

		S. Y. B. Tech. Semester: III (Mechan 5201: Manufacturing Pr	e e,					
Teachin	g Scheme:	Credit Scheme:	Examination Sche	eme:				
Theory	:03 hrs/week	03	Continuous Comprehensive Evaluation: 20Marks In Sem Exam: 20Marks End Sem Exam: 60Marks					
	isite Courses, if any: - Fun s and their properties, Stress etc.							
U	Objectives:							
• Tc	Learn Casting Processes, p	permanent and collapsible	e molds including m	elting, molding, core				
an	d sand making and finishing							
• To	Learn basics of metal fo	rming processes like Ro	olling, Forging, Ext	rusion and Drawing,				
	uipment and tooling							
	Learn sheet metal forming	operations and die design						
	Learn polymers, its process	· · · · ·						
	Learn Additive Manufactur							
		6	11 11 /					
Course	Outcomes: On completion c		ll be able to-					
		Course Outcomes		Bloom's Level				
CO1	Identify appropriate manufacturing process for product under consideration and source of defect in manufacturing process. 2-Understand							
CO2	basics operations.	Understand the mechanism of metal forming techniques and demonstrate basics operations.						
CO3	Relate the principle of man	2-Understand						
CO4								
		COURSE CONTENT	S					
Unit I	Casting Processes		` /	COs Mapped - CO1				
practices and Finis	ion to casting processes, Type and furnaces, Pouring and Ga hing of casting, Casting, Defec nt casting, Centrifugal casting,	ting system design, Riser of ts and remedies, Principle a	design and placement	(Numerical), Cleaning				
Unit II	Metal Forming Process			COs Mapped - CO1, CO2				
Forging: profile F	Process, Classification. Rollin Open and closed die forging, F riction and lubrication in me .(Numerical on Rolling, For	orging stages, Extrusion: T tal forming, Forming def	ing, Calculation of ro ypes, Process paramet	lling load and power. er, Wire Drawing, Die				
Unit III	Sheet Metal Working		· · · · · ·	COs Mapped - CO1, CO2				

Types of sheet metal operations, Press working equipment and its types, Types of dies, Clearance analysis, Estimation of cutting forces, Centre of pressure and blank size determination, Design of strip lay-out, Blanking die design, Introduction to Drawing, Methods of reducing cutting forces, Formability and forming limit diagrams, Spring Back Effect.

Unit IV	Introduction to Polymer Processing	(07hrs)	COs Mapped - CO1, CO3			
Introduc	tion to Polymer(Plastic and Rubber), Classification of	f Polymer, Thermo	plastic and			
Thermosetting Plastic Manufacturing Process: Compression moulding, Transfer moulding, Blow						
moulding, Centrifugal moulding, Injection moulding Extrusion, Pressure Forming and Vacuum						
Forming			-			

Unit V	Additive Manufacturing	(07hrs)	COs Mapped -
			CO1,CO4

Introduction, classification of RP Processes (SLA, LOM, SLS, FDM, 3D printing), Working principle, features, models & specification of process, application, advantages and disadvantages, Rapid Tooling and STL format.

Text Books

1. P. N. Rao, "Manufacturing Technology Vol. I & II", Tata McGraw Hill Publishers 2. S. K. Hajra Choudhary, A. K. Hajra Choudhary, Nirjhar Roy, "Elements of Workshop Technology", Volume I, Media Promoters and Publisher Pvt, Ltd.

3. P. C. Sharma, "Production Engineering", Khanna Publishers

Reference Books

1. R. K. Jain, "Production Technology", Khanna Publishers

2. K. C. Chawala, "Composite Materials", Springer, ISBN 978-0387743646, ISBN 978-0387743653

3. Brent Strong, "Fundamentals of Composites Manufacturing: Materials, Methods", SME Book series.

4. Ian Gibson, David W. Rosen, Brent Stucker, Additive Manufacturing Technologies: Rapid

Prototyping to Direct Digital Manufacturing, Springer

					Sti	rength c	of CO-P	O Mapı	oing					
								РО						
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	2	2	-	-	-	2	-	-	-	-	2	2	-
CO2	3	2	3	-	-	1	1	-	-	-	-	1	2	-
CO3	2	-	-	1	-	1	-	-	-	-	-	2	1	-
CO4	3	-	2	-	-	1	-	-	-	-	-	2	1	-
Average	3	2	3	1	-	1	1	-	-	-	-	2	2	1

	Guidelines for Continuous Comprehensive Evaluationof Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	Assignments on each Unit	10				
2	LMS Test on Each Unit	10				
	Total	20				

		S. Y. B. Tech. Semester: III (Mecha) 2: Engineering Therm			
Teachin	g Scheme:	Credit Scheme:	Examination Sche	eme:	
Theory	:03 hrs/week	03	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks		
rerequis	site Courses, if any: -Engine	eering Mathematics I and	d II, Engineering Phy	sics, Calculas	
	Objectives:				
	ourse would introduce laws				
	ourse would introduce the				
	ourse would cover fluid pro				
	ourse would cover first law	• •			
• Co	ourse would cover first law	analysis of Air Compr	essor and Steam Ge	nerators	
Course	Outcomes: On completion c	of the course, students wi	ill be able to-		
		Course Outcomes		Bloom's Level	
CO1	Apply the concepts of Firs Systems	3-Apply			
CO2	Apply the concepts of Ent closed system	l 3-Apply			
CO3	Estimation of steam property cycle	erties and application of	first law to power	3-Apply	
CO4	Estimate performance of 1 Psychrometry	refrigeration system and	understand	3-Apply	
CO5	Apply the concepts of Firs and Steam Generators	t Law of Thermodynam	ics for Air Compress	or 3-Apply	
		COURSE CONTEN	TS		
			Os Mapped - O1		

First Law of Thermodynamics: Concept of heat and work, Sign convention and its conversion. First law of thermodynamics, Equivalence of heat and work. Application of first law to Steady flow energy equation (SFEE)

Second Law of Thermodynamics: Limitations of first law of thermodynamics, Statement of the Second law of Thermodynamics; PMM-II kind, Clausius Inequality, Carnot Theorem

Unit II Entropy and Availability	(07hrs)	COs Mapped - CO1, CO2
----------------------------------	---------	--------------------------

Entropy: Entropy as a property, Clausius Inequality, Principle of increase of Entropy Principle, Entropy changes for an Open and Closed System, Change of Entropy for an ideal gas and Pure Substance, Concept of Entropy generation. Entropy - a measure of Disorder.

Availability: Available and Unavailable Energy, Concept of Availability, Availability of heat source at constant temperature and variable temperature, Availability of non-flow and steady-flow Systems.

Unit	Properties of Working Fluid andVapour Power	(07hrs)	COs Mapped -
III	Cycle		CO1, CO2,CO3

Ideal Gas properties

Ideal Gas definition, Gas Laws: Boyle's law, Charle's law, Avagadro's Law, Equation of State, Ideal Gas constant and Universal Gas constant, Ideal gas Processes- on P-v and T-s diagrams, Constant Pressure, Constant Volume, Isothermal, Adiabatic, Polytropic, Throttling Processes (Open and Closed systems), Calculations of Heat transfer, Work done, Internal Energy, Entropy.

Properties of Pure substances: Formation of steam, Phase changes, Properties of steam, Use of Steam Tables, Study of P-v, T-s and h-s plots (Mollier Chart) for steam, Dryness fraction and its determination, Study of steam calorimeters (Barrel, Separating, Throttling and combined) Non-flow and Steady flow Vapour Processes, Change of Properties, Work and Heat transfer.

Vapour Power Cycle: Thermodynamic Cycle: Carnot Cycle, Rankine Cycle, Comparison of Carnot cycle and Rankine cycle.

Unit	First Law Analysis of Refrigeration System	(07hrs)	COs Mapped -
IV	and Psychrometry		CO1, CO4

Refrigeration System: Schematic ofmechanical refrigeration system, SFEE of components of refrigeration system, Thermodynamic Refrigeration Cycle representation of vapour compression cycle (VCC) on T-s and P-h diagram, Performance Analysis of VCC

Psychrometry: Introduction, Psychrometry and Psychrometric Properties, Basic Terminologies & Psychrometric Relations, Psychrometric Processes, Psychrometric Chart.

	C O1,CO5
--	-----------------

Reciprocating Compressor: Applications of compressed air, single stage compressor (without clearance and with clearance volume), volumetric efficiency, isothermal efficiency, effect of clearance volume, free air delivery (FAD), actual indicator diagram for air compressor, Multi staging of compressor, optimum intermediate pressure, intercooler, after cooler, Capacity control of compressors.

Steam Generators: Classification, Constructional details of low pressure boilers, Boiler mountings and accessories, Instrumentations required for safe and efficient operation, Introduction to IBR Act

Text Books

R. K. Rajput, Engineering Thermodynamics, EVSS Thermo Laxmi Publications

P. K. Nag, Engineering Thermodynamics, Tata McGraw Hill Publications

Reference Books

Y. Cengel& Boles: Thermodynamics – An Engineering Approach,

P. L Ballany: Thermal Engineering, Khanna Publishers

C.P. Arora: Engineering Thermodynamics, Tata McGraw Hill.

S. Domkundwar, C. P. Kothandaraman, and Domkundwar, Thermal Engineering, DhanpatRai Publishers.

				Stren	gth of C	CO-PO N	Mapping	3				
						Р	0					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	2	2	-	-	-	-	2	-	-	2
CO2	3	2	2	2	-	-	-	-	2	-	-	2
CO3	3	2	2	2	-	-	-	-	2	-	-	2
CO4	3	2	2	2	-	-	-	-	2	-	-	2
CO5	3	2	2	-	-	-	2		2			2

Average 3 2 2 2	2 - 2 - 2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course									
Sr. No.	Components for Continuous Comprehensive Evaluation Marks Allotted									
1	Assignments on Unit-1, Unit-2, Unit-3, Unit-4 & Unit-5 10									
2	Sincerity and understanding in class work	Sincerity and understanding in class work 10								
	Total	20								

		S. Y. B. Tech. Semester: III (Mechan 5203: Mechanism and M	0 0/							
Teaching	Scheme: Credit Scheme: Examination Scheme:									
Theory :	ry :03 hrs/week 03 Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks									
Engineeri	site Courses, if any: - Funding Mathematics I & II, Eng		Engineering, Engine	eering Mechanics,						
To make application To develop approach.	Objectives: the students conversant with ns. p the competency to analyze th p the skill to propose and synth	e velocity and acceleration i	in mechanisms using a	nalytical and graphical						
To develo To develo	p the competency to understan p the competency to design a contract of the competency of the competency of the competency of the competence of the competenc	d & apply the principles of cam profile for various follo	gear theory to design ower motions.	1						
		Course Outcomes		Bloom's Level						
C01	IDENTIFY mechanisms in	real life applications		2-Understand						
CO2	CALCULATE velocity and acceleration in mechanisms by analytical and									
CO3	CONSTRUCT a four bar n	nechanism with analytical a	and graphical methods	3-Apply						
CO4	APPLY fundamentals of ge	ear theory as a prerequisite	for gear design	3-Apply						
CO5	CONSTRUCT cam profile	-		3-Apply						
		COURSE CONTENT	TS							
Unit I	Fundamentals of Mechan	isms	(08hrs)	COs Mapped - CO1						
Classificati	n, Mechanism and machine, I on of kinematic pairs, Kinem of slider crank chain, Double s	atic chain, Linkage, Mecha		• • • •						
Unit II	Kinematic Analysis of	f Planar	(07hrs)	COs Mapped -						
	Mechanisms:			CO1, CO2						
Bar and S acceleration	analysis of slider crank Mech blider crank mechanisms usin on analysis of four bar, slider cr d ICR method.	g Complex Algebra Metho	od. Graphical method	s for the velocity and						
Unit III	Synthesis of M	COs Mapped - CO1, CO3								
Path, func structural Graphica Slider Cra	Synthesis: Type synthesis, Nurtion and motion generation (Beerrors I Synthesis: Inversion and rel nk Mechanisms I Synthesis: Three position sy	ody guidance), Precision Po lative pole method for thre	ositions, Chebychev sp e position synthesis o	acing, Mechanical and f Four-Bar and Single						

Unit IV	Gears and Gear trains	(07hrs)	COs Mapped - CO1, CO4
	ation, Terminology, Law of Gearing, Interference and m	nethods to avoid inte	erference in spur gears.

Simple, c	ompound, reverted and Epicyclic gear trains.		
Unit V	Cams & Followers	(07hrs)	COs Mapped - CO1, CO5

Classification of Followers and Cams, Terminology of Cam Displacement diagram for the Motion of follower as Uniform velocity, Simple Harmonic Motion (SHM), Uniform Acceleration and Retardation Motion (UARM), Cycloid motion, Cam Profile construction for Knife-edge Follower and Roller Follower, Cam jump Phenomenon

Text Books

1. S. S. Rattan, "Theory of Machines", Third Edition, McGraw Hill Education (India) Pvt. Ltd., New Delhi.

2. Bevan T, "Theory of Machines", Third Edition, Longman Publication

3. G. Ambekar, "Mechanism and Machine Theory", PHI

4. J. J. Uicker, G. R. Pennock, J. E. Shigley, "Theory of Machines and Mechanisms", Fifth Edition, International Student Edition, Oxford

Reference Books

1. Paul E. Sandin, "Robot Mechanisms and Mechanical Devices Illustrated", Tata McGraw Hill Publication

2. Stephen J. Derby, "Design of Automatic Machinery", 2005, Marcel Dekker, New York

3. Neil Sclater, "Mechanisms and Mechanical Devices Sourcebook", Fifth Edition, Tata McGraw Hill

Publication 4. Ghosh Malik, "Theory of Mechanism and Machines", East-West Pvt. Ltd.

5. Hannah and Stephans, "Mechanics of Machines", Edward Arnolde Publication

6. R. L. Norton, "Kinematics and Dynamics of Machinery", First Edition, McGraw Hill Education (India) P Ltd. New Delhi

7. Sadhu Singh, "Theory of Machines", Pearson

8. Dr. V. P. Singh, "Theory of Machine", Dhanpatrai and Sons

9. C. S. Sharma & Kamlesh Purohit, "Theory of Machine and Mechanism", PHI

	Strength of CO-PO Mapping													
		PO												
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	3	3	2	2	1	-	-	-	2	-	-	1		
CO2	3	3	2	2	-	-	-	-	2	-	-	1		
CO3	3	2	-	2	1	-	-	-	1	-	-	1		
CO4	3	3	2	2	-	-	-	-	1	-	-	2		
CO5	3	2	2	2	1	-	-	-	2	-	-	2		
Average	3	3	2	2	1	-	-	-	2	-	-	1		

(Components for Continuous Comprehensive Evaluation of Theory Course									
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation Marks Allotted									
1	Assignments on Unit-1, Unit-2, Unit-3, Unit-4, Unit-5	10								
2	LMS Test 10									
	Total	20								

Teaching Scheme:Credit Scheme:Examination Scheme:									
Practical : 02 hrs/week 01 Termwork: 25Mark Oral: 25Marks									
	site Courses, if any: - Fun		Engineering, Engineeri	ng Mechanics,					
	ng Mathematics I & II, Eng bjectives:	gineering physics							
To make t application	he students conversant with								
approach. To develor	the skill to propose and synt	hesize the mechanisms usin	g graphical and analytica	l technique.					
	the competency to understand the competency to design a			ious applications.					
	utcomes: On completion of	of the course, students wil							
		Course Outcomes		Bloom's Level					
CO1	IDENTIFY mechanisms in			2-Understand					
CO2	CALCULATE velocity and acceleration in mechanisms by analytical and graphical method 3-								
CO3	CONSTRUCT a four bar mechanism with analytical and graphical methods								
CO4	APPLY fundamentals of g	ear theory as a prerequisite t	for gear design	3-Apply					
CO5	CONSTRUCT cam profile	e for given follower motion		3-Apply					
	List of La	boratory Experiments /	Assignments						
Sr. No.		ory Experiments / Assig		CO Mapped					
1	To make a model of any m presentation using PPTs.	echanism by the group of 4	students and to give a	C01					
2	pairs, obtain degrees of free			C01					
3	Velocity and acceleration a method.	nalysis using relative veloc	ity and acceleration	CO1, CO2					
4	Velocity analysis using the			CO1, CO2					
5	Kinematic Analysis of Slid using any suitable program	er Crank Mechanism using ming language.	Analytical Method by	CO1, CO2					
6	To synthesize the four bar a inversion method with three	and slider crank mechanism e accuracy points.	using relative pole and	CO1, CO3					
7	To study manufacturing of to generate an involute pro-	gear using gear generation file.	with rack as a cutter and	CO1, CO4					
8	To determine holding torqu	e for Epicyclic gear train		CO1, CO4					
9	To draw cam profile for va and manufacturing by using	rious follower motion with a glaser cutting machine	radial and off-set cam	CO1, CO5					
10	To study and verify cam jump phenomenon.CO1, CO5								

1. Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.

2. Apparatus and equipment's required for the allotted experiment will be provided by the lab assistants using SOP.

3. Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant.

4. After performing the experiment students will check their readings, calculations from the teacher.

5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, and diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Term work Assessment

- 1. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

Text Books

- 1. S. S. Rattan, "Theory of Machines", Third Edition, McGraw Hill Education (India) Pvt. Ltd., New Delhi.
- 2. Bevan T, "Theory of Machines", Third Edition, Longman Publication
- 3. G. Ambekar, "Mechanism and Machine Theory", PHI
- 4. J. J. Uicker, G. R. Pennock, J. E. Shigley, "Theory of Machines and Mechanisms", Fifth Edition, International Student Edition, Oxford

Reference Books

- 1. Paul E. Sandin, "Robot Mechanisms and Mechanical Devices Illustrated", Tata McGraw Hill Publication
- 2. Stephen J. Derby, "Design of Automatic Machinery", 2005, Marcel Dekker, New York
- 3. Neil Sclater, "Mechanisms and Mechanical Devices Sourcebook", Fifth Edition, Tata McGraw Hill
- Publication 4. Ghosh Malik, "Theory of Mechanism and Machines", East-West Pvt. Ltd.
- 5. Hannah and Stephans, "Mechanics of Machines", Edward Arnolde Publication

6. R. L. Norton, "Kinematics and Dynamics of Machinery", First Edition, McGraw Hill Education (India) P Ltd. New Delhi

7. Sadhu Singh, "Theory of Machines", Pearson

8. Dr. V. P. Singh, "Theory of Machine", Dhanpatrai and Sons

9. C. S. Sharma & Kamlesh Purohit, "Theory of Machine and Mechanism", PHI

	Strength of CO-PO Mapping												
		PO											
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	3	3	2	2	1	-	-	-	2	-	-	1	
CO2	3	3	2	2	-	-	-	-	2	-	-	1	
CO3	3	2	-	2	1	-	-	-	1	-	-	1	
CO4	3	3	2	2	-	-	-	-	1	-	-	2	
CO5	3	2	2	2	1	-	-	-	2	-	-	2	
Average	3	3	2	2	1	-	-	-	2	-	-	1	

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

S. Y. B. Tech. Pattern 2023 Semester: III (Mechanical Engineering) 2305205 : Material Testing and Measurement Laboratory

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Practical: 04 hrs / week	02	Term Work: 50 Marks Oral: 50 Marks

Prerequisite Courses: - Fundamentals of Mechanical Engineering, Basics of linear measurement, Physics, Applied Chemistry.

Course Objectives:

- Develop hands-on proficiency in operating Brinell and Vickers hardness testing machines to accurately measure and assess material hardness.
- Acquire the knowledge and skills to apply Magnetic Particle Inspection Test for flaw detection in materials, ensuring a thorough understanding of the non-destructive testing technique.
- Comprehend the principles of the Iron-Iron Carbide Phase diagram and apply this knowledge to predict and analyze material behavior during different heat treatment processes.
- To develop essential skills for calibrating and testing instruments.
- To apply basics of measurement methods through the gathering of data, analysis, and interpretation and expertise in designing limiting gauges.

Course Outcomes	Bloom's Level					
Selection of measurement methods and standards, carryout data collection and its analysis.	2-Understanding					
CO2 Determine limits, fits, tolerances, geometric tolerances and Design of Gauges. 3- Apply						
CO3Demonstrate proficiency in performing hardness measurements using both Brinell and Vickers hardness testing machines.3- Apply						
CO4 Understand the principles of the Iron-Iron Carbide Phase diagram and its application in predicting material behavior during heat treatment 3- Approcesses						
Apply non-destructive testing techniques, specifically the Magnetic Particle Inspection Test, for flaw detection in materials.	3- Apply					
CO6 Develop practical skills in optical metallurgical microscopy, specimen preparation, and microstructure examination for accurate material 4 - Analyze characterization.						
	Selection of measurement methods and standards, carryout data collection and its analysis.Determine limits, fits, tolerances, geometric tolerances and Design of Gauges.Demonstrate proficiency in performing hardness measurements using both Brinell and Vickers hardness testing machines.Understand the principles of the Iron-Iron Carbide Phase diagram and its application in predicting material behavior during heat treatment processes.Apply non-destructive testing techniques, specifically the Magnetic Particle Inspection Test, for flaw detection in materials.Develop practical skills in optical metallurgical microscopy, specimen preparation, and microstructure examination for accurate material					

The student shall complete the following activity as a Term Work,

- 1. Hardness measurement on Brinell hardness testing machine and Vickers hardness testing machine.
- 2. Non Destructive Testing (Magnetic Particle Inspection Test).

- 3. Study of Iron-Iron Carbide Phase diagram.
- 4. Specimen preparation for microscopic Examination.
- 5. Microstructure examination of plain carbon steels and Cast Iron.
- 6. Heat Treatment of plain carbon steel and determination of hardness (Annealing, Normalizing, Hardening)
- 7. Demonstrate and compute linear and angular measurements employing tools such as Vernier Caliper, Screw Gauge, Dial Gauge, Height Gauge, Bevel Protector, etc.
- 8. Determine Parameters of screw thread using floating carriage micrometer.
- 9. Determine the geometry and dimensions of a given composite object or a single-point tool using an Optical Projector or Tool Maker's Microscope. Evaluate and distinguish its practical utility in real-life applications.
- 10. Measurement of the any one characteristics from the following using any suitable measurement system,
 - a. Surface roughness
 - b. Gear tooth Parameter
 - c. Verification of composite geometry.
- Limit Gauges: Concepts, uses and applications of Go –No Go Gauges, Taylor's principle and Design of gauges (Numerical and student activity)
- 12. Industry visit for Heat Treatment Plant and advanced in measurement to provide exposure to students.

Text Books

- 1. Dr. V. D. Kodgire & S. V. Kodgire, "Material Science & Metallurgy For Engineers", Everest Publication.
- 2. William D. Callister, "Materials Science and Engineering an Introduction", Jr, John Wiley & Sons, Inc.
- 3. Jain R.K., Engineering Metrology, Khanna Publication.
- 4. I.C.Gupta, Engineering Metrology, Dhanpath Rai.
- 5. Bewoor A. K. and Kulkarni V. A., Metrology and Measurements, McGraw hill Publication.

Reference Books

- 1. Raghvan V., "Material Science & Engineering", Prentice Hall of India, New Delhi. 2003
- 2. Avner, S.H., "Introduction to Physical Metallurgy", Tata McGraw-Hill, 1997.
- 3. Higgins R. A., "Engineering Metallurgy", Viva books Pvt. Ltd.
- 4. George Ellwood Dieter, "Mechanical Metallurgy", McGraw-Hill 1988
- 5. Smith, W.F, Hashemi, J., and Prakash, R., "Materials Science and Engineering in SI Units", Tata McGraw Hill Education Pvt. Ltd.
- 6. Narayana K.L., Engineering Metrology.
- 7. Galyer J.F & Shotbolt C.R., Metrology for engineers

- 8. Judge A.W., Engineering Precision Measurements, Chapman and Hall
- 9. ASTME, Handbook of Industrial Metrology, Prentice Hall of India Ltd.
- 10. Connie Dotson, Fundamentals of Dimensional Metrology, Thamson Publn. 4th Edition.

Codes / Handbooks

Francis T. Farago, Mark A. Curtis, Handbook of dimensional measurement

E- resources

- 1. nptel.ac.in/courses/112106179
- 2. <u>www.nptelvideos.in/2012/12/mechanical-measurements-and-metrology.html</u>
- 3. https://nptel.ac.in/courses/112/107/112107242/
- 4. freevideolectures.com > Mechanical > IIT Madras
- 5. <u>https://nptel.ac.in/courses/112/106/112106139/</u>
- 6. https://archive.nptel.ac.in/courses/112/106/112106175/#
- 7. https://archive.nptel.ac.in/courses/112/106/112106300/

		Strength of CO-PO/PSO Mapping												
		РО											PS	0
Strength of CO	1	1 2 3 4 5 6 7 8 9 10 11 12								1	2			
CO 1	3	2	-	3	-	-	-	-	2	2	1	2	2	1
CO 2	3	2	-	3	3	-	-	-	2	2	1	2	2	1
CO 3	3	3 2 - 3 2 2 2 1 2											2	2
CO 4	3	2	-	3	2	-	-	2	2	2	1	2	2	2
CO 5	3	2	3	3	2	-	-	3	2	2	1	2	2	2

Guidelines for Teamwork Assessment								
Continuous Assessment Policy								
(Term work marks of 25 will be awarded based on the following policy)								
Each laboratory assignment wil	l be assessed f	for 30 Marks according to the following rubrics:						
R1- Timely completion of assig	nments (10 M	larks)						
R2- Understanding of assignme	ent (10 Marks)							
R3 – Presentation/Clarity of jou	Irnal writing (10 Marks)						
For all 10 Experiments, total man	rks of 300 will	be converted into 25 Marks.						
Description	Weightage	Evaluation criteria						
R1-Timely completion of	10 Marks	Each experiment/assignment will get 10 marks						
assignments		for timely submission.						
		Late submission will be valued as 5 in totality.						
		Fail to submit will be valued as 0 in totality						
R2- Understanding of	10 Marks	Understanding of assignments is based on oral						
assignment.		questions based on assignment.						
R3 – Presentation/Clarity of	10 Marks	Completed sheet with proper dimensioning, line						
Drawing Sheets		work carries 10 marks.						

		S. Y. B. Tech. emester: III (Mechanic	0	ing)				
Teaching		6: Energy systems for m Credit Scheme	Examinat	ion Scl	heme			
Theory :	03 hrs/week	03	Continuou Evaluation InSem Exa EndSem E	i : 2 im : 2	20 Marks 20 Marks			
Prerequi	site Courses, if any:							
To unders . To evalu appropria . To unders . To unders	Objectives: stand basics of IC Engines a ate various performance p te emission control technolo stand the basics of Fuel cell stand components and techn	barameters of engines, ogies in SI and CI engine technology and various bologies used in electric	compare co es configuratio and hybrid e	ombusti ns lectric v	ion and identify			
Course C	Dutcomes: On completion o		ill be able to-	_				
		Course Outcomes			Bloom's Level			
CO1	Explain basics of IC engines and Analyze air standard cycles 2-1 4 4							
CO2	Compare combustion and technologies in SI and CI parameters of engines	2-Understand, 3- Apply						
CO3	Understand the basics of I kinetics	2-Understand						
CO4	Understand and Compare engine technologies based		combustion		2-Understand			
		COURSE CONTENTS	5					
Unit I	Introduction to Engines		(08 hrs)	COs	Ds Mapped – CO1			
Basics of and actual	IC engines, working of engill cycle),	ines, Air standard cycles	(Air standar	d cycle	s, Fuel air cycles,			
Unit II	Combustion and Emissio	5	(07 hrs)		Mapped - CO2			
GDI, HCC Pollutants	n in SI and CI engines, adv I, Stratified charge, CRI, Tu s, Phenomenon of formatic chnologies, Use of alternate tives	urbocharging) on, Emission norms (Bh	narat and Eu	ro stan	dards), Emission			
	Engine Systems and Test	ing of engines	(07 hrs)	COs	Mapped – CO2			
U .	tems (Fuel supply, Ignition , Heat balance sheet for eng		etc.), Testing	g of eng	gines Performance			
	Fuel cell Technology	2	(07 hrs)	COs	Mapped – CO3			
	Overview (Low and high ten netics, Safety issues and cos			-				
Unit V	Electric and Hybrid Elec	tric Vehicles	(07 hrs)	COs	Mapped – CO4			
Doutomaa	nce of Electric Vehicles, M		× ,					

engines performance characteristics, Batteries, Battery sizing calculation, Battery management, Effect on carbon emissions

Series Hybrid Electric Drive Trains, Parallel Hybrid Electric Drive Trains, Torque-Coupling, Parallel Hybrid Electric Drive Trains, Speed-Coupling Parallel Hybrid Electric Drive Trains, Torque-Coupling and Speed-Coupling Parallel Hybrid Electric Drive Trains

Text Books

- 1. IC Engines (Combustion and Emissions) by B. P. Pundir, Narosa Publications
- 2. Internal combustion engine by Mathur M. L. and Sharma R. P., DhanpatRai publications
- 3. Internal combustion engines by V. Ganesan, Tata McGraw Hill
- 4. Fuel Cell Technology for Vehicles, 2nd Edition, Richard Stobart, SAE
- 5. Electric vehicle technology by James Larminie and John Lowry, Wiley Publication
- 6. Electric and Hybrid Vehicles by Tom Denton, Routledge (Taylor and Francis group)

Reference Books

- 19. Engine Emissions: Pollutant Formation and Advances in Control Technology by B. P. Pundir, Alpha science publication
- 20. Internal combustion engine Fundamentals by John B. Heywood, McGraw Hill
- 21. Hybrid Electric Vehicle Design and Control: Intelligent Omnidirectional Hybrids by Y. Xu, J Yan, H Qian, T lam, McGraw Hill

	Strength of CO-PO Mapping												
	РО												
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	3	2	2	-	-	2	2	-	2	-	-	2	
CO2	3	3	3	2	-	2	2	-	2	-	-	2	
CO3	3	2	2	-	-	2	2	-	2	2	-	2	
CO4	3	2	2	-	-	2	2	-	2	2	-	2	
Average	3	3	2	2	-	2	2	-	2	2	-	2	

(Guidelines for Continuous Comprehensive Evaluation of Theory Course								
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted							
1	One assignment on each unit	10							
2	Presentation on case studies of Fuel cell or Electric vehicle technology	05							
3	LMS Test on Each Unit	05							
	Total	20							

		S. Y. B. Tech. emester: III (Mechanic Energy Systems for Mo	0	g)		
Teachin	g Scheme:	Credit Scheme:	Examinatio	on Scheme:		
Practica	l :02 hrs/week	01	Termwork: 25 marks Practical Exam: 25 marks			
Prerequ	isite Courses, if any: - Bas	ic Thermodynamics an	d I. C. Engine	es		
To evalu To evalu To diagn	r energy analysis for steam g ate the performance of refri- ate the performance of engine ose engine combustion thro Outcomes: On completion of	geration system nes and compressor ugh emission measurem				
	Co	urse Outcomes		Bloom's Level		
CO1	Apply first law of thermo	dynamics to energy system	ems	3-Apply		
CO2	Evaluate various perform through experimentation a		gy systems	4- Analyze		
CO3	Diagnose engine combust	ion through emission m	easurement	2-Understand		
CO4	Analyze and Compare va environmental perspective	-	gy and	4- Analyze		

List of Laboratory Experiments / Assignments								
Sr. No.	Laboratory Experiments / Assignments	CO Mapped						
1.	Trial on Internal combustion engine	CO1, CO2						
2.	Trial on engine to study the effect of variable compression ratio	CO4						
3.	Demonstration on Exhaust Gas Analyzer	CO3						
4.	Trial on Boiler	CO1, CO2						
5.	Trial on Separating and throttling calorimeter	CO1						
6.	Trial on Vapour Compression System	CO1, CO2						
7.	Trial on Bomb calorimeter	CO1, CO2						
8.	Trial on Air Compressor	CO1, CO2						
9.	Case study on Fuel cell or electric vehicle (Assignment and Presentation)	CO1, CO4						
10.	Analysis of any thermal system using programming software (Assignment)	CO1, CO2, CO4						

Guidelines for Laboratory Conduction

6. Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.

7. Apparatus and equipment's required for the allotted experiment will be provided by the lab

assistants using SOP.

8. Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant.

9. After performing the experiment students will check their readings, calculations from the teacher.

10. After checking they have to write the conclusion of the final result.

11. Experiment no. 9 and 10 are compulsory and any 06 experiments of experiment no. 1 to 8.

Guidelines for Student's Lab Journal

Write-up should include title, aim, setup diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Termwork Assessment

- 3. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 4. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

	Strength of CO-PO Mapping												
		РО											
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	3	3	3	2	1	2	1	1	3	2	2	2	
CO2	3	3	3	3	2	2	1	1	3	2	2	2	
CO3	3	2	2	1	1	3	3	1	3	2	2	2	
CO4	3	3	3	3	2	3	3	1	3	2	2	2	
Average	3	2	2	2	2	3	2	1	3	2	2	2	

1. Basic and applied Thermodynamics – P. K. Nag, McGraw Hill Education

2. Refrigeration and Air conditioning, C P Arora, McGraw Hill Education

3. Internal Combustion Engines, V. Ganesan, Tata McGraw Hill Education

		S. Y. B. Tech. Semester: III (Mecha	•						
Teaching	23 g Scheme:	05208: Industrial Man Credit Scheme:	agement Examination Sch	eme:					
Theory :	02hrs/week	02	Continuous Com Evaluation (CCE						
Prerequi	site Courses, if any: -Intro	duction to Engineering M	lanagement						
		Course Objectives	\$						
	familiarize students with th	e principles and practices	s of industrial mana	gement in the context of					
2. To	chanical engineering. develop students' understan ndustrial settings.	ding of production plann	ing, scheduling, and	l control techniques used					
3. To	equip students with knowl		nent systems and te	echniques for enhancing					
	ductivity and efficiency in 1		11 11 /						
Course C	Dutcomes: On completion o	*	l be able to–						
		Course Outcomes		Bloom's Level					
CO1	To apply industrial manage manufacturing processes.	3							
CO2	2 To analyze skills in production planning, scheduling, and control to ensure efficient utilization of resources.								
CO3	Illustration of implementir product quality and custon	e 1 e	chniques to improve	e 4					
		COURSE CONTEN	TS						
Unit I	Introduction to Indus	trial Management	(04hrs)	COs Mapped – CO1					
	of Industrial Management (
	and Importance of Industria								
Unit II	Organiz		(05hrs)	COs Mapped – CO2					
	Managers and Leadership S		ypes, Advantages, L	limitations), Kole of					
Unit III	Job Eval		(05hrs)	COs Mapped – CO3					
	tion and Wage Plan: Object		uation, job evaluatio	on procedure, merit					
rating (Per Unit IV	formance appraisal), metho Wage Inc		(05hrs)	COs Mapped – CO3					
	wage incentive plans, Introd		· · · ·	cos Mappeu – cos					
Unit V	Introduction to indu			COs Mapped – CO3					
	on, Objective, Employment	8	(0113)						
	, , , , , , , , , , , , , , , , , , , ,	Text Books							
1. In	troduction to Industrial and		y Wayne C. Turner,	CRC Press, 2020.					
	oduction and Operations M		•						
	otal Quality Management: T	• •							
4. Su	upply Chain Management: S earson, 2019.	-							

Reference Books

- 1. Operations Management" by Nigel Slack and Alistair Brandon-Jones, Pearson, 2020.
- 2. Lean Thinking: Banish Waste and Create Wealth in Your Corporation" by James P. Womack and Daniel T. Jones, Free Press, 2019.
- 3. Six Sigma for Green Belts and Champions: Foundations, DMAIC, Tools, Cases, and Certification" by Howard S. Gitlow, Wiley, 2021.
- 4. Warehouse Management: A Complete Guide to Improving Efficiency and Minimizing Costs in the Modern Warehouse" by Gwynne Richards, Kogan Page, 2019.

	Strength of CO-PO/PSO Mapping													
Strength	РО												PSO	
of COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	2	-	-	2	-	-	-	-	2	2	2	2
CO 2	3	3	2	-	-	2	-	-	-	-	2	2	2	2
CO 3	3	3	2	-	-	2	-	-	-	-	2	2	2	2
Avg	3	3	2	-	-	2	-	-	-	-	2	2	2	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course									
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted								
1	One Assignments on Unit-1, Unit-2, Unit-3	30								
2	Test	10								
3	LMS	10								
	Total	50								

	Pattern 2023	S. Y. B. Tech. Semester: III Mechan	ical Engineering					
		2305209: Professional Et		<u> </u>				
Tea	ching Scheme:	Credit Scheme:	Examination	Scheme:				
Tutor	rial: 02hrs/week	02	Continuous Cor Evaluation (CCI	-				
Prerequisit	e Courses: - NIL							
Course Obj								
1.To spread a	awareness amongst stude	ents about professionalism	1.					
2.To promote	e ethics and values amor	ngst students used in perso	nal and professional ca	reer.				
3.To provide	openings to get involved	d in a group so as to develo	op team skills and learn	n professionalism.				
Course Out	comes: On completion	of the course, students wil	l be able to–					
COs	Course Outcomes			Bloom's Level				
C01	Understand basic purpo moral and social issues	ose of profession, profession.	onal ethics and various	2-Understand				
CO2	Describe professional i and risk benefit analysi	rights and responsibilities s of an Engineer	of an Engineer, safety	2-Understand				
CO3	Acquire and apply knowledge of various roles of Engineer in applying ethical principles at various professional levels 3-Apply							
		COURSE CONTENT						
Following to	nice will be covered t	hrough the tutorial assig		w the students as				
described in	-	inough the tutorial assig	giments completed b	y the students as				
		ssional Ethics: Introducti	on to Professional Ethi	ce Morale Values				
		al, Sense of Engineering E						
Business Eth				y nor E				
		ess Ethics, ethical reason	ning, ethical issues ir	n business, Social				
· ·	**	f interest, cultural relativis	•	,				
Psychologica	l Approaches		Ĩ					
Ethical Theor	ries - Psychological and	Philosophical approaches,	Myths about Morality,	conflict of interest				
in psychologi	cal perspective, ethical of	lilemma, Emotional Intell	igence					
Workplace F	Ethics							
Ethics in char	nging domains of Resear	ch, academic integrity, in	tellectual honesty , Rol	e of Engineers and				
-		workplace, Confidentialit	ty, employee rights, In	tellectual property				
rights, discrin								
	onsibilities and Rights							
	•	k benefit analysis and red India - Sustainability Cas	U 1	ocial responsibility				
		Text Books						
		an, Oxford University Pre						
e		cs and Human Values. Ne	e					
	e e	Research, Caroline Whitbe	e	•				
		lues" by M. Govindarajan	n, S. Natarajan, V. S.	Senthikumar, PHI				
learning priv	ate ltd. Delhi, Third Prin	-						
		Reference Books						

 Reference Books

 1. Engineering Ethics, Concepts Cases: Charles E Harris Jr., Michael S Pritchard, Michael J Rabins, 4e,

Cengage learning, 2015.

2. Business Ethics concepts & Cases: Manuel G Velasquez, 6e, PHI, 2008.

	Strength of CO-PO Mapping												
		РО											
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1						1		2	2	1		1	
CO2							1	2	2	1		1	
CO3								2	2	1		1	
Avera						1	1	2	2	1		1	
ge						1	1	Z	Z	1		1	

	List of Tutorial Assignments	
Sr. No.	Tutorial Assignments	CO Mapped
1	Written assignment on- Introduction to Professional Ethics, Morals, Values, Ethics – Personal and Professional, Code of Ethics by NSPE	CO3
2	A Power point presentation- Philosophical approaches to Business Ethics, ethical reasoning, ethical issues in business, Social Responsibility of Business, conflict of interest	CO3
3	Group Discussion- Ethical Theories - Psychological and Philosophical approaches, Myths about Morality, conflict of interest in psychological perspective, ethical dilemma, Emotional Intelligence	CO1, CO2, CO3
4	Case studies- Ethics in changing domains of Research , academic integrity, intellectual honesty , Role of Engineers and Managers, Ethical issues in Diverse workplace, Confidentiality, employee rights, Intellectual property rights, discrimination	CO1, CO2, CO3
5	A Power point presentation- Ecology, Engineering, Economy, Risk benefit analysis and reducing risk, Corporate social responsibility and Corporate Sustainability	CO1, CO2, CO3

Guidelines for Tutorial Conduction

Faculty will explain in short details about the tutorial activity Students will complete 5 assignments as per detailed description given in the above section.

Guidelines for Continuous Comprehensive evaluation

Each tutorial assignments will be assessed for 30 Marks according to following rubrics:

R1- Timely completion of assignments (10 Marks) R2- Understanding of assignment (10 Marks)

R3- Presentation/Clarity of activity done (10 Marks)

All five tutorial assignments with total marks of 150 will be converted into 50 Marks

		S. Y. B. Tech. Semester: III Mechar 305210: Workshop Pra	0	ineering		
Teachin	g Scheme:	Credit Scheme:		Examinat	tion Scheme:	
	:01 hrs/week l : 02 hrs/week	Term work: 50Marks				
Prerequ	isite Courses, if any: - Wor	kshop Practice (F.Y. B	.Tech)			
 To ap To ac 	Objectives: oply the basic knowledge for equire skill to produce a FRP equire skills to handle CNC/V	job	surface f	inishing ma	achine and to produce	
Course	Outcomes: On completion o	f the course, students wi	ll be able	to-		
		Course Outcomes			Bloom's Level	
CO1	Apply the basic knowledge	for various operation don	e on lathe	e machine	3-Apply	
CO2	Apply the programming for	CNC and VMC operation	n (Facing	and Turnin	g) 3-Apply	
CO3	Development of fiber reinfo	orcement job			3-Apply	
CO4	Make a use of CNC progra turning and milling	3-Apply				
CO5	Demonstrate machining ph manufacturing, indexing, ta	3-Apply				
		COURSE CONTENT	ГS			
Unit I	Lathe Machine Operation threading, and parting Gear train use for late, Tap	on, turning, facing, k	nurling,	(03 hrs)	COs Mapped – CO1,CO5	
Unit II	CNC& VMC programmin Programming) Type of Codes, Simple F software's for develop prog	acing and Turning Prog		(03 hrs)	COs Mapped – Co2,CO5	
Unit III	Slotting machine and its reciprocating mechanism, manufacturing	U	*	(02hrs)	COs Mapped – CO5	
Unit IV	FRP (Fibre-reinforced plast High Grade RESIN, Fib Polyester RESIN, HDPE M Natural Frp. Die/mould manufacturing FRP manufacturing pro molding, bladder molding chopper gun, autoclave and	for FRP process, ocesses, including com , wet layup, mandrel r	pression nolding,	(02hrs)	COs Mapped – CO3	

Unit V	Easing energtion Dragroupmable milling mashing	(02hma)	COs Mannad			
Unitv	Facing operation, Programmable milling machine Drilling and Tapping process.	(02hrs)	COs Mapped – CO2,CO4			
	Thread Pitch, Rotary motion with axial motion mechanism.					
Text Books						
1. A Text Book of Production Technology, P. C. Sharma, S.Chand Publications						
2. A Text	Book of Manufacturing Technology, R. K. Rajput, Laxmi Public	ations (p) l	LTD			

3. A Text book of Manufacturing Technology, Metal Cutting and Machine Tools, P. N. Rao, Vol. 2, 2nd edition, Tata McGraw Hill Publishing Co. Ltd, New Delhi, 2002

4. Elements of Workshop Technology, Vol-II, S. K. Hajra Chaudhary, Media Promoters & Publications Pvt Ltd.

5. S. K. Sinha, CNC Programming using Fanuc Custom Macro B, McGraw-Hill Professional

Reference Books

References Books:

1. Theory of Metal Cutting, M. C. Shaw, 1st Edition, Oxford and I.B.H. publishing, 1994

2. Jigs & Fixtures, P.H. Joshi, Third edition, McGraw Hill, 2017

3. Production Technology Manufacturing Systems VOL-I & II, R. K. Jain, Khanna Publishers

4. Production Technology –HMT, Tata McGraw Hill publication

5. An Expert Process Planning System, Chang, T. C., Addison Wesley Longman, 1990

6. Process Planning- Design/Manufacture Interface, Scallan P, Butterworth-Heinemann, 2003

7. CNC Machines, B. S. Pabla, M. Adithan, New Age International, 2018

8. Manufacturing Science, Amitabh Ghosh and AshokKumar Mallik, Affiliated East-West Press, 2010

	Strength of CO-PO Mapping											
						Р	0					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	-	-	-	-	2	-	3	3	-	2
CO2	3	3	3	-	3	1	2	3	3	3	-	2
CO3	3	-	2	-	3	-	2	-	3	3	-	2
CO4	3	-	-	-	3	1	2	3	3	3	-	2
CO5	3	-	-	-	1	-	-	-	2	2	-	2
Average	3	2	3	-	3	1	2	3	3	3	-	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course							
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted						
1	LMS Test on Each Unit	100						
	Total	20						

List of Laboratory Experiments / Assignments						
Sr. No.	Laboratory Experiments / Assignments	CO Mapped				
1	Various machining operation job on Lathe machine including, Facing, Liner-Taper turning, Threading, Grooving etc.	C01,C05				
2	CNC programming for Lathe and VMC machine for Facing and Turning operation	CO2,CO4				
3	Key way preparation by using slotting machine	CO5				
4	Surface finishing, and Tapping operation by using simple programming	CO5				
5	Manufacturing of Fibre-reinforced Composites by hand lay-up process or spray lay-up techniques.	CO3				
	Guidelines for Termwork Assessment					

A) Continuous Comprehensive Evaluation (CCE): 20 Marks

Guideline for Continuous Comprehensive Evaluation (CCE)

- 1. After complete the unit in class room conduct 20 marks LMS Test (10 Minutes)
- 2. Maximum 10 questions in test and each question having 02 Marks weight age.
- 3. Total 05 LMS test having 100 Marks
- 4. Final marks for student = (Total marks/5)

Note: If student were absent for test conduct his/her test again through LMS or Offline mode and allot the marks.

B) Term work Assessment: 50 Marks

Term work assessment shall be based on the timely completion of jobs, quality of job, skill acquired, Completion of workshop diary and brief write-ups etc.

Guideline for Term work assessment:

- 1. Each laboratory assignments will be assessed for 30 marks according to following rubrics:
 - a. R1- Timely completion of assignments (10 Marks)
 - b. R2-Understanding of assignments (10 Marks)
 - c. R3- Presentation /Clarity of journal writing (10 Marks)

Example of R1

- i) Decide the date for completion of Job/Assignment, if completion date is 14th date of month and student completed his/her job/assignment then allots the 10 Marks.
- ii) If student check/submit the job/assignment after the same date practical (14th date) and before or at the time of next practical (21st Date of month) then allots 5 marks
- iii) If students submitted or check the job/assignment after above mention date then allot 0 Marks.
- 2. For machining operation/ job preparation allot the R2 based on quality of job and understanding about tool used and its process.
- For all 05 assignment/practical total marks of 150 will be converted into 50 Marks for student (Marks= 150/3)

S. Y. B. Tech. (R&A /Mechanical) Pattern 2023 Semester: IV 2300201D: Applied Mathematics									
Teaching Scheme:Credit Scheme:Examination Scheme:									
Theory :()3hrs/week	03	Continuous Comj Evaluation: 20Ma InSem Exam: 20M EndSem Exam: 6	nrks Marks					
Prerequi	site Courses: - Higher Seco	ndary Mathematics							
D.E. using Recogniz &Volume Solve bot variables. Find Lapla D.E. using	the transform and Fourier trans L.T. e nature of vector fields, use d e integrals& its application undary value problems for Lap ce transform and Fourier trans	ifferent vector differential lace's equation, heat equat	operators& able to eval tion, the wave equation b efinition & properties &	uate Line, surface					
ourse C	utcomes: On completion of	Course Outcomes	II be able to-	Bloom's Level					
CO1	Understand basic concept Transform, Statistics, Pro	of L.D.E, Fourier Trans		2-Understanding					
CO2	Calculate Laplace transfor Derivative, Line Integral a different Methods.			3- Apply					
CO3	Apply Probability, Statist life problems	ical methods and vector	calculus to solve real						
CO4	Calculate Laplace Transfo	orm and solution of LDE	E using MATLAB	3- Apply					
	Analyze real life problems probability and vector cal	4 -Analyze							
CO5	probability and vector card								
C05	probability and vector call	COURSE CONTEN	ITS						

Application of LT to solve LDE.

Fourier Transform (FT): Fourier transform, Fourier Sine & Cosine transform, Inverse Fourier Transforms.

Unit II	Linear Differential Equations with Constant	(07 hrs)	COs Mapped -
	Coefficient		CO1, CO2

LDE of nth order with constant coefficients, Method of variation of parameters, Cauchy's & Legendre's DE, Simultaneous DE.

Applications of Linear Differential Equations& Partial Differential Equations	(07 hrs)	COs Mapped CO1, CO2,
		CO5

Modeling of Mass-spring systems, Free & Forced Damped and undamped systems. Basic concepts, method of separation of variables, modeling of Vibrating String, Wave equation, one- and two-dimensional Heat flow equations.

Unit Statistics and Probability IV	(07 hrs)	COs Mapped - CO1,CO3 , CO5
---------------------------------------	----------	----------------------------------

Measures of central tendency, Measures of dispersion: Standard deviation, Coefficient of variation, Moments, Skewness and Kurtosis, Correlation and Regression, Curve fitting: fitting of straight line, parabola and related curves, Correlation and Regression, Reliability of Regression Estimates. Probability, Probability distributions: Binomial, Poisson and Normal distributions

Unit V	Vector Calculus	(07 hrs)	COs Mapped - CO1,CO3,
			CO5

Vector differentiation, Gradient, Divergence and Curl, Directional derivative, Solenoid and Irrotational fields, Vector identities. Line, Surface and Volume integrals, Green's Lemma, Gauss's Divergence theorem and Stokes theorem.

Text Books

- 1. B.V. Ramana, "Higher Engineering Mathematics", Tata McGraw-Hill.
- 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publication, Delhi.
- 3. Advanced Engineering Mathematics, 7e, by peter V.O'Neil(Thomson Learning)

Reference Books

- 1. Erwin Kreyszig," Advanced Engineering Mathematics", Wiley Eastern Ltd.
- 2. P. N. Wartikar and J. N. Wartikar," Applied Mathematics" (Volumes I and II), Pune Vidyarthi Griha Prakashan, Pune.

3. Advanced Engineering Mathematics, 2e, by M. D. Greenberg (Pearson Education).

Strength of CO-PO Mapping												
		РО										
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	-	-	-	-	-	-	-	-	-	3
CO2	3	3	-	-	2	-	-	-	-	-	-	3
CO3	3	2	-	2	2	-	-	-	-	-	-	3
CO4	3	2	2	3	2	-	-	-	-	-	-	3
CO5	3	-	-	-	2	-	-	-	-	-	-	3

	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Tests on each unit using LMS (Each test for 15 M and total will be converted out of 05 M)	05			
2	Problem solving through Computational Software	05			
3	Tutorial (1 tutorial on each unit for 15 marks and total will be converted out of 05 M)	05			
4	Group Presentation on real life problem	05			

Topics for Tutorial				
Sr. No.	Title	CO Mapped		
1	Examples on transforms	CO1, CO2, CO3		
2	Examples on LDE of nth order with constant coefficients.	CO1, CO2		
3	Examples on Applications of LDE & PDE	CO1, CO2, CO5		
4	Examples on Statistics & Probability distributions.	CO1,CO3, CO5		
5	Examples on Vector Calculus.	CO1,CO3, CO5		

Teachin	g Scheme:	Credit Scheme:	Examination Sche	eme:
Theory :	03 hrs/week	03	orehensive arks InSem ndSem	
	isite Courses, if any: -	the course students wi		
Course	Dutcomes: On completion of	Course Outcomes		Bloom's Level
	Cain fundamental knowled		c and habaylar und	
CO1	Gain fundamental knowled Various conditions of inter		is and behavior und	1-Knowledge
CO2	Develop understanding ab andstability of a floating be Energy equation in fluid flo	ody and application of m		d 2-Understand
CO3	Imbibe basic laws and equ Fluids.	ic 2-Understand		
CO4	Determine the losses in a t	flow system, flow throug	h pipes,	3-Apply
CO5	Demonstrate hydraulic ma	ichines.		3-Apply
		COURSE CONTENTS		
Unit I	Fluid Properties and Fluid	statics	(08 hrs)	COs Mapped - CO1, CO2
compress Fluid stat	s of fluids: Density, specific ibility, vapour pressure, capi ics: Concept of fluid static pr neters, Hydrostatic forces on Fluid Kinematics	llarity and surface tensic essure, absolute and ga	on. uge pressures. Pres	sure measurements
onit ii				CO1, CO2,CO3
equatior stream	nematics: Classification and n (one and three dimensior , velocity potential function,	al differential forms). S		•
Unit III	Fluid Dynamics		(07 hrs)	COs Mapped - CO1, CO2, CO3

Unit IV	Analysis of Flow Through Pipes	(07 hrs)	COs Mapped - CO1, CO3,CO4
Reynold	's experiment, laminar flow through circular pipe (H	lagen poiseulle's)	, hydraulic and energy
•	, flow through pipes, Darcy – Weisbach's equation,	friction factor, M	oody's diagram, major
	or losses of flow in pipes.		
	ary layer for external and internal flows, laminar and		
energy a	ind momentum thickness, Boundary layer separation	and control, dra	g and lift forces.
Unit V	Hydraulic Machines	(07 hrs)	COs Mapped -
			CO1, CO2, CO5
Rotodyn	amic machines: Basic equation of energy transfe	er, definition of	impulse and reaction
machine	s, Impact of jets, Classification of turbines and pu	mps, velocity tria	ingles associated with
turbine	and pump, heads and efficiencies of turbines and pur	nps.	
	Text Books		
1. Intro	oduction to Fluid Mechanics- Fox, Pichard , McDonald	l, Wiley	
2. Fluid	Mechanics- F. M. White, TATA McGraw-Hill	-	
3. Fluid	Mechanics,- Dr. R.K. Bansal- Laxmi Publication (P) Lt	d. New Delhi	
4. Fluid	Mechanics,- Cengel & Cimbla, TATA McGraw-Hill		
5. Hvd	raulics and Fluid Mechanics - Modi P. N. and Seth S. N	A, Standard Book	House
J. Hyu		kiichi Milov India	
•	damentals of Fluid Mechanics- Munson, Young and O	Kiisiii, wiiey iliula	
6. Fund	damentals of Fluid Mechanics- Munson, Young and O I Mechanics- Potter Wiggert , Cengage Learning	Klistil, vviley illula	
6. Fund	, C	klishi, whey huld	
6. Fund 7. Fluid . Fluid M	Mechanics- Potter Wiggert , Cengage Learning Reference Books Iechanics-Kundu, Cohen, Dowling, Elsevier India		
6. Fund 7. Fluid Fluid M 2. Fluid M	Mechanics- Potter Wiggert , Cengage Learning Reference Books Iechanics-Kundu, Cohen, Dowling, Elsevier India Iechanics- Chaim Gutfinger David Pnueli, Cambridge I	University press.	
6. Fund 7. Fluid . Fluid M 2. Fluid M	Mechanics- Potter Wiggert , Cengage Learning Reference Books Iechanics-Kundu, Cohen, Dowling, Elsevier India	University press.	r, OXFORD University

Gu	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation Marks Allotte				
1	Any Three Assignments on unit-1, Unit-2, Unit-3, Unit-4, Unit-5	15			
2	LearniCo Test on Each Unit	05			
	Total	20			

Sr. No.	Laboratory Experiments / Assignments	CO Mapped
1	Determination of pressure using manometers (minimum two)	CO1, CO2
2	Determination of fluid viscosity and its variation with temperature	CO1
3	Determination of Metacentric height of floating object	CO1,CO2
4	Determination of Reynolds number and flow visualization of laminar andturbulent flow using Reynolds apparatus.	CO1, CO3
5	Verification of modified Bernoulli's equation	CO2,CO3
6	Calibration of Orifice meter/ Venturi meter	CO3
7	Determination of minor/major losses through metal/non-metal pipes	CO4, CO5
8	Study of Impact of Jet / Turbine /Pump .	CO5
Guideline	es for Laboratory Conduction	

1. Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.

2. Apparatus and equipments required for the allotted experiment will be provided by the lab assistants using SOP.

3. Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant.

4. After performing the experiment students will check their readings, calculations from the teacher.5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Termwork Assessment

1. Each experiment from lab journal is assessed for thirty marks based on three rubrics.

2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

	Pattern	S. Y. 2023 Semester: I 2305213 : So	•	0	ing)	
Tea	ching Scheme:	Credit Scheme:		Examinatio	n Scl	heme:
	ry :03hrs/week	03	Continuous Comprehensive l 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks			
-	uisite Courses, if a	•	1			
	ering Mechanics,	Mathematics I & 1	I, Fundamo	entals of Med	chani	cal Engineering
	e Objectives: Understand the var	ious types of stress	es in machin	e members		
	Understand the bea	• •			lition	S
	Understand the cor	•		11		
	Understand the tors					
	Outcomes: On co	U 1			to-	
	Course Outcome		,			Bloom's Level
CO1	Use the concepts of simple stresses, strains for the analysis of machine members and structures.					3 - Apply
CO2	Draw Shear forc	e and Bending Mo	ment Diagr	am		3 - Apply
CO3		ts of Bending and	U		ams	3 - Apply
CO4		and deflection of b	0			3 - Apply
CO5		t of Principal stress				3 - Apply
			CONTENT			
Unit I	Simple stresses	and strains		(8 hrs)	CO	s Mapped - CO1
Overvie	ew of Material Prop	erties, Bulk Modul	us. Interrelat	tion between	elasti	c constants, factor
	y, Stresses and stra				ires, l	nomogeneous and
	Shear Force an	d Bending Momen			~ ~	
Unit II	Diagrams			(7hrs)		s Mapped – CO2
	force and bending ad, UVL, UDL & C					
Unit III	Stresses in Mac	hine Elements		(7hrs)	CO	s Mapped – CO2
Shear	g stresses : Theory stresses: Shear str tricalsections				liagra	ums for common
Unit IV		ction of beams & l	Buckling	(7hrs)		s Mapped – 2, CO3
standar	and deflection of c dcases. 1g of columns: Eule		•		•	
Unit V		ses and strains, T		(7hrs)		s Mapped – CO3
planes	sion for principal s of maximum shear. a equation, Basic N	tresses and maximu Graphical solution	umshear stre using Mohr'	ess, position of	of pri	ncipal planes and

Text Books
1. R. K. Bansal, "Strength of Materials", Laxmi Publication
2. S. Ramamrutham, "Strength of material", DhanpatRai Publication
3. S.S. Rattan, "Strength of Material", Tata McGraw Hill Publication Co. Ltd.
4. Punmia and Jain, "Mechanics of Materials", Laxmi publications
5. Singer and Pytel, "Strength of materials", Harper and row Publication
6. R. C. Hibbeler, "Mechanics of Materials", Prentice Hall Publication
Reference Books
1. Egor. P. Popov, "Introduction to Mechanics of Solids", Prentice Hall Publication
2. Gere and Timoshenko, "Mechanics of Materials", CBS Publishers
3. Beer and Johnston, "Strength of materials", CBS Publication
4. James M. Gere, "Mechanics of Materials", CL Engineering
5. Timoshenko and Young, "Strength of Materials", CBS Publication, Singapore

				Streng	gth of (CO-PO	PSO 1	Mappi	ng					
		PO								PS	50			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	2	-	-	-	-	-	2	-	-	2	2	-
CO 2	3	3	2	-	-	1	-	1	2	-	-	2	2	-
CO 3	3	3	2	-	-	1	-	1	2	-	-	2	2	-
CO 4	3	3	2	-	-	1	-	1	2	-	-	2	2	-
CO 5	3	3	2	-	-	-	-	-	2	-	-	2	2	-

G	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	One Assignment on each unit	10				
2	Class Test	05				
3	LMS Test on Each Unit	05				
	Total	20				

S. Y. B. Tech. Pattern 2023 Semester: IV (Mechancial Engineering) 2305214 : Fluid Mechanics and Machines Lab					
Teaching	Scheme:	e:			
Practical	: 02 hrs/week	01 Termwork:25I Oral : 25 Marl			
	site Courses, if any: - utcomes: On completion of the	e course, students will b	pe able to –		
		Course Outcomes		Bloom's Level	
CO1	Gain fundamental knowledg	1-Knowledge			
CO2	Develop understanding abou stability of a floating body an energy equation in fluid flow	2-Understand			
CO3	Imbibe basic laws and equat	ions used for analysis of	f static and dynamic	2-Understand	
CO4	Determine the losses in a flo layer flow and flow past imm	-	pipes, boundary	3-Apply	
CO5	Demonstrate hydraulic mach	iines.		3-Apply	

List of Laboratory Experiments / Assignments				
Sr. No.	Laboratory Experiments / Assignments	CO Mapped		
1	Determination of pressure using manometers (minimum two)	CO1, CO2		
2	Determination of fluid viscosity and its variation with temperature	CO1		
3	Determination of Metacentric height of floating object	CO1,CO2		
4	Determination of Reynolds number and flow visualization of laminar and turbulent flow using Reynolds apparatus.	CO1, CO3		
5	Verification of modified Bernoulli's equation	CO2,CO3		
6	Calibration of Orifice meter/ Venturi meter	CO3		

7	Determination of minor/major losses through metal/non-metal pipes	CO4, CO5
8		CO5
	Study of Impact of Jet / Turbine /Pump .	
Gu	delines for Laboratory Conduction	
of 1 7. 4 ass 8. 9 sup	Teacher will brief the given experiment to students its procedure, observations calculation this experiment. Apparatus and equipments required for the allotted experiment will be provided by the lak istants using SOP. Students will perform the allotted experiment in a group (two students in each group) und pervision of faculty and lab assistant. After performing the experiment students will check their readings, calculations from the t After checking they have to write the conclusion of the final result.	er the
	delines for Student's Lab Journal	
	ite-up should include title, aim, diagram, working principle, procedure, observations, grapl culations, conclusion and questions, if any.	ns,
Gu	delines for Termwork Assessment	
3.	Each experiment from lab journal is assessed for thirty marks based on three rubrics.	
4.	Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal where each rubric carries ten marks.	writing

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

S. Y. B. Tech. Pattern 2023 Semester: IV (Mechanical Engineering) 2305215: Geometric Modeling and Production Drawing								
Teaching Scheme:	Credit Scheme:	Examination Scheme:						
Practical: 04 hr / week	02	Termwork: 50 Marks Practical: 50 Marks						
Prerequisite Courses: - Systems in Mechanical Engineering, Engineering Graphics, Engg. Math & II								
Course Objectives: To understand basic concepts of 3D m simple engineering components. The s	e e							

more complicated models.

To read, understand and explain basic Geometric Dimensioning & tolerancing concepts.

To apply various geometric and dimension tolerances based on type of fit

To create engineering drawings, design documentation and use in manufacturing activities.

To ensure that the components of the assembly fit together properly, without excessive clearance or interference.

	Course Outcomes	Bloom's Level
CO1	READ the Industrial drawing to understand standard industrial	2-
	practices.	Understanding
CO2	CONSTRUCT solid models, assemblies of real life components using various modeling techniques	3- Apply
CO3	APPLY geometric and dimensional tolerance, surface finish symbols in production drawing	3- Apply
CO4	EVALUATE dimensional tolerance based on type of fit	5 - Evaluate
CO5	READ & ANALYSE industrial drawings with Manual drafting	4 -Analyze
	COURSE CONTENTS	1
	Part A	
I	Assignment on parametric solid modeling and Surface modeling (04hrs of a machine component.) COs Mapped – CO1, CO2

drawing constrain compone	tion to parametric solid modeling, Introduction to the CAD soft tools, sketching techniques, Introduction to 2D sketching techn its and dimensions, and geometric relations in creating 2D pro- ent, transform the parametric 2-D sketch into a 3D solid, feature g of a machine component.	niques, ap files of th	ply/modify he machine
II	Assembly modeling of the parts modeled in Practical assignment-1 using proper assembly constraint conditions and generation of exploded view for assemblies	(04 hrs)	COs Mapped - CO1, CO2
	y modeling – defining relationship between various parts of the structure	machine,	creation of
III	Generation of production drawings of the parts and assembly with appropriate tolerance.	(04 hrs)	COs Mapped – CO2, CO3
	on drawing – generation of 2-D sketches from parts and assembly 3- oning, tolerancing and symbols	-D model,	appropriate
	Part B		~ ~ ~
Ι	Assignment I : Limits Fits and Tolerances Assignment II : Calculation of Tolerances based on Type of	(06hrs)	COs Mapped –
	Fits in Assembly		CO4, CO5
	Fits, Dimensional Tolerances, Geometric Tolerances, calculate tol it required for an assembly.	erances b	ased on the
	Study and reading of Industrial Drawings to understand standard industrial procedure	(06 hrs)	COs Mapped –
	Assignment III : Study and use of geometrical tolerances in production drawingAssignment IV: Student has to draw a A2 size drawing sheet for a mechanical component, including dimensional and geometrical		CO4, CO5
Introduct roundnes	tolerances. tion to ASME Y14.5-2018, straightness, perpendicularity, flatness ss, concentricity, cylindricity, runout, profile, true position, parallel face finish, Welding symbols		
	Text Books		
1. Bhatt, N	N. D. and Panchal, V. M., (2014), "Machine Drawing", Charotar	Publishing	g House Pvt
Ltd, Anan	d, India, ISBN-13: 978-9385039232		
		ni 2012	
2. Ajeet S	iingh, "Machine Drawing", Mc Graw Hill Publications, New Dell	11 2012	
-	iingh, " Machine Drawing", Mc Graw Hill Publications, New Dell na, K. L., Kannaiah, P., Venkata Reddy, K., (2016), "Machine I		2nd edition
3. Naraya		Drawing",	2nd edition

ISBN-13: 978-0123820389

Reference Books

1. Cogorno, G. R., (2020), "Geometric Dimensioning and Tolerancing for Mechanical Design", 3rd edition, McGraw-Hill Education

2. Blokdyk, Gerardus, (2019), "Geometric Dimensioning and Tolerancing: A Complete Guide - 2020 Edition", 5STARCooks

Codes / Handbooks

Standards: ASME Y14.5 – 2018

Standards: ISO/TR 23605:2018, ISO 1101:2017, SP 46, IS 15054(2001)

e resources

1 https://geotol.com/resources/

2 https://www.sae.org/learn/professional-development/gdt

Useful websites / Video

1 https://nptel.ac.in/courses/112/102/112102102/

- 2 <u>https://nptel.ac.in/courses/112/103/112103019/</u>
- 3 https://nptel.ac.in/courses/112/106/112106179/

4 <u>https://youtu.be/0IgOapAtauM</u>

5 https://youtu.be/aS9OgYadjpY

		Strength of CO-PO/PSO Mapping															
						Р	0							PSO			
Strength Of CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2			
CO 1	3	-	-	-	-	-	-	-	2	2	1	2	2	1			
CO 2	3	-	-	-	3	-	-	-	2	2	1	2	2	1			
CO 3	3	-	-	-	3	-	-	-	2	2	1	2	2	1			
CO 4	3	-	-	-	-	-	-	2	2	2	1	2	2	1			
CO 5	3				-	-	-	3	2	2	1	2	2	1			

Guidelines for Tutorial / Termwork Assessment								
Sr. No.	Marks Allotted							
1	Assignment on Geometric Modeling	10						
2	2 Assignment on Production Drawing							
	Practical Exam							
Sr. No.	Components for Practical Exam	Marks Allotted						
1	Geometric Modeling	40						
2	Production Drawing (One numerical on Tolerance Calculation)	10						

	Pattern 20	S. Y. B. Tech. 23 Semester IV (Mechanical	Engineering)		
		2305216: Machine Intelligen				
Teaching Sch	eme:	Credit Scheme:	Examination	on Sche	eme:	
Theory :03hr	s/week	03	Evaluation	Continuous Comprehensive Evaluation: 20Marks In Sem Exam: 20 Marks End Sem Exam: 60 Marks		
Prerequisite	Courses: -Enginee	ring Mathematics, Linear Alge	bra, Probabil	ity, Bas	ic Statistics	
 APPLY APPLY APPLY DEMC essenti EXPLO 	ERSTAND the fundary Y Feature Extraction Y fundamental of construction ONSTRATE the abial steps, emphasize ORE the concepts	damentals of Artificial Intellige on and Selection techniques to p classification and regression alg pility to develop machine learn ing practical application in med of reinforced and deep learning on of the course, students will	process datas corithms. hing models l chanical enging, digital twin	ets. by outli neering	ning and executing contexts.	
		Course Outcomes			Bloom's Level	
CO1	APPLY fundame Machine Learning	ental principles of Artificial g.	Intelligence	and	2-Understanding	
CO2	problems using M		0 0	e	2-Understanding	
CO3	the given dataset	extraction and selection technic			3- Apply	
CO4		E classification and regression nical engineering, enabling the le solutions			3- Apply	
CO5		hine learning models, to a nanical engineering by followings.			4 -Analyze	
		COURSE CONTEN	TS			
Unit I	Introduction	to AI & ML	(08 hrs)	COs	Mapped -CO1	
learning Basic and manipula	es of AI: Reasoning tion. Approaches lerations in AI, Soc	and history of AI, Comparison g, Knowledge representation, P to AI: Cybernetics and brain cietal Impact and Responsible A	lanning, Lea simulation,	rning, P	erception, Motion	
Approaches to	ML: Supervised 1	earning, Unsupervised learning	, Reinforcen	nent lear	ming.	
Unit II	Feature Engi	_	(07 hrs)		Mapped –CO3	
Feature select	tion: Filter Method	l, Wrapper Method, Embedded	Methods, Gr	eedy foi	ward & backward	

methods, feature Ranking techniques, Decision tree Feature extraction: Statistical features, Principal Component Analysis. (Numerical based on Statistical features and PCA) Unit III **Machine Learning Algorithms COs Mapped –CO4** (07 hrs) **Classification:** Decision tree- Entropy reduction and information gain, Random Forest, Naive Bayes, Support vector machine. (Numerical based on Decision tree using IG and Bays theorem only) Regression: Logistic Regression, K-Means, K-Nearest Neighbor (KNN), Time series forecasting Algorithms (ARIMA, SARIMA, LSTM) Unit IV **Development of Machine Learning Model** COs Mapped – CO4, (07 hrs) **CO5** Problem identification: classification, clustering, regression, ranking. Steps in ML modeling, Data Collection, Data pre-processing, Model Selection, Model training (Training, Testing, K-fold Cross Validation), parameters

Data pre-processing, Model Selection, Model training (Training, Testing, K-fold Cross Validation), parameters for Model evaluation of classification and regression algorithms (confusion matrix, Accuracy, Precision, Recall, True positive, false positive etc.), Hyper parameter Tuning. Introduction to Artificial Neural Network, Convolution Neural Network.

Unit V	Introduction to Emerging Technologies	(07 hrs)	COs Mapped –CO2

Characteristics of reinforced learning Algorithms: Value Based, Policy Based, Model Based; Positive vs Negative Reinforced Learning Models, Markov Decision Process, Deep Learning, Introduction to digital twin (Definition, Components, Characteristics, Applications) and basics of Transfer Learning. Application of Artificial Intelligence and Machine Learning

Text Books

1. B Joshi, Machine Learning and Artificial Intelligence, Springer, 2020.

2. Parag Kulkarni and Prachi Joshi, "Artificial Intelligence – Building Intelligent Systems", PHI learning Pvt. Ltd., ISBN – 978-81-203-5046-5, 2015

Reference Books

1. Stuart Russell and Peter Norvig (1995), "Artificial Intelligence: A Modern Approach," Third edition, Pearson, 2003.

2. Solanki, Kumar, Nayyar, Emerging Trends and Applications of Machine Learning, IGI Global, 2018.

3. Mohri, Rostamizdeh, Talwalkar, Foundations of Machine Learning, MIT Press, 2018.

4. Kumar, Zindani, Davim, Artificial Intelligence in Mechanical and Industrial Engineering, CRC Press, 2021.

	Strength of CO-PO Mapping											
						PO	C					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	1	2	2	2	-	1	2	2	-	2
CO2	3	3	1	2	2	2	-	1	2	2	-	2
CO3	3	3	1	2	2	2	-	1	2	2	-	2
CO4	3	3	1	2	2	2	-	1	2	2	-	2
CO5				2				1				
	3	3	1		2	2	-		2	2	-	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	Assignments- Total 5 Assignment	10				
	Assignment on each unit for 10 Marks					
	(These 50 marks will be converted to 10 Marks)					
2	Tests on each unit using LMS \ Learni-Co	10				
	(Each test for 10 M and total 50 marks will be converted to 10 M)					

K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

	S. Y. B. Tech. Pattern 2023 Semester: IV Mechanical Engineering 2305217: Machine Intelligence Lab					
Teaching	g Scheme:	Credit Scheme: Examination Scheme:				
Practical	:02hrs/week	01	Term work: 25 Marks Oral:25 Marks			
Prerequi	site Courses: -Engi	neering Mathematics, Linear	Algebra, Probability,	Basic Statistics		
8. A 9. D es 10. E2	PPLY fundamental of EMONSTRATE the sential steps, empha XPLORE the concep	ction and Selection technique of classification and regression ability to develop machine lessing practical application in ots of reinforced and deep lean letion of the course, students	n algorithms. earning models by out n mechanical engineer rning, digital twin and	ing contexts.		
Course C		Course Outcomes		Bloom's Level		
CO1	APPLY fundame Machine Learning	ental principles of Artificia	I Intelligence and	2-Understanding		
CO2		rging technologies in so	lving engineering	2-Understanding		
CO3	APPLY feature e the given dataset	extraction and selection techn	iques to preprocess	3- Apply		
CO4	DEMONSTRATE classification and regression Algorithms in the context of mechanical engineering, enabling them to choose and implement suitable solutions 3- Apply					
C05	DEVELOP machine learning models, to address complex 4-Analyze problems in mechanical engineering by following systematic and well-defined steps.					
		List of Experimen	ts			
Sr. No.		Title		CO Mapped		

Sr. No.	Title	CO Mapped
1	To Visualize and analyze the Mechanical Engineering domain dataset	CO1
2	To Evaluate Statistical Features from given dataset	CO1, CO3
3	To apply feature selection and Extraction techniques to given dataset	CO1, CO3, CO4
4	To develop classification model and evaluate its performance	CO1, CO3, CO4,CO5

5	To develop regression model and evaluate its performance	CO1, CO3, CO4, CO5
6	To Develop ANN Model and evaluate its performance	CO1, CO3, CO4, CO5
7	To Develop Deep learning model for Image-based dataset	CO1,CO2, CO4, CO5

Text Books

3. B Joshi, Machine Learning and Artificial Intelligence, Springer, 2020.

4. Parag Kulkarni and Prachi Joshi, "Artificial Intelligence – Building Intelligent Systems", PHI learning Pvt. Ltd., ISBN – 978-81-203-5046-5, 2015

Reference Books

5. Stuart Russell and Peter Norvig (1995), "Artificial Intelligence: A Modern Approach," Third edition, Pearson, 2003.

6. Solanki, Kumar, Nayyar, Emerging Trends and Applications of Machine Learning, IGI Global, 2018.

7. Mohri, Rostamizdeh, Talwalkar, Foundations of Machine Learning, MIT Press, 2018.

8. Kumar, Zindani, Davim, Artificial Intelligence in Mechanical and Industrial Engineering, CRC Press, 2021.

	Strength of CO-PO Mapping											
						P	C					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	1	2	2	2	-	1	2	2	-	2
CO2	3	2	1	2	2	2	-	1	2	2	-	2
CO3	3	2	1	2	2	2	-	1	2	2	-	2
CO4	3	2	1	2	2	2	-	1	2	2	-	2
CO5	3	2	1	2	2	2	-	1	2	2	-	2

Guidelines for Term work Assessment				
Sr. No.	Components for Term work Assessment	Marks Allotted		
1	Presentation in group of 2-3 students on unit No. IV and V	5		
2	Experiment (Each Experiment carries 30 marks) R1- Timely completion of assignments (10 Marks) R2- Understanding of assignment (10 Marks) R3 – Presentation/Clarity of journal writing (10 Marks) For all Experiments total marks will be converted into 20 Marks.	20		

Guidelines for Oral examination	
Oral examination will be conducted based on complete syllabus at the end of the	Marks
semester	Allotted: 25

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

		Second Year B. Tech.		
	Pattern: 2023	Semester: IV (Mechan	ical Engine	ering)
	2305218 : Industrial	Psychology and Organ	izational Be	haviour
Teachin	ng Scheme:	Credit Scheme:	Examinat	tion Scheme:
	02 hr / week	02		CCE: 50
_	site Courses: - Industrial Ma	anagement, Professional	Ethics	
	Dbjectives: the students to the application	n of principles of psycho	ology in an in	ndustrial and
-	ional workplace.			
Fo demoi	nstrate the understanding of j	ob requirement and relat	ted fatigue, b	ooredom and ways to
handle it.				
To develo	op the insights into performation	nce management and un	derstanding i	related improvement
strategies				
To have a	an understanding of human b	ehavior in groups and de	evelop know	ledge and skills in
eadership	p, power, communication, ne	gotiation and conflict m	anagement.	
Fo develo	op the expertise to understand	d the organizational cult	ure, change r	nanagement and
organizat	ional development.			
	С	ourse Outcomes		Bloom's Level
CO1	Understand the importance aspects of team, leadership organizational behavior.		•	2- Understand
CO2	Discuss the organizational organizational development		derstands	2- Understand
CO3	Demonstrate fundamental industrial -organizational ps	knowledge about need a	nd scope of	3- Apply
CO4	Illustrate the job analysis, I		tigue, bored	om 3- Apply
	and improve the job satisfac	ction		
	(ction COURSE CONTENTS		
I			(06 hrs	s) COs Mapped – CO1, CO3
I Introduc Problem evaluatio	(o, Brief History of Indust and areas of application nvironment, study of b	(06 hrs trial Psycholous, Individua behavior and	CO1, CO3 ogy, Nature, Scope and I differences and their I stimulus to response

Job Analysis and Evaluation.

Industrial Fatigue: Introduction, Concept and Meaning, Types of Industrial Fatigue, Causes of Fatigue, Contents, Fatigue Symptoms, Industrial Studies on Fatigue, Causes and Remedies of Industrial Fatigue, Effects of Industrial Fatigue

Industrial Boredom: Introduction, Concept and Meaning, Causes and Remedies of Boredom, Effects of Boredom, Reducing Boredom

III	Organizational Behavior and Group Behavior	(06 hrs)	COs Mapped –
			CO1, CO2, CO3

Concept of organization & organizational behavior, Organizational structure, factors affecting behavior in organizations

Group Behavior: Groups: Concept and Classification, Stages of Group Development, Group Structure, Roles and Norms, Premise and Issues. Group Decision-Making: Group vs Individual, Groupthink and Groups Shift, Group Decision Making Techniques and Process

Team work: meaning, concept, types, creating, an effective team

Leadership: Functions and approaches; trait, behavioral and contingency models; characteristics of successful leaders; role of power in leadership

IV	Organizational Cul	ture and Organiza	ational	(06 hrs)	COs Mapped –
	Development				CO1, CO2, CO3

Organizational Culture: Concept, Dominant Culture, Strong vs Weak Cultures, Creating and Sustaining Culture, Employees Learning of the Culture, Creating a Customer-Responsive Culture.

Organizational theory and development:

Organizational Theory: Classical organizational THEORY, Humanistic Theory, Open-System Theory

Organizational development: Need, models of Organizational change, Organizational development interventions

Organizational Changes: Concept and Forces for Change, Managing Planned Changes, Resistance to Change, Approaches to Manage Organizational Change

Text Books

1. Vikram Bisen and Priya, Indistrial Psychology, New Age Publication, 2010.

2. Michael Aamodt, Organizational/ Industrial Psychology, Wadsworth Cengage Learning,

2010

3. Robbins, S.P. Organizational Behaviour. Prenctice-Hall, latest edition.

4. Spector, P.E. Industrial and Organizational Psychology: Research and Practice. International

Student Version. Latest Edition. Wiley.

5. Davis K. & Newstrom J.W., Human Behaviour at work, Mcgraw Hill International, 1985

6. Stephen P. Robbin & Seema Sanghi, Organizational behavior, Pearson, 2011

7. L.M. Prasad, Organizational behavior, S Chand & sons

Reference Books

1. Blum M.L. Naylor J.C., Horper & Row, Industrial Psychology, CBS Publisher

2. Luthans Fred, Organizational Behaviour, McGraw Hill International.

3. Morgan C.t., King R.A., John Rweisz & John Schoples, Introduction to Psychology, McHraw Hill, 1966.

4. Schermerhorn J.R.Jr., Hunt J.G &Osborn R.N., Managing, Organizational Behaviour, John Willy.

5. Arnold J., Robinson, Iran, T. and Cooper, Cary L, Work Psychology, Macmillan IndiaLtd.

6. Muchincky (2009). Psychology applied to work. New Delhi: Cengage.

7. Griffin, Ricky W: Organizational Behaviour, Houghton Mifflin co., Boston.

8. Ivancevich; John and Micheeol T. Matheson, Organizational Behaviour and Management,

Tata McGraw-Hill, New Delhi.

9. Newstrom, John W. and Keith Davis: Organizational Behavior: Human Behavior at Work,

Tata McGraw-Hill, New Delhi.

Program Outcome (PO) and Program Specific Outcome (PSO) 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

If there is no correlation, put "-"

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO 8	PO9	PO 10	PO 11	PO 12	PSO 1	PSO 2
2305219.1	1	-	-	-	-	2	2	2	2	-	2	1	-	-
2305219.2	1	-	-	-	-	2	2	2	-	-	1	1	-	-
2305219.3	1	-	-	-	-	2	2	2	-	-	1	1	-	-
2305219.4	1	-	-	-	-	2	2	2	-	-	1	1	-	-
Avg.	1	-	-	-	-	2	2	2	2	-	1	1	-	-
Level	1	-	-	-	-	2	2	2	2	-	1	1	-	-

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

	Pattern 2023	S. Y. B. Tech. Semester: IV (Mechan	ical Engineering)				
		Democracy Election and	6				
Teaching	g Scheme:	Credit Scheme:	Examination Sch	eme:			
Tutorial	:02 hrs/week	02	Continuous Com Evaluation: 50M				
Prerequis	i te Courses, if any: - Social	Sciences					
		Course Objectives					
	duce the students meaning o		<u> </u>				
^	them understand the various Dutcomes: On completion o			governance			
Course		Course Outcomes		Discom's Loval			
		Bloom's Level					
CO1	Understand the concepts of the ideological framework re India			2-Understand			
CO2	Analyse the rights and dutie	3-Apply					
CO3	Apply constitutional values to ensure just, equitable and secure environment for the protection of human rights, liberty and balancing the interests of the individuals and society at large						
CO4	Develop an understanding of the role of institutions in their day to day life						
CO5	Analyze the effectiveness of exposure to governance the	ories		4-Analyze			
		COURSE CONTENT	S				
	Democracy- Foundation and Dimensions, Elections		(08hrs)	COs Mapped - CO1			
Evolu	titution of India ution of Democracy- Differe ensions of Democracy- Socia		al				
Unit II	Decentralization		(08hrs)	COs Mapped - CO1, CO2			
Histo 73 rd a	n tradition of decentralizatio ory of panchayat Raj instituti and 74 th amendments enges of caste, gender, class,	on in the lost independen	-				
Unit III	Governanace (10hrs) COs Mapped - CO1, CO2,CO						
	ning and concepts						

Inclusion and exclusion

Text Books

- 5. Banerjee-Dube, I. (2014). A history of modern India. Cambridge University Press.
- 6. Basu, D. D. (1982). Introduction to the Constitution of India. Prentice Hall of India.
- 7. Bhargava, R. (2008). Political theory: An introduction. Pearson Education India

Reference Books

- 1 Guha, R. (2007). India After Gandhi: The History of the World's Largest. Democracy, HarperCollins Publishers, NewYork.
- 2. Guha, R. (2013). Gandhi before India. PenguinUK.
- 3. Jayal. N.G. (2001). Democracy in India.New Delhi: Oxford UniversityPress.

	Strength of CO-PO/PSO Mapping													
Strength	РО												PSO	
of COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1						3		3	3	2				
CO 2						3		3	3	2				
CO 3						3		3	3	2				
CO 4						3		3	3	2				
CO 5						3		3	3	2				
Avg						3		3	3	2				

	Guidelines for Continuous Comprehensive Evaluationof Theory Course									
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation									
1	One Assignments on Unit-1, Unit-2, Unit-3	30								
2	Sincerity in class work	20								
	Total	50								

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

S. Y. B. Tech. Pattern 2023 Semester: IV (Mechanical Engineering) 2305220 : Soft Skills									
Teaching Scheme:	Credit Scheme:	Examination Scheme:							
Theory: 1hr/week	01	Continuous Comprehensive							
Practical: 02hrs/week	01	Evaluation: -							
Provoquisito Courses if any:		Termwork: 50Marks							

Prerequisite Courses, if any: ----

Course Objectives:

1. To highlight the need to improve soft skills among engineering students so as to become good professionals.

2. To facilitate a holistic development of students by enhancing soft skills.

3. To develop and nurture the soft skills of the students through individual and group activities.

4. To expose students to right attitudinal and behavioural aspects and assist in building the same through activities.

Course Out	tcomes: On completion of the course, students will be able to-				
	Course Outcomes	Bloom's Level			
C01	Develop effective communication skills including Listening, Reading, Writing and Speaking	3-Apply			
CO2	Practice professional etiquette and present oneself confidently.	3-Apply			
CO3	CO3 Function effectively in heterogeneous teams through the knowledge of team work, Inter-personal relationships, conflict management and leadership quality.				
CO4	Use Time management and Stress management skills.	4-Evaluate			
CO5	Constructively participate in group discussion, meetings and prepare and deliver Presentations.	4-Evaluate			
	Text Books				
Personal 2. Simon Sv	a Singh Chauhan, Sangeeta Sharma, "Soft Skills – An Integrated Approach lity", Wiley India, ISBN:13:9788126556397 veeney, "English for Business Communication", Cambridge University Pr 521754507				

Reference Books

1. Indrajit Bhattacharya, "An Approach to Communication Skills", Delhi, Dhanpat Rai, 2008

2. Sanjay Kumar and Pushpa Lata, "Communication Skills", Oxford University Press, ISBN 10:9780199457069

3. Business Communication & Soft Skills, McGraw Hill Education.

4. Atkinson and Hilgard, "Introduction to Psychology", 14th Edition, Geoffrey Loftus, ISBN-10:0155050699, 2003.

5. Kenneth G. Mcgee, "Heads Up: How to Anticipate Business Surprises & Seize Opportunities First", Harvard Business School Press, Boston, Massachusetts, 2004, ISBN 10:1591392993

6. Krishnaswami, N. and Sriraman T., "Creative English for Communication," Macmillan

Strength of CO-PO Mapping												
	РО											
	1	2	3	4	5	6	7	8	9	10	11	12

CO1	-	-	-	-	-	-	-	-	3	3	-	-
CO2	-	-	-	-	-	-	-	-	3	3	-	-
CO3	-	-	-	-	-	-	-	-	3	3	-	-
CO4	-	-	-	-	-	-	-	-	3	3	-	-
CO5	-	-	-	-	-	-	-	-	3	3	-	-

	COURSE (CONTEN	TS						
Unit I	Communication Skills	(4 hrs)	COs Mapped- CO1, CO2, CO5						
Importance of communication, Barriers in communication and how to overcome these barriers, Significance of non-verbal messages as augmentation to verbal communication, Group Discussion, Listening Vs Hearing, Reading to comprehend, Learning to skim and scan to extract relevant information									
Unit II	Unit IITeam building and Team work(2 hrs)COs Mapped- CO3, CO5								
Team building, Team Work, Skills needed for Team Work, Aspects of Team building, Model of Team building, Role of a Team leader, Intergroup collaboration									
Unit III	Etiquettes and manners	(2 hrs)	COs Mapped- CO2						
Corporate g	grooming and dressing, Email and Telepho	one etique	ttes, Etiquettes in social and office setting						
Unit IV	Time management	(2 hrs)	COs Mapped- CO4						
	The 80-20 rule, Features of time, Time management matrix, Successful time management, Difficulties in time management, Time wasters, Time savers								
Unit V	Stress management	(2 hrs)	COs Mapped- CO4						
<i>,</i>	Stress, Eustress, Distress, Effects of stress, Kinds of stress, Sources of stress, Behaviour identified with stress, Signs of stress								

		List of Laboratory Experiments					
Sr. No.	L	Laboratory Experiments / Assignments					
1	Phonetics & Vocabulary building activity	To have discussion on phonetic chart by International Phonetic Alphabet (IPA). Vocabulary development methods should be discussed. Every student should maintain a daily record of minimum 2 (or maximum 5) unknown words, across which they have come. Students should use these words in their communication. This activity should be continued during the entire semester.	CO1				
2	Story telling	Every student will get 5 minutes, to share a fictional or real life story.	CO1,CO2				
3	Group activity/Teamwork activity	The batch will be divided into groups of 4-5 students. For each group same activity (like preparation of drama, skit,play etc.) will be assigned. Maximum 30 minutes should be given to each group,simultaneously, to plan the activity. After 30 minutes, every group will get 10 minutes to present their work. At the end, there will be discussion between teacher and students, about things necessary for successful Teamwork, problems faced by students during teamwork etc.	C01,C03,C05				
4	Presentation Skills	Every student will have to choose a topic of his/her choice and make a 10-minute presentation using audio-video aids / PPT. Every student will make presentation on either	CO1,CO2				

		technical or non-technical topic. Focus and evaluation of each presentation should be the depth of knowledge about the topic, originality of perspective on the topic, well- researched or not, verbal and non-verbal skills and ability to answer questions effectively.	
5	Group Discussion	The batch will be divided into groups of 6-7 students for a discussion lasting 15 minutes. Topics should be provided by teachers. After each group finishes its discussion, the teacher will give critical feedback including areas of improvement. The teacher should act as a moderator / observer only	C01,C03,C05
6	Reviewing an Editorial article	Either by using e-paper / printed copy, students have to select a recent editorial (that is non-controversial), read it and explain to the audience what the editor's perspective is and what the student's perspective is. (10 minutes for each student to share author's perspective and their own perspective.)	C01,C02
7	Listening Skills	Listening Worksheets will be distributed among students. Each student will be given specifically designed worksheets that contain blanks / matching / MCQs that are designed to an audio (chosen by the faculty). Students have to listen to the audio (only once) and complete the worksheet as the audio plays. This will help reiterate active listening as well as deriving information (listening to information between the lines)	CO1,CO2
8	Time Management	Use Pomodoro Technique. Write your experience about it. (Self study)	CO1,CO4
9	Stress Management	Discuss stress management. Ask students about, What do they do to relieve stress?	CO1,CO4
10	Swayam/NPTEL course	Every student should complete at least one Swayam / NPTEL course on Soft Skills or Personality development.	CO1,CO2,CO3, CO4,CO5

Guidelines for Laboratory Conduction

The teacher may design specific assignments that can highlight the learning outcomes of each unit. Each activity conducted in the lab should begin with a brief introduction of the topic, purpose of the activity from a professional point of view and end with the learning outcomes as feedback from students. Most of the lab sessions can be designed to be inclusive; allowing students to learn skills experientially; which will benefit them in the professional environment. Every student must be given sufficient opportunity to participate in each activity and constructive feedback from the instructor / facilitator at the end of the activity should learn towards encouraging students to work on improving their skills. Activities should be designed to cater to enhancement of multiple skills – e.g. Team Building Activity can highlight 'open communication', 'group discussion', 'respecting perspectives', 'leadership skills', 'focus on goals' which can help students improve their inherent interpersonal skills.

Guidelines for Student's Lab Journal

Each student should have a Lab Workbook (sample workbook attached) which outlines each lab activity conducted. The student must respond by writing out their learning outcomes and elaborating the activities performed in the lab., group discussion, group exercises and interpersonal skills and similar other activities/assignments.

Guidelines for Term work Assessment

Continuous assessment of laboratory work is to be done based on overall performance and lab assignments and performance of student. Each lab assignment assessment will be assigned grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include- timely completion, performance, punctuality, neatness, enthusiasm, participation and contribution in various activities.