical and economics and conclusion.

Guidelines for Term work Assessment

5. Each experiment from lab journal is assessed for thirty marks based on three rubrics.

6. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

T. Y. B. Tech. Pattern 2022 Semester: VI (B.Tech Mechancial) MEC223016C : Computational Fluid Dynamics Lab								
Teaching S	Teaching Scheme:Credit Scheme:Examination Scheme:							
Practical : 02 hrs/week		01	Termwork:25Marks Oral:25 Marks					
Prerequisi	te Courses, if any: -							
Course Ou	tcomes: On completion of th	e course, students will be	e able to –					
		Bloom's Level						
CO1	Recognize the importance o	1-Knowledge						
CO2	Recognize forced convection sphere, cylinder.	2-Understand						
CO3	Assessment of drag coefficie pipe.	ent in circular pipe under	turbulent flow and bent	3-Apply				
CO4	Pertain how to handling moving boundaries and wall effects in motion of fluid 3-Apply							
CO5	Analyze how to handle pow	er law fluids in CFD.		4-Analyze				

List of Laboratory Experiments / Assignments						
Sr. No.	Laboratory Experiments / Assignments	CO Mapped				
1	Turbulent flow in a circular pipe: generating the friction coefficient versus Reynolds number	CO1,CO3				
2	Flow of a power law non Newtonian fluid over an elliptic cylinder	CO1,CO5				
3	Natural convection over a sphere.	CO1				
4	Mixed convection over a sphere.	CO1,CO2				
5	Forced convection over a sphere.	CO1,CO2				
6	Forced convection over two cylinders in tandem arrangement.	CO1,CO2				
7	Calculation of flow and heat transfer in a lid driven cavity.	CO1,				
8	Wall effect on a sphere in a cylindrical tube.	CO1,CO4				
Guideline	s for Laboratory Conduction					

Student should also submit a detailed report for all the above laboratory practicals.

All simulation results should be validated with correlations available.

The student is expected to attach the simulation predictions and the literature results when he presents the record.

Guidelines for Student's Lab Journal

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Termwork Assessment

- 5. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 6. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journalwriting where each rubric carries ten marks.

T. Y. B. Tech. Pattern 2022 Semester: VI (Mechanical Engineering) MEC223016D : Operation Research								
Teaching	Scheme:	Credit Scheme:	Examination Schem	e:				
Practical	: 02 hrs/week	01	Termwork: 25Marl Oral: 25Marks	ζ8				
Prerequisite Courses, if any: - Engineering Mathematics, Theory of probability, Statistics								
Course O To familia functions	Course Objectives: To familiarize the students with the use of practice oriented mathematical applications for optimization functions in an organization.							
applicable	in particular scenarios in i	ndustry for better manag	ement of various resour	rces.				
Course O	utcomes: On completion of	of the course, students wi	ll be able to-					
		Course Outcomes		Bloom's Level				
CO1	Apply LPP and Decision	Theory to solve the prob	lems	3-Apply				
CO2	Apply the concept of tran resources	3-Apply						
CO3	Apply the concept of Inve	3-Apply						
CO4	Evaluate the process para models	3-Apply						
CO5	Analyze the project mana	gement techniques.		4-Analyze				
	List of La	boratory Experiments	/ Assignments					
Sr. No.	Laborato Practical/Lab to be pe	ory Experiments / Assig rformed on a computer packages	nments using OR/Statistical	CO Mapped				
1	To solve Linear Program (i) Unbounded solution (i multiple solutions.	ming Problem using Gra ii) Infeasible solution (iii	phical Method with) Alternative or	CO1				
2	Solution of LPP with sim	plex method and Big – M	A method.	CO1				
3	Solution of Transportation	n Problem		CO2				
4	Solution of Assignment I	Problem.		CO2				
5	Problems based on select	ive inventory classificati	on (ABC analysis).	CO3				
6	To determine the perform	nance measures for M/M	/1 queuing model	CO4				
7	To perform Project sched CPM).	luling of a given project ((Deterministic case-	C05				
8	To perform Project sched PERT).	luling of a given project ((Probabilistic case-	CO5				
Guidelines for Laboratory Conduction								

11. Teacher will brief the given experiment/assignment to students its procedure, observations calculation, and outcome of this experiment/assignment.

12. Apparatus and equipment's required for the allotted experiment/assignment will be provided by the lab assistants using SOP.

13. Students will perform the allotted experiment/assignment in a group (two students in each group) under the supervision of faculty and lab assistant.

14. After performing the experiment/assignment students will check their readings, calculations from the teacher.

15. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, and diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Term work Assessment

- 7. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 8. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

Text Books

1. Prem Kumar Gupta, D. S. Hira, Problems in Operations Research: Principles and Solutions, S. Chand, 1991

2. J. K. Sharma, Operations Research: Theory and Application, Laxmi pub. India, 2010.

3. Operations Research, S. D. Sharma, Kedar Nath Ram Nath-Meerut, 2015.

4. L.C.Jhamb, Quantative Techniques Vol. I &II, Everest Publication, 2007.

5. Manohar Mahajan, Operation Research, Dhanpatrai Publication, 2006.

6. V. K. Kapoor, Operations Research: Quantitative Techniques for Management, Sultan Chand Publications, 2013.

Reference Books

1. Hillier F.S., and Lieberman G.J., Operations Research, Eight Edition, Mc. Tata McGraw Hill, India, 2011.

2. Ravindran, —Engineering optimization Methods and Applications^{II}, 2nd edition, Wiley, India

3. Ravindran, Phillips and Solberg, Operations Research Principles and Practice, Second Edition, Mc. WSE Willey,

4. Operations Research - An introduction, Hamdy A Taha, Pearson Education, 2010

	Strength of CO-PO Mapping											
		PO										
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	2	-	-	1	-	-	-	-	-	1	2
CO2	2	2	-	-	1	-	-	-	-	-	1	2
CO3	2	2	-	-	1	-	-	-	-	-	1	2
CO4	2	2	-	-	1	-	-	-	-	-	1	2
CO5	2	2	-	-	1	-	-	-	-	-	1	2
Average	2	2	-	-	1	-	-	-	-	-	1	2

T. Y. B. Tech. Pattern 2022 MEC222017 - Machine Intelligence									
Teaching Sc	N. heme:	IEC223017 : Machine Intellig	gence Examination	on Sche	me.				
					incine:				
Theory :03h	rs/week	03	03 Continuous Com						
			In Sem Exa	am: 20	Marks				
	End Sem Exam: 60 Marks								
D									
Prerequisite	e Courses: -Enginee	ering Mathematics, Linear Alge	bra, Probabil	ity, Bas	ic Statistics				
Course Obje	ectives:	1		1.1т.					
1. UND 2 APPI	Y Feature Extraction	damentals of Artificial Intellige	nce and Mac	nine Le	arning.				
3. APPI	LY fundamental of c	classification and regression alg	gorithms.	C 13.					
4. DEM	ONSTRATE the al	bility to develop machine learn	ning models l	by outli	ning and executing				
essen 5 EVDI	tial steps, emphasiz	ing practical application in med	chanical engin	neering	contexts.				
J. EAPI		of reinforced and deep rearning	g, digital twin		anster tearning.				
Course Outo	comes: On complete	ion of the course, students will	be able to-						
		Bloom's Level							
CO1	APPLY fundamental principles of Artificial Intelligence and 2-Understanding Machine Learning.								
CO2	EXPLORE emerging technologies in solving engineering 2-Understanding								
<u> </u>	problems using N	oblems using Machine Learning.							
	the given dataset	aset 3- Apply							
CO4	DEMONSTRAT	E classification and regression	Algorithms i	n the	3- Apply				
	implement suitab	le solutions	em to choose	e and					
CO5	DEVELOP mac	hine learning models, to	address con	nplex	4 -Analyze				
	problems in mecl	hanical engineering by following	ng systematic	c and					
	well-defined step	S							
		COURSE CONTEN	TS						
Unit I	Introduction	to AI & ML	(08 hrs)	COs	Mapped -CO1				
Introduction	n to AI- Definition	and history of AI, Comparison	of AI with I	Data Sci	ence and Machine				
learning Basi	ics of AI: Reasoning	g, Knowledge representation, P	Planning, Lea	rning, P	erception, Motion				
and manipul	ation. Approaches	to AI: Cybernetics and brain	simulation,	Symbol	ic, Sub-symbolic,				
Ethical consi	derations in AI, Soo	cietal Impact and Responsible	AI		Introduction				
to Machine	Learning.								
Approaches t	to ML: Supervised l	earning, Unsupervised learning	g, Reinforcem	nent lear	ming.				
Unit II	Feature Engi	neering	(07 hrs)	COs	Mapped –CO3				
Feature sele	ction: Filter Method	d, Wrapper Method, Embedded	Methods, Gr	eedy for	ward & backward				
methods, fear	ture Ranking techni	ques, Decision tree							
Feature ext	raction: Statistica	l features, Principal Compor	nent Analysis	s. (Nur	nerical based on				
Statistical fea	atures and PCA)								

Unit III	Machine Learning Algorithms	(07 hrs)	COs Mapped –CO4					
Classification: Decision tree- Entropy reduction and information gain, Random Forest, Naive Bayes,								
Support vector machine. (Numerical based on Decision tree using IG and Bays theorem only)								
Regression: Logistic Regression, K-Means, K-Nearest Neighbor (KNN), Time series forecasting								
Algorithms (ARIMA, SARIMA, LSTM)								
Unit IV	Development of Machine Learning Model	(07 hrs)	COs Mapped – CO4, CO5					
Problem identif	cation: classification, clustering, regression, ranking.	Steps in ML	modeling, Data Collection,					
Data pre-proces	sing, Model Selection, Model training (Training, Test	ing, K-fold Cr	oss Validation), parameters					
for Model evalu	ation of classification and regression algorithms (conf	usion matrix, A	Accuracy, Precision, Recall,					
True positive,	false positive etc.), Hyper parameter Tuning. Intr	roduction to A	Artificial Neural Network,					
Convolution Ne	ural Network.							
Unit V	Introduction to Emerging Technologies	(07 hrs)	COs Mapped –CO2					
Characteristics	of reinforced learning Algorithms: Value Based	, Policy Base	d, Model Based; Positive					
vs Negative R	einforced Learning Models, Markov Decision Pr	ocess, Deep	Learning, Introduction to					
digital twin (D	efinition, Components, Characteristics, Applicati	ons) and basi	cs of Transfer Learning.					
Application of	Artificial Intelligence and Machine Learning							
	Text Books							
1. B Joshi, Mach	ine Learning and Artificial Intelligence, Springer, 202	20.						
2. Parag Kulkarni and Prachi Joshi, "Artificial Intelligence – Building Intelligent Systems", PHI learning Pvt. Ltd., ISBN – 978-81-203-5046-5, 2015								
Reference Books								
1. Stuart Russell and Peter Norvig (1995), "Artificial Intelligence: A Modern Approach," Third edition, Pearson, 2003.								
 Solanki, Kumar, Nayyar, Emerging Trends and Applications of Machine Learning, IGI Global, 2018. Mohri, Rostamizdeh, Talwalkar, Foundations of Machine Learning, MIT Press, 2018. 								

4. Kumar, Zindani, Davim, Artificial Intelligence in Mechanical and Industrial Engineering, CRC Press, 2021.

				_									
	Strength of CO-PO Mapping												
		РО											
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	3	3	1	2	2	2	-	1	2	2	-	2	
CO2	3	3	1	2	2	2	-	1	2	2	-	2	
CO3	3	3	1	2	2	2	-	1	2	2	-	2	
CO4	3	3	1	2	2	2	-	1	2	2	-	2	
CO5	3			2				1					
		3	1	2	2	2	-		2	2	-	2	

	Guidelines for Continuous Comprehensive Evaluation of Theory Course							
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted						
1	Assignments- Total 5 Assignment	10						
	Assignment on each unit for 10 Marks							
	(These 50 marks will be converted to 10 Marks)							
2	Tests on each unit using LMS \ Learni-Co	10						
	(Each test for 10 M and total 50 marks will be converted to 10 M)							

T. Y. B. Tech.									
Pattern 2022 Semester: V1 (Mechanical Engineering) MEC223018 : Financial Management									
Teaching S	Scheme:	Credit Scheme:	Examination Sch	eme:					
Theory: 2	Hrs /week	02	Continuous Com Evaluation: 50 M	prehensive arks					
Prerequisi	te Courses, if any: - Fund	lamentals of Statistics, Ba	asics of finance						
Course Objectives									
5. To introduce the concepts of economics & finance in industry.									
6. To	understand cost analysis and	pricing							
7. To	acquire knowledge on basic f	financial management aspec	ts and develop the ski	lls to analyze financial					
stat	ements	1 . 1							
8. To	understand the budgetary pro	ocess and control.							
9. 10	introduce the entrepreneuria	I financial aspects.							
Course Ou	tcomes: On completion o	f the course, students wil	l be able to–						
		Course Outcomes		Bloom's Level					
CO1	UNDERSTAND the busine	ess environment, concepts o	f economics and	2-Understand					
001	demand-supply scenario.			2-Onderstand					
CO2	UNDERSTAND accountin ratio analysis	g systems and analyze finar	icial statements using	2-Understand					
CO3	APPLY the concepts of cos mechanical components.	sting and pricing to evaluate	the pricing of	3-Apply					
CO4	SELECT and PREPARE th	e appropriate type of budge	et and understand the	3-Apply					
	DEMONSTRATE underste	ei Inding of financing decision	a of new ventures on	4					
CO5	performance		is of new ventures and	4-Analyze					
	1	COURSE CONTENT	S						
Unit I	Introduction to Econ	omics	(04hrs)	Cos Mapped –					
			(*****)	CO1					
Economics	Significance of Economics	, Micro and Macro Econom	ic Concepts, Various	terms and Concepts,					
Importance of National Income, Inflation, Money Supply in Inflation, Factors of Production, Business Cycle,									
Features and Phases of Business Cycle. Nature and Scope of Business Economics, Role of Business									
Economist, Multidisciplinary nature of Business Economics									
Elasticity of Demand Eactors affecting Elasticity of Demand Elasticity of Demand in decision making									
Demand Forecasting: Characteristics of Good Demand Forecasting Steps in Demand Forecasting									
		i = 2 chiana i or cousting,		Cos Mapped –					
Unit II	CO1,CO3								

Costs: Standard cost, estimated cost, First cost, Fixed cost, Variable cost, Incremental cost, Differential cost, Sunk and marginal cost, Cost curves, Breakeven point and breakeven chart, Limitations of breakeven chart, Interpretation of breakeven chart, margin of safety, Angle of incidence and multi product break even analysis, Cost Output Decision and Estimation of Cost, Zero Based Costing and numerical

Cost Accounting: Objectives of cost accounting, elements of cost: material cost, labor cost, and expenses, allocation of overheads by different methods, Costing based on direct and indirect costs, Overheads apportionment and absorption, Different Models of Depreciation. Numerical on costing

Unit III	Financial Accounting	(5hrs)	Cos Mapped – CO1,CO2
----------	----------------------	--------	-------------------------

Accounting, Cost accounting & Management accounting, Various types of business entities, Accounting principles, postulates & meaning of accounting standards, Accounting cycle, Capital and revenue, Revenue, Expenses, Gains & Losses, Types of accounts & their rules, Journal Entries Create ledger, Preparation of Trial Balance, Finalizations, Preparation of Trading & Profit & Loss account, Understanding of Assets & Liabilities Balance sheet and related concepts – Profit & Loss Statement and related concepts, Financial Ratio Analysis, Cash flow analysis, Funds flow analysis, Comparative financial statements, Analysis & Interpretation of financial statements, Concept of Ratio Analysis, Preparation of Balance sheet (numerical)

Unit VI	Budget and Budgetary Control	(05hrs)	Cos Mapped –
		()	CO1,CO4

Budgeting and Budgetary Control: Concept of budget, Types and classification of budgets, Advantages and limitations, Methods of budgeting

Budgetary Control: objectives, merits and limitations, Budget administration. Functional budgets. Fixed and flexible budgets, Installation of Budgetary Control System, Zero base budgeting, Taxes and Financial Planning, Impact of Taxation and Inflation on Financial Management

Unit V	Entropyon optical Finance	(05 hrs)	Cos Mapped –
Unit v	Entrepreneurial Finance	(05 mrs)	CO1,CO5

Sources of Funds for Entrepreneurs and Start Ups: Entrepreneurial Finance Vs. Corporate Finance; Traditional Sources of Funds, Early-Stage Sources of Funds- Incubators, Accelerators, Crowd Funding, Business Angels, Mezzanine Funds, Venture Capitals, Private Equity, LBO, Funding Process – Deal Sourcing, Deal Negotiation, Deal Agreement, Term Sheet

Investment Decisions for Start Ups: Time Value of Money, Types of Investment Decisions, Capital Budgeting Process – Investment Evaluation, Risk Analysis in Capital Budgeting – Risk Adjusted Discount Rate, Certainty Equivalent, Decision Tree, Sensitivity Analysis, Scenario Analysis

Valuation and Measurement of Financial Performance: Pre Money and Post Money Valuation, Factors Influencing Valuation, Valuation Methods, Dilution and Valuation of Equity, Metrics used for Performance Evaluation, Harvesting-Exit Strategies

Text Books

- **17.** Hay, Donald A. and Derek J. Morris. Industrial Economics and Organization: Theory and Evidence, 2nd Edition (Oxford: Oxford University Press), 1991.
- 18. Lall, Sanjaya. Competitiveness, Technology and Skills (Cheltenham: Edward Elgar), 2001.
- **19.** Scherer, F. M. and D. Ross. Industrial Market Structure and Economic Performance, 3rd Edition (Houghton: Mifflin), 1990

20. Financial Accounting", Dr. Kaustubh Sontakke [Himalaya Publishing House] 4.Chandra, Prasanna (2004). Financial Management: Theory and Practice. New Delhi: TATA McGraw Hill.

Reference Books

- 1. Accounting Theory & Practice Prof Jawahar Lal [Himalaya Publishing House].
- 2. Brearley, Richard A. and Myers, Stewart C. (1988). "Principles of Corporate Finance", New Delhi: McGraw-Hil
- 3. Engineering Economics, Tara Chand, Nem Chand and Brothers, Roorkee
- 4. Engineering Economy, Thuesen, G. J. and Fabrycky, W. J., Prentice Hall of India Pvt. Ltd.
- 5. Mechanical Estimating and Costing, T. R. Banga and S. C. Sharma, Khanna Publishers, Delhi

	Strength of CO-PO/PSO Mapping													
Strength							PO						PSO	
of Cos	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	1	1	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	1	1	-	1	-	-	-	-	-	-	-	-	-	-
CO 4	1	1	-	-	-	-	2	-	-	-	-	-	-	-
CO 5	1	1	-	2	-	-	2	-	-	-	-	-	-	-
Avg	1	1	-	2	-	-	2	-	-	-	-	-	-	-

	Guidelines for Continuous Comprehensive Evaluation of Theory Course							
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted						
1	One LMS Test on each Unit (10 marks) Total 50 marks will be converted into 25 marks	25						
2	Test- I (25 marks) and Test-II (25 marks) Total marks will be converted into 20 marks	20						
3	Certification course using any Mooc's platform	05						
	Total	50						

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

T. Y. B. Tech	
Pattern 2022 Semester: VI (Mechanical Engin	ieering)
MEC223019 : Measurement and Automation La	boratory

Teaching Scheme:	Credit Scheme:	Examination Scheme:		
Tutorial: 01 hrs / week	01	Termwork: 25 Marks		
Practical: 02 hrs / week	01	Oral: 25 Marks		

Prerequisite Courses: - Basics of linear measurement, Physics, Fundamentals of Mechanical Engineering.

Course Objectives:

- To develop essential skills for calibrating and testing instruments.
- To apply basics of measurement methods through the gathering of data, analysis, and interpretation and expertise in designing limiting gauges.
- To demonstrate various robotic configurations using industrial robot
- To select appropriate hydraulic and pneumatic components by considering specified system requirements, performance criteria, and compatibility with existing infrastructure.
- To summarize troubleshooting techniques essential for identifying and resolving common issues encountered in fluid power systems

	Course Outcomes	Bloom's Level
CO1	Selection of measurement methods and standards, carryout data collection and its analysis.	2-Understanding
CO2	Determine limits, fits, tolerances, geometric tolerances and Design of Gauges.	3- Apply
CO3	Demonstrate of various robotic configurations using industrial robot	3- Apply
CO4	Construct Industrial circuits using suitable hydraulic and pneumatic components	3- Apply
CO5	Design an industrial fluid power system	5 - Evaluate

COURSE CONTENTS

The student shall complete the following activity as a Term Work,

 Demonstrate and compute linear and angular measurements employing tools such as Vernier Caliper, Screw Gauge, Dial Gauge, Height Gauge, Bevel Protector, etc. Analyze measurement errors using OER software, Minitab, or Excel sheets.

2. Determine Parameters of screw thread using floating carriage micrometer.

3. Determine the geometry and dimensions of a given composite object or a single-point tool using an

Optical Projector or Tool Maker's Microscope. Evaluate and distinguish its practical utility in reallife applications.

- 4. Measurement of the any one characteristics from the following using any suitable measurement system,
 - a. Surface roughness
 - b. Gear tooth Parameter
 - c. Verification of composite geometry.
- 5. Limit Gauges: Concepts, uses and applications of Go –No Go Gauges, Taylor's principle and Design of gauges (Numerical and student activity)
- 6. Demonstration of various robotic configurations using industrial robot
- 7. Demonstrate industrial circuits on Hydraulic trainers
- 8. Demonstrate industrial circuits on Pneumatic trainers
- 9. Design an industrial fluid power system to address a specified problem by selecting components from manufacturer catalogs.
- 10. Exploring Industrial Automation Systems: Site Visit.

Important Note:

Industry visit for advanced in measurement and automation to provide exposure to students.

Text Books

- 1. Jain R.K., Engineering Metrology, Khanna Publication.
- 2. I.C.Gupta, Engineering Metrology, Dhanpath Rai.
- 3. Bewoor A. K. and Kulkarni V. A., Metrology and Measurements, McGraw hill Publication.
- 4. Esposito A, Fluid Power with application, Prentice Hall
- 5. Majumdar S.R, Oil Hydraulic system- Principle and maintenance ,Tata McGraw Hill
- 6. Majumdar S.R, Pneumatics Systems Principles and Maintenance, Tata McGraw Hill
- 7. Stewart H. L, Hydraulics and Pneumatics, Taraporewala Publication

Reference Books

- 1. Narayana K.L., Engineering Metrology.
- 2. Galyer J.F & Shotbolt C.R., Metrology for engineers
- 3. Judge A.W., Engineering Precision Measurements, Chapman and Hall
- 4. ASTME, Handbook of Industrial Metrology, Prentice Hall of India Ltd.
- 5. Connie Dotson, Fundamentals of Dimensional Metrology, Thamson Publn. 4th Edition.
- 6. Pipenger J.J, Industrial Hydraulics, McGraw Hill
- 7. Pinches, Industrial Fluid Power, Prentice Hall
- 8. ISO 1219, Fluid Systems and components, Graphic Symbols

- 9. Fundamentals of Pneumatics, Vol I, II and III. FESTO
- 10. Fundamentals of fluid power control, John Watton Cambridge University press
- 11. Introduction to Fluid power, Thomson Prentcie Hall
- 12. Hydraulic Control Systems Herbert E. Merritt John Wiley and Sons, Inc

Codes / Handbooks

Francis T. Farago, Mark A. Curtis, Handbook of dimensional measurement

E- resources

- 1. nptel.ac.in/courses/112106179
- 2. <u>www.nptelvideos.in/2012/12/mechanical-measurements-and-metrology.html</u>
- 3. https://nptel.ac.in/courses/112/107/112107242/
- 4. freevideolectures.com > Mechanical > IIT Madras
- 5. https://nptel.ac.in/courses/112/106/112106139/
- 6. https://archive.nptel.ac.in/courses/112/106/112106175/#
- 7. https://archive.nptel.ac.in/courses/112/106/112106300/

	Strength of CO-PO/PSO Mapping													
	РО									PS	0			
Strength of CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	-	3	-	-	-	-	2	2	1	2	2	1
CO 2	3	2	-	3	3	-	-	-	2	2	1	2	2	1
CO 3	3	2	-	3	2	-	-	-	2	2	1	2	2	2
CO 4	3	2	-	3	2	-	-	2	2	2	1	2	2	2
CO 5	3	2	3	3	2	-	-	3	2	2	1	2	2	2

Guidelines for Teamwork Assessment						
Continuous Assessment Policy						
(Term work marks of 25 will be awarded based on the following policy)						
Each laboratory assignment will	l be assessed f	For 30 Marks according to the following rubrics:				
R1- Timely completion of assig	nments (10 M	arks)				
R2- Understanding of assignme	nt (10 Marks)					
R3 – Presentation/Clarity of jou	rnal writing (1	0 Marks)				
For all 10 Experiments, total man	ks of 300 will	be converted into 25 Marks.				
Description	Weightage	Evaluation criteria				
R1-Timely completion of	10 Marks	Each experiment/assignment will get 10 marks				
assignments		for timely submission.				
		Late submission will be valued as 5 in totality.				
		Fail to submit will be valued as 0 in totality				
R2- Understanding of	10 Marks	Understanding of assignments is based on oral				
assignment.		questions based on assignment.				
R3 – Presentation/Clarity of	10 Marks	Completed sheet with proper dimensioning, line				
Drawing Sheets		work carries 10 marks.				

Third Year. B. Tech.Pattern 2024 MEC223020 : Seminar							
Teaching Scheme:		Credit Scheme:	Examination Scheme:				
Practical : 2 hrs./week		1	Term Work: 50 Marks				
Prerequ	iisite Courses:						
Course	Objectives:						
	 Apply problem-solving skills to real-world scenarios related to their specialization. Analyze the technical and practical challenges within their course specialization. Evaluate the implications of these challenges on industry practices and innovations. Demonstrate the ability to describe, interpret and analyze technical issues and devalue competence in presenting. 						
Course C learn/ach	Course Outcomes: With this seminar report and presentation, the student is expected to learn/achieve the following:						
	Course Outcomes						
1	1 Applying problem-solving techniques to real-world scenarios, demonstrating adaptability and creativity in finding effective solutions.						
2	<i>Illustrate</i> technical and practical issues relevant to their specialization.						
3	3 Comparing the potential impact of these challenges on various sectors or segments within the industry.						
4	Demonstrate enhanced soft skills and effective presentation.						

Course Overview:

This course is designed to enhance the intellectual and professional development of third-year mechanical engineering students by providing them with an opportunity to explore and present on advanced topics relevant to the field. This seminar aims to foster critical thinking, research skills, and effective communication abilities among the students.

Selection of Seminar Topic: (Week 1)

Choose topics that align with current trends, emerging technologies, and challenges in the field of mechanical engineering.

Encourage diversity in topic selection to cover a broad spectrum of sub-disciplines within mechanical engineering, such as thermodynamics, materials science, manufacturing, robotics, fluid mechanics, and sustainable design.

Literature Survey: (Week 2 to Week 4)

Allocate sufficient time for students to conduct in-depth research on their chosen seminar topic.

Encourage the use of reputable academic sources, journals, and research papers for information gathering.

Emphasize the importance of critical analysis and synthesis of information to form well-supported arguments.

Guidance for the Presentation: (Week 5)

Provide guidance on effective presentation techniques, including clear slides, proper use of visual aids, and engaging delivery.

Encourage students to practice their presentations to ensure they adhere to time limits and effectively convey their message.

Highlight the importance of maintaining eye contact, using confident body language, and responding to audience questions with clarity.

Stage I Presentation: (Week 6)

Follow the guidelines for the presentation

Stage I presentation slides should include introduction, literature review and concept.

Stage I presentation to be delivered to the seminar guide.

Report Preparation: (Week 7 to 9)

The students should get draft copy of the report checked from the allotted seminar guide.

Students are expected to maintain a high standard of originality, with a permissible similarity threshold limited to 10%.

Stage II Presentation: (Week 10)

Stage II presentation slides should be as per format and structure provided.

Stage II presentation to be delivered in front of the internal panel.

Report & PPT Editing: (Week 11 to 12)

Report and PPT should be modified as per the suggestions/corrections given by the internal panel.

Final Presentation:

The final presentation/viva will be assessed by a committee including an expert (preferably from industry with minimum 5 years' experience) and an internal panel. The internal panel will consist of the seminar guide and two subject experts, approved by the HOD and the principal of the institute.

Format and Structure for Seminar Report Writing:

Introduction: Provide a clear and concise introduction to the chosen topic, highlighting its relevance and significance in the field of mechanical engineering.

Literature Review: Summarize key findings from relevant literature and discuss the existing knowledge base on the selected topic.

Methodology (if applicable): Outline any experimental methods, simulations, or data analysis techniques employed in the research.

Results and Discussion: Present and analyze the findings, addressing any challenges or limitations encountered during the research process.

Conclusions: Summarize the key takeaways and contributions of the seminar, along with potential avenues for future research.

Q&A Session: Allow time for questions and discussions, promoting interaction and engagement with the audience.