

		S. Y. B. Tech.								
		Semester: III (Mechan	0 0,							
7 1	2305201: Manufacturing Processes Teaching Scheme: Credit Scheme: Examination Scheme:									
Teaching	g Scheme:	Credit Scheme:	Examination Scheme:							
Theory :	03 hrs/week	03	Continuous Com							
			Evaluation: 20Ma							
			In Sem Exam: 20							
			End Sem Exam: (DUMARKS						
Prerequi	isite Courses, if any: - Fun	damentals of Mechanica	l al Engineering - Kr	nowledge of						
_	s and their properties, Stress			-						
cooling,	etc.									
Course (Objectives:									
	escribe the casting process	01		olds, as well as the						
	chniques of melting, molding	-	-							
	plain the basics of metal for	orming processes and sur	mmarize the operati	ons involved in sheet						
	etal forming.									
	scuss the properties and pro									
	escribe the principles and tec									
Course	Dutcomes: On completion of		Il be able to-							
		Course Outcomes		Bloom's Level						
CO1	Identify appropriate manuf			2-Understand						
	consideration and source of		- 1							
CO2	Understand the mechanism	n of metal forming techni	ques and demonstra	te 2-Understand						
CO2	basics operations.			2-Understand						
CO3	Relate the principle of man									
CO4	Understand and Demonstr		0 1	3-Apply						
		COURSE CONTEN	ľ							
Unit I	Casting Processes		(08hrs)	COs Mapped - CO1						
Introduct	tion to casting processes, T	ypes of pattern and Allo	owances, Moulding	sand, Core making,						
Melting	practices and furnaces, Po	uring and Gating system	n design, Riser de	esign and placement						
(Numerio	cal), Cleaning and Finishi	ng of casting, Casting,	Defects and reme	edies, Principle and						
equipmer	nts of Permanent mould cast	ing, Investment casting,	Centrifugal casting,	Continuous casting.						
TL '4 TT	MALE		(071)							
Unit II	hit II Metal Forming Process (07hrs) COs Mapped - CO1, CO2									
Forming	Process, Classification, Ro	lling Process: Friction in	rolling Calculation	,						
-	Forging: Open and closed d	-	-	•						
-	awing, Die profile Friction		• •	-						
	for all forming processes.(N									

Unit III	Sheet Metal Working	(07hrs)	COs Mapped - CO1, CO2
Types of	of sheet metal operations, Press working equipment	and its types, Typ	es of dies, Clearance

analysis, Estimation of cutting forces, Centre of pressure and blank size determination, Design of strip lay-out, Methods of reducing cutting forces, Formability and forming limit diagrams, Spring Back Effect.

Unit	Introduction to Polymer Processing	(07hrs)	COs Mapped -		
IV			CO1, CO3		

Introduction to Polymer (Plastic and Rubber), Classification of Polymer, Thermoplastic and Thermosetting Plastic Manufacturing Process: Compression moulding, Transfer moulding, Blow moulding, Centrifugal moulding, Injection moulding Extrusion, Pressure Forming and Vacuum Forming.

Unit V	Additive Manufacturing	(07hrs)	COs Mapped -
			CO1,CO4

Introduction, classification of Rapid Prototyping Processes, Working principle, features, models & specification of process, application, advantages and disadvantages, Rapid Tooling and STL format.

Text Books

1. P. N. Rao, "Manufacturing Technology Vol. I & II", Tata McGraw Hill Publishers

2. S. K. Hajra Choudhary, A. K. Hajra Choudhary, Nirjhar Roy, "Elements of Workshop Technology", Volume I, Media Promoters and Publisher Pvt, Ltd.

3. P. C. Sharma, "Production Engineering", Khanna Publishers

Reference Books

1. R. K. Jain, "Production Technology", Khanna Publishers

2. K. C. Chawala, "Composite Materials", Springer, ISBN 978-0387743646, ISBN 978-0387743653

Brent Strong, "Fundamentals of Composites Manufacturing: Materials, Methods", SME Book series.
 Ian Gibson, David W. Rosen, Brent Stucker, Additive Manufacturing Technologies: Rapid

Prototyping to Direct Digital Manufacturing, Springer

	Strength of CO-PO Mapping													
									PC)				
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3	2	2	-	-	-	2	-	-	-	-	2	2	-
CO2	3	2	3	-	-	-	2	-	-	-	-	2	2	-
CO3	2	-	-	-	2	-	-	2	-	-	-	2	1	-
CO4	3	-	-	-	2	-	-	-	-	-	-	2	1	-
Average	3	2	3	-	2	-	2	2	-	-	-	2	2	-

	Guidelines for Continuous Comprehensive Evaluation of Theory Course								
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation Marks Allotted								
1	Assignments on each Unit	10							
2	Online or Offline Test	10							
	Total	20							

	D. //	S. Y. B. Tech.				
		Semester: III (Mechan 2: Engineering Thermo	e e ,			
Teachin	g Scheme:	Credit Scheme:	Examination Sche	eme:		
Theory :	:03 hrs/week	03	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks			
Prerequis	site Courses, if any: -Engine	eering Mathematics I and	III, Engineering Phy	vsics, Calculus		
Course	Objectives:					
• To	introduce laws of thermody	namics				
• To	introduce the concept of er	tropy and availability				
• To	o cover fluid properties and v	apour cycles.				
• To	introduce first law analysis	of refrigeration systems	and Psychrometry			
• To	introduce first law analysis	of Air Compressor and	Steam Generators			
Course	Outcomes: On completion o		ll be able to–			
		Course Outcomes		Bloom's Level		
CO1	Apply the concepts of Firs Systems	t Law of Thermodynami	cs for Steady Flow	3-Apply		
CO2	Apply the concepts of Entrol closed system	ropy and Availability for	analysis of open and	d 3-Apply		
CO3	Estimation of steam prope	erties and application of f	irst law to power	3-Apply		
CO4	Estimate performance of r Psychrometry	efrigeration system and u	understand	3-Apply		
CO5	Apply the concepts of Firs and Steam Generators	t Law of Thermodynami	cs for Air Compress	or 3-Apply		
		COURSE CONTENT	TS			
Unit I	Laws of Thermodynamic	5	(08hrs)	COs Mapped - CO1		
	v of Thermodynamics: Con ermodynamics, Equivalence (SFEE)	-	•			
	Law of Thermodynamics: w of Thermodynamics; PMN		•			
Unit II	Entropy and Availability		(07hrs)	COs Mapped - CO1, CO2		

Entropy: Entropy as a property, Clausius Inequality, Principle of increase of Entropy Principle, Entropy

changes for an Open and Closed System, Change of Entropy for an ideal gas and Pure Substance, Concept of Entropy generation. Entropy - a measure of Disorder.

Availability: Available and Unavailable Energy, Concept of Availability, Availability of heat source at constant temperature and variable temperature, Availability of non-flow and steady-flow Systems.

Unit	Properties of Working Fluid andVapour Power	(07hrs)	COs Mapped -
III	Cycle		CO1, CO2,CO3

Ideal Gas properties

Ideal Gas definition, Gas Laws: Boyle's law, Charle's law, Avagadro's Law, Equation of State, Ideal Gas constant and Universal Gas constant, Ideal gas Processes- on P-v and T-s diagrams, Constant Pressure, Constant Volume, Isothermal, Adiabatic, Polytropic, Throttling Processes (Open and Closed systems), Calculations of Heat transfer, Work done, Internal Energy, Entropy.

Properties of Pure substances: Formation of steam, Phase changes, Properties of steam, Use of Steam Tables, Study of P-v, T-s and h-s plots (Mollier Chart) for steam, Dryness fraction and its determination, Study of steam calorimeters (Barrel, Separating, Throttling and combined) Non-flow and Steady flow Vapour Processes, Change of Properties, Work and Heat transfer.

Vapour Power Cycle: Thermodynamic Cycle: Carnot Cycle, Rankine Cycle, Comparison of Carnot cycle and Rankine cycle.

Unit	First Law Analysis of Refrigeration System	(07hrs)	COs Mapped -
IV	and Psychrometry		CO1, CO4

Refrigeration System: Schematic of mechanical refrigeration system, SFEE of components of refrigeration system, Thermodynamic Refrigeration Cycle representation of vapour compression cycle (VCC) on T-s and P-h diagram, Performance Analysis of VCC

Psychrometry: Introduction, Psychrometry and Psychrometric Properties, Basic Terminologies & Psychrometric Relations, Psychrometric Processes, Psychrometric Chart.

Unit V	Air Compressor and Steam Generators	(07hrs)	COs Mapped -	
			CO1,CO5	

Reciprocating Compressor: Applications of compressed air, single stage compressor (without clearance and with clearance volume), volumetric efficiency, isothermal efficiency, effect of clearance volume, free air delivery (FAD), actual indicator diagram for air compressor, Multi staging of compressor, optimum intermediate pressure, intercooler, after cooler, Capacity control of compressors.

Steam Generators: Classification, Constructional details of low pressure boilers, Boiler mountings and accessories, Instrumentations required for safe and efficient operation, Introduction to IBR Act

Text Books

P. K. Nag, Engineering Thermodynamics, Tata McGraw Hill Publications

C.P. Arora: Engineering Thermodynamics, Tata McGraw Hill.

Reference Books

Y. Cengel & Boles: Thermodynamics – An Engineering Approach,

P. L Ballaney: Thermal Engineering, Khanna Publishers

S. Domkundwar, C. P. Kothandaraman, and Domkundwar, Thermal Engineering, Dhanpatrai Publishers.

	Strength of CO-PO Mapping											
						P	0					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	2	2	-	-	-	-	2	-	-	2
CO2	3	2	2	2	-	-	-	-	2	-	-	2
CO3	3	2	2	2	-	-	-	-	2	-	-	2
CO4	3	2	2	2	-	-	-	-	2	-	-	2
CO5	3	2	2	-	-	-	2		2			2
Average	3	2	2	2	-	-	2	-	2	-	-	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course							
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted						
1	Assignments on Unit-1, Unit-2, Unit-3, Unit-4 & Unit-5	10						
2	Online or Offline Test on Each Unit	10						
	Total	20						

		S. Y. B. Tech.			
		Semester: III (Mechan 5203: Mechanism and M			
Teachin	g Scheme:	Credit Scheme:	Examination Sch	eme:	
	:03 hrs/week	03	Continuous Com		
Theory	.05 III 5/ WCCK	05	Evaluation: 20 Marks		
			InSem Exam: 20 Marks		
			EndSem Exam:	60 Marks	
Prerequ	isite Courses, if any: -Fund	amentals of Mechanical l	Engineering, Engine	eering Mechanics,	
Engineer	ring Mathematics I & II, Eng	gineering physics			
Course	Objectives:				
To make	e the students conversant w	with kinematic analysis of	of mechanisms app	lied to real life and	
	l applications.				
	lop the competency to analy	ze the velocity and acce	leration in mechani	isms using analytical	
	hical approach.			1 1 1 1 1 1 1	
	lop the skill to propose a	nd synthesize the mech	anisms using grap	hical and analytical	
technique		anatan de Georgia de Grand	similar of soon these	m to design menious	
applicati	lop the competency to unde	erstand & apply the prin	cipies of gear theo	ry to design various	
	ons. op the competency to design	a cam profile for variou	s follower motions		
	Outcomes: On completion of	-			
		Course Outcomes		Bloom's Level	
CO1	IDENTIFY mechanisms	in real life applications		2-Understand	
CO2	CALCULATE velocity	and acceleration in mech	anisms by analytica	l 2 Apply	
02	and graphical method			3-Apply	
CO3	CONSTRUCT a four ba	r mechanism with analyti	cal and graphical	3-Apply	
005	methods			5 mppiy	
CO4	APPLY fundamentals of	gear theory as a prerequi	site for gear design	3-Apply	
CO5	CONSTRUCT cam prof	ile for given follower mo	tion	3-Apply	
		COURSE CONTENT	'S		
Unit I	Fundamentals of Mechan	isms	(08 hrs)	COs Mapped -	
l				CO1	
	on, Mechanism and machin				
	, Classification of kinemati	=	-	isms, Grashoff's law	
Kinematic	e inversion, Inversions of slid	der crank chain, Double s	lider-crank chain		
Unit II	Kinematic Analysis of Pla	anar Mechanisms	(07 hrs)	COs Mapped -	
~			(******)	CO1, CO2	
	ic analysis of slider crank of Four-Bar and Slider c			ity and acceleration	

Kinematic analysis of slider crank Mechanism by analytical method, Velocity and acceleration analysis of Four-Bar and Slider crank mechanisms using Complex Algebra Method. Graphical method for the velocity and acceleration analysis of four bar, slider crank and other single degree of freedom mechanisms by relative velocity method and ICR method.

Unit	Synthesis of Mechanisms	(07 hrs)	COs Mapped -						
III			CO1, CO3						
	Synthesis: Type synthesis, Number Synthesis, Dim								
-	s - Path, function and motion generation (Body guid	dance), Precision	Positions, Chebychev						
1 0	Mechanical and structural errors								
-	al Synthesis: Inversion and relative pole method for	three position synt	hesis of Four-Bar and						
U	lider Crank Mechanisms								
Analytical Synthesis: Three position synthesis of Four-Bar mechanism using Freudenstein's equation									
Unit	Gears and Gear trains	(07 hrs)	COs Mapped -						
IV			CO1, CO4						
	ation, Terminology, Law of Gearing, Interference an	d methods to avoi	d interference in spur						
-	mple, compound, reverted and Epicyclic gear trains.								
Unit V	Cam and Follower	(07 hrs)	COs Mapped -						
			CO1, CO5						
Classifica	ation of Followers and Cams, Terminology of Cam, I	Displacement diag	ram for the Motion of						
follower a	s Uniform velocity, Simple Harmonic Motion (SHM)), Uniform Acceler	ration and Retardation						
Motion (UARM), Cycloid motion, Cam Profile construction	n for Knife-edge	Follower and Roller						
Follower,	Cam jump Phenomenon								
	Text Books								
1. S. S. F	Rattan, "Theory of Machines", Third Edition, McGrav	v Hill Education (I	ndia) Pvt. Ltd., New						
Delhi.		× ×	,						
2. Bevan	T, "Theory of Machines", Third Edition, Longman P	ublication							
	bekar, "Mechanism and Machine Theory", PHI								
	icker, G. R. Pennock, J. E. Shigley, "Theory of Mach	ines and Mechanis	ms", Fifth Edition,						
	onal Student Edition, Oxford								
	Reference Books								
1.Paul E	. Sandin, "Robot Mechanisms and Mechanical Device	es Illustrated", Tata	a McGraw Hill						
Publicati		,							
2. Stephe	en J. Derby, "Design of Automatic Machinery", 2005,	Marcel Dekker, N	lew York						
-	clater, "Mechanisms and Mechanical Devices Source								
Publicati	-	,	,						
	Malik, "Theory of Mechanism and Machines", East-	West Pvt. Ltd.							
	h and Stephans, "Mechanics of Machines", Edward A		1						
	Norton, "Kinematics and Dynamics of Machinery", Fi								
	Ltd. New Delhi	,							
. ,	Singh, "Theory of Machines", Pearson								
	P. Singh, "Theory of Machine", Dhanpatrai and Sons	5							
	9. C. S. Sharma & Kamlesh Purohit, "Theory of Machine and Mechanism", PHI								
~ ~		,							
	Strength of CO-PO Mapp	oing							
	PO	0							

	Strength of CO-PO Mapping											
		РО										
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	2	2	1	-	-	-	2	-	-	1
CO2	3	3	2	2	-	-	-	-	2	-	-	1
CO3	3	2	-	2	1	-	-	-	1	-	-	1

CO4	3	3	2	2	-	-	-	-	1	-	-	2
CO5	3	2	2	2	1	-	-	-	2	-	-	2
Average	3	3	2	2	1	-	-	-	2	-	-	1

(Components for Continuous Comprehensive Evaluation of Theory Course									
Sr. No.	Components for Continuous Comprehensive Evaluation Marks Allotted									
1	Assignments on Unit-1, Unit-2, Unit-3, Unit-4, Unit-5	10								
2	Online or Offline Test on Each Unit	10								
	Total	20								

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

		S. Y. B. Tech.							
	Pattern 2023 Semester: III (Mechanical Engineering)								
		4: Mechanism and Ma	1						
Teaching		Credit Scheme:	Examination Schem	ne:					
Practical : 02 hrs/week 01 Termwork: 25Marks Oral: 25Marks Oral: 25Marks									
-	site Courses, if any: - Fund		Engineering, Engineer	ring Mechanics,					
_	ng Mathematics I & II, Eng	gineering physics							
Course O	•								
	the students conversant w	vith kinematic analysis	of mechanisms applie	ed to real life and					
	applications.	va the velocity and acce	eleration in mechanism	as using analytical					
	p the competency to analy ical approach.	ze the velocity and acco		is using analytical					
	op the skill to propose a	nd synthesize the med	nanisms using granhi	cal and analytical					
technique.		ing synthesize the meet	and graphic	car and analytical					
-	op the competency to unde	erstand & apply the prin	nciples of gear theory	to design various					
application			1 0 51 j	6					
To develo	p the competency to design	a cam profile for variou	s follower motions.						
Course O	utcomes: On completion of	of the course, students wi	ll be able to-						
	Bloom's Level								
CO1	IDENTIFY mechanisms		2-Understand						
CO2	CALCULATE velocity	3-Apply							
	and graphical method								
CO3	CONSTRUCT a four bar methods	r mechanism with analyt	ical and graphical	3-Apply					
CO4	APPLY fundamentals of	gear theory as a prerequ	isite for gear design	3-Apply					
CO5	CONSTRUCT cam prof	ile for given follower mo	otion	3-Apply					
G N		boratory Experiments							
Sr. No.	Laborato	ory Experiments / Assig	nments	CO Mapped					
1	To make a model of any give a presentation using		of 4 students and to	CO1					
2	Identify mechanisms in rulinks, pairs, obtain degree		ypes and number of	CO1					
3	Velocity and acceleration acceleration method.	analysis using relative v	velocity and	CO1, CO2					
4	Velocity analysis using the	ne ICR method.		CO1, CO2					
5	Kinematic Analysis of Sl			CO1, CO2					
	Method by using any suitable programming language. Cont, Cont To synthesize the four bar and slider crank mechanism using relative Cont, Cont								
6	pole and inversion metho		-	CO1, CO3					
7	To study manufacturing of	of gear using gear genera	tion with rack as a	CO1, CO4					

	cutter and to generate an involute profile.					
8	To determine holding torque for Epicyclic gear train	CO1, CO4				
9	To draw cam profile for various follower motion with radial and off-set cam and manufacturing by using laser cutting machine	CO1, CO5				
10	To study and verify cam jump phenomenon.	CO1, CO5				

Guidelines for Laboratory Conduction

1. Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.

2. Apparatus and equipment's required for the allotted experiment will be provided by the lab assistants using SOP.

3. Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant.

4. After performing the experiment students will check their readings, calculations from the teacher.

5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, and diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Term work Assessment

1. Each experiment from lab journal is assessed for thirty marks based on three rubrics.

2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

Text Books

1. S. S. Rattan, "Theory of Machines", Third Edition, McGraw Hill Education (India) Pvt. Ltd., New Delhi.

2. Bevan T, "Theory of Machines", Third Edition, Longman Publication

3. G. Ambekar, "Mechanism and Machine Theory", PHI

4. J. J. Uicker, G. R. Pennock, J. E. Shigley, "Theory of Machines and Mechanisms", Fifth Edition, International Student Edition, Oxford

Reference Books

1.Paul E. Sandin, "Robot Mechanisms and Mechanical Devices Illustrated", Tata McGraw Hill Publication

2. Stephen J. Derby, "Design of Automatic Machinery", 2005, Marcel Dekker, New York

3. Neil Sclater, "Mechanisms and Mechanical Devices Sourcebook", Fifth Edition, Tata McGraw Hill

Publication 4. Ghosh Malik, "Theory of Mechanism and Machines", East-West Pvt. Ltd.

5. Hannah and Stephans, "Mechanics of Machines", Edward Arnolde Publication

6. R. L. Norton, "Kinematics and Dynamics of Machinery", First Edition, McGraw Hill Education (India) P Ltd. New Delhi

7. Sadhu Singh, "Theory of Machines", Pearson

8. Dr. V. P. Singh, "Theory of Machine", Dhanpatrai and Sons

9. C. S. Sharma & Kamlesh Purohit, "Theory of Machine and Mechanism", PHI

		PO										
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	2	2	1	-	-	-	2	-	-	1
CO2	3	3	2	2	-	-	-	-	2	-	-	1
CO3	3	2	-	2	1	-	-	-	1	-	-	1
CO4	3	3	2	2	-	-	-	-	1	-	-	2
CO5	3	2	2	2	1	-	-	-	2	-	-	2
Average	3	3	2	2	1	-	-	-	2	-	-	1

S. Y. B. Tech. Pattern 2023 Semester: III (Mechanical Engineering) 2305205 : Material Testing and Measurement Laboratory

Teaching Scheme:	Credit Scheme:	Examination Scheme:	
Practical: 04 hrs / week	02	Term Work: 50 Marks	
Practical: 04 IIIS / week	02	Oral: 50 Marks	

Prerequisite Courses: - Fundamentals of Mechanical Engineering, Basics of linear measurement, Physics, Applied Chemistry.

Course Objectives:

- Develop hands-on proficiency in operating Brinell and Vickers hardness testing machines to accurately measure and assess material hardness.
- Acquire the knowledge and skills to apply Magnetic Particle Inspection Test for flaw detection in materials, ensuring a thorough understanding of the non-destructive testing technique.
- Comprehend the principles of the Iron-Iron Carbide Phase diagram and apply this knowledge to predict and analyze material behavior during different heat treatment processes.
- To develop essential skills for calibrating and testing instruments.
- To apply basics of measurement methods through the gathering of data, analysis, and interpretation and expertise in designing limiting gauges.

	Course Outcomes	Bloom's Level					
CO1	Selection of measurement methods and standards, carryout data collection and its analysis.	2-Understanding					
CO2	Determine limits, fits, tolerances, geometric tolerances and Design of Gauges.	3- Apply					
CO3	Demonstrate proficiency in performing hardness measurements using both Brinell and Vickers hardness testing machines.3- Apply						
CO4	Understand the principles of the Iron-Iron Carbide Phase diagram and its application in predicting material behavior during heat treatment 3- Apply processes.						
CO5	Apply non-destructive testing techniques, specifically the Magnetic Particle Inspection Test, for flaw detection in materials.	3- Apply					
CO6	Develop practical skills in optical metallurgical microscopy, specimen preparation, and microstructure examination for accurate material characterization.	4- Analyze					

The student shall complete the following activity as a Term Work,

- 1. Hardness measurement on Brinell hardness testing machineand Vickers hardness testing machine.
- 2. Non Destructive Testing (Magnetic Particle Inspection Test).
- 3. Study of Iron-Iron Carbide Phase diagram.
- 4. Specimen preparation for microscopic Examination.
- 5. Microstructure examination of plain carbon steels and Cast Iron.
- 6. Heat Treatment of plain carbon steel and determination of hardness (Annealing, Normalizing,

Hardening)

- 7. Demonstrate and compute linear and angular measurements employing tools such as Vernier Caliper, Screw Gauge, Dial Gauge, Height Gauge, Bevel Protector, etc.
- 8. Determine Parameters of screw thread using floating carriage micrometer.
- 9. Determine the geometry and dimensions of a given composite object or a single-point tool using an Optical Projector or Tool Maker's Microscope. Evaluate and distinguish its practical utility in real-life applications.
- 10. Measurement of the any one characteristics from the following using any suitable measurement system,
 - a. Surface roughness
 - b. Gear tooth Parameter
 - c. Verification of composite geometry.
- 11. Limit Gauges: Concepts, uses and applications of Go –No Go Gauges, Taylor's principle and Design of gauges (Numerical and student activity)
- 12. Industry visit for Heat Treatment Plant and advanced in measurement to provide exposure to students.

Text Books

- 1. Dr. V. D. Kodgire & S. V. Kodgire, "Material Science & Metallurgy For Engineers", Everest Publication.
- 2. William D. Callister, "Materials Science and Engineering an Introduction", Jr, John Wiley & Sons, Inc.
- 3. Jain R.K., Engineering Metrology, Khanna Publication.
- 4. I.C.Gupta, Engineering Metrology, Dhanpath Rai.
- 5. Bewoor A. K. and Kulkarni V. A., Metrology and Measurements, McGraw hill Publication.

Reference Books

- 1. Raghvan V., "Material Science & Engineering", Prentice Hall of India, New Delhi. 2003
- 2. Avner, S.H., "Introduction to Physical Metallurgy", Tata McGraw-Hill, 1997.
- 3. Higgins R. A., "Engineering Metallurgy", Viva books Pvt. Ltd.
- 4. George Ellwood Dieter, "Mechanical Metallurgy", McGraw-Hill 1988
- 5. Smith, W.F, Hashemi, J., and Prakash, R., "Materials Science and Engineering in SI Units", TataMcGraw Hill Education Pvt. Ltd.
- 6. Narayana K.L., Engineering Metrology.
- 7. Galyer J.F & Shotbolt C.R., Metrology for engineers
- 8. Judge A.W., Engineering Precision Measurements, Chapman and Hall
- 9. ASTME, Handbook of Industrial Metrology, Prentice Hall of India Ltd.
- 10. Connie Dotson, Fundamentals of Dimensional Metrology, ThamsonPubln. 4th Edition.

Codes / Handbooks

Francis T. Farago, Mark A. Curtis, Handbook of dimensional measurement

E- resources

- 1. nptel.ac.in/courses/112106179
- $2. \ \underline{www.nptelvideos.in/2012/12/mechanical-measurements-and-metrology.html}$
- 3. https://nptel.ac.in/courses/112/107/112107242/
- 4. freevideolectures.com > Mechanical > IIT Madras
- 5. https://nptel.ac.in/courses/112/106/112106139/
- 6. <u>https://archive.nptel.ac.in/courses/112/106/112106175/#</u>
- 7. https://archive.nptel.ac.in/courses/112/106/112106300/

		Strength of CO-PO/PSO Mapping												
		PO PSO												
Strength of CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	2	-	3	-	-	-	-	2	2	1	2	2	1
CO 2	3	2	-	3	3	-	-	-	2	2	1	2	2	1
CO 3	3	2	-	3	2	-	-	-	2	2	1	2	2	2
CO 4	3	2	-	3	2	-	-	2	2	2	1	2	2	2
CO 5	3	2	3	3	2	-	-	3	2	2	1	2	2	2
CO 6	3	2	-	-	2	-	-	2	2	2	1	2	2	2

Gui	Guidelines for Teamwork Assessment								
	Continuous Assessment Policy								
(Term work marks of 25 will be awarded based on the following policy)									
Each laboratory assignment wil	l be assessed f	For 30 Marks according to the following rubrics:							
R1- Timely completion of assig	nments (10 M	larks)							
R2- Understanding of assignme	ent (10 Marks)								
R3 – Presentation/Clarity of jou	rnal writing (10 Marks)							
For all 10 Experiments, total man	rks of 300 will	be converted into 25 Marks.							
Description	Weightage	Evaluation criteria							
R1-Timely completion of	10 Marks	Each experiment/assignment will get 10 marks							
assignments		for timely submission.							
		Late submission will be valued as 5 in totality.							
		Failure to submit will be valued as 0 in totality							
R2- Understanding of	10 Marks	Understanding of assignments is based on oral							
assignment.		questions based on assignment.							
R3 – Presentation/Clarity of	10 Marks	Completed sheet with proper dimensioning, line							
Drawing Sheets		work carries 10 marks.							

		S. Y. B. Tech.			
		emester: III (Mechanic 6: Energy Systems for N	0	ing)	
Teaching		Credit Scheme	Examinat	ion Scł	ieme
Theory :03 hrs/week03Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks					nrks Aarks
Prerequi	site Courses, if any: Engir	eering Thermodynami	ics, Basic M	athema	itics
To unders	Dbjectives: stand basics of IC Engines a	•	•		
appropria . To unders	ate various performance the emission control technological stand components and technological stand the basics of Fuel cell	ogies in SI and CI engine nologies used in electric	es and hybrid e	lectric v	
Course C	Dutcomes: On completion of	of the course, students wi	ill be able to-		
		Course Outcomes			Bloom's Level
CO1	Explain basics of IC engin	nes and Analyze air stan	dard cycles		2-Understand, 4- Analyze
CO2	Compare combustion and technologies in SI and CI parameters of engines				2-Understand, 3- Apply
CO3	Understand and Compar engine technologies based		combustion		2-Understand
CO4	Understand the basics of kinetics and understand c	•		on	2-Understand
		COURSE CONTENTS			
Unit I	Introduction to Engines		(06 hrs)	COs	Mapped – CO1
	F IC engines, Working of cle (Numericals)	engines, Analysis of A	ir standard	cycles,	Fuel air cycles,
Unit II	Combustion and Emissio	on control in Engines	(08 hrs)	COs	Mapped - CO2
in SI and HCCI, Stra Emission standards),	on: Combustion in SI and C CI engines, advanced te atified charge, CRI, Turbock Control: Pollutants, Phen Emission control technolo Hydrogen, Fuel additives	chnologies for improvin harging) comenon of formation,	ng combusti Emission ne	on proc orms (H	ess (MPFI, GDI, Bharat and Euro
	Engine Systems and Test		(08 hrs)		Mapped – CO2
Testing of	stems: Fuel supply, Ignition engines: Performance para es(Numericals)			-	

Unit IV Electric and Hybrid Electric Vehicles	(08 hrs)	COs Mapped – CO3
---	----------	------------------

Electric Vehicles: Performance of Electric Vehicles, Motors, Traction Motor Characteristics and comparison with engines performance characteristics, Batteries, Battery sizing calculation, Battery management, Effect on carbon emissions

Hybrid Vehicles: Series Hybrid Electric Drive Trains, Parallel Hybrid Electric Drive Trains, TorqueCoupling, Speed Coupling, Combined Torque and Speed Coupling in Parallel Hybrid Drive Trains

Unit VFuel cell Technology and Regenerative Braking(06 hrs)COs Mapped -CO4Fuel cells:Operating Principle, Electrode Potential and current voltage curve, Fuel cell
thermodynamics, Fuel cell reaction kinetics, Fuel cell technologies (Types of Fuel cell), Fuel cell
Hybrid Vehicle Drive train technology, Hydrogen fuel cell, Hydrogen Production and Storage.Regenerative braking:Energy consumption in braking, Brake System of EVs and HEVs (Series
Brake : Optimal Energy Recovery, Parallel Brake)

Text Books

- 1. IC Engines (Combustion and Emissions) by B. P. Pundir, Narosa Publications
- 2. Internal combustion engine by Mathur M. L. and Sharma R. P., DhanpatRai publications
- 3. Internal combustion engines by V. Ganesan, Tata McGraw Hill
- Modern Electric, Hybrid electric and Fuel cell Vehicles, Ehsani M., Gao Y., Gay S., Emadi A., CRC Press
- 5. Fuel Cell Technology for Vehicles, 2nd Edition, <u>Richard Stobart</u>, SAE

Reference Books

1.Engine Emissions: Pollutant Formation and Advances in Control Technology by B. P. Pundir, Alpha science publication

2.Internal combustion engine Fundamentals by John B. Heywood, McGraw Hill

3.Hybrid Electric Vehicle Design and Control: Intelligent Omnidirectional Hybrids by Y. Xu, J. Yan, H Qian, T lam, McGraw Hill

	Strength of CO-PO Mapping											
							PO					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2	2	-	-	2	2	-	2	-	-	2
CO2	3	3	3	2	-	2	2	-	2	-	-	2
CO3	3	2	2	-	-	2	2	-	2	2	-	2
CO4	3	2	2	-	-	2	2	-	2	2	-	2
Average	3	3	2	2	-	2	2	-	2	2	-	2

(Guidelines for Continuous Comprehensive Evaluation of Theory Course							
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted						
1	One assignment on each unit	10						
2	Online/ Offline Test / Oral Presentation	10						
	Total	20						

S. Y. B. Tech. Pattern 2023 Semester: III (Mechanical Engineering) 2305207: Energy Systems for Mobility Laboratory

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Practical :02 hrs/week	01	Term work: 25 marks Practical Exam: 25 marks

Prerequisite Courses, if any: - Basic Thermodynamics and I. C. Engines

Course Objectives:

To evaluate performance of engines and Compressor

To diagnose engine combustion through emission measurement

To evaluate the performance of refrigeration and Air conditioning system

Use software in analysis of thermal system

Course Outcomes: On completion of the course, students will be able to-

	Course Outcomes	Bloom's Level
CO1	Apply first law of thermodynamics to energy systems	3-Apply
CO2	Evaluate various performance parameters of Energy systems through experimentation and using software	4- Analyze
CO3	Diagnose engine combustion through emission measurement	2-Understand
CO4	Analyze and Compare various systems from energy and environmental perspective	4- Analyze

	List of Laboratory Experiments / Assignments								
Sr. No.	Laboratory Experiments / Assignments	CO Mapped							
1.	Trial on IC engine to determine performance parameters and to draw heat balance sheet at different loads	CO1, CO2							
2.	Trial on engine to study the effect of variable compression ratio	CO4							
3.	Demonstration on Exhaust Gas Analyzer	CO3							
4.	Analysis of Fuel cell system	CO1, CO2							
5.	Analysis of Vapour compression refrigeration system	CO1, CO2							
6.	Analysis of AC system	CO1, CO2							
7.	Trial on Bomb calorimeter to determine calorific value of fuel	CO1, CO2							
8.	Trial on Air compressor to determine performance parameters	CO1, CO2							
9.	Analysis of any thermal system using programming software (Assignment)	CO1, CO2, CO4							
10.	Visit to Automobile Service station	CO1, CO2, CO3, CO4							
11.	Case study on Fuel cell or electric vehicle (Assignment and Presentation)	CO1, CO4							

Guidelines for Laboratory Conduction

1. Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.

2. Apparatus and equipment's required for the allotted experiment will be provided by the lab assistants using SOP.

3. Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant.

4. After performing the experiment students will check their readings, calculations from the teacher.

5. After checking they have to write the conclusion of the final result.

6. Experiment no. 10 and 11 are compulsory and any 06 experiments of experiment no. 1 to 9

Guidelines for Student's Lab Journal

Write-up should include title, aim, setup diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Termwork Assessment

1. Each experiment from lab journal is assessed for thirty marks based on three rubrics.

2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

	Strength of CO-PO Mapping											
		РО										
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	-	-	2	2	-	3	2	2	2
CO2	3	3	3	-	2	2	2	-	3	2	2	2
CO3	3	2	2	-	-	3	3	-	3	2	2	2
CO4	3	3	3	-	-	3	3	-	3	2	2	2
Average	3	2	2	-	2	3	2	-	3	2	2	2

Books to be referred

1. Basic and applied Thermodynamics - P. K. Nag, McGraw Hill Education

- 2. Refrigeration and Air conditioning C P Arora, McGraw Hill Education
- 3. Internal Combustion Engines V. Ganesan, Tata McGraw Hill Education

		S. Y. B. Tech.								
		Semester: III (Mecha								
Teaching		05208: Industrial Mana Credit Scheme:	Examination Sch	eme:						
	02hrs/week	02								
Theory:	021115/WEEK	02	Continuous Comprehensive Evaluation (CCE) : 50Marks							
				<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>						
Prerequis	site Courses, if any: -Introd	luction to Engineering M	lanagement							
		Course Objectives	5							
1. To t	familiarize students with th	0		gement in the context of						
mec	chanical engineering.									
2. To e	develop students' understan	ding of production plann	ing, scheduling, and	l control techniques used						
	ndustrial settings.									
	equip students with knowl		ment systems and to	echniques for enhancing						
_	ductivity and efficiency in r									
Course O	utcomes: On completion o	f the course, students wil	l be able to–							
		Course Outcomes		Bloom's Level						
CO1	To apply industrial manage	ement principles to analy	ze and optimize	3						
	manufacturing processes.									
CO2	To analyze skills in produc		g, and control to	4						
	ensure efficient utilization									
CO3	Illustration of implementin		chniques to improv	e 4						
	product quality and custon		TC							
		COURSE CONTEN	15							
Unit I	Introduction to Indus		(04hrs)	COs Mapped –CO1						
	of Industrial Management (-						
	and Importance of Industria			-						
Unit II	Organiz		(05hrs)	COs Mapped –CO2						
-	onal Structure and Hierarch		ypes, Advantages, I	Limitations), Role of						
	Anagers and Leadership St									
Unit	Job Eval	uation	(05hrs)	COs Mapped –CO3						
III		···· M. (h - h - f : - h 1								
	tion and Wage Plan: Object	•	uation, job evaluatio	on procedure, merit						
_	formance appraisal), method		(05 hma)	COa Mannad CO2						
Unit IV Wage and y	Wage Inc			COs Mapped –CO3						
Wage and wage incentive plans, Introduction, Types, EvolutionUnit VIntroduction to industrial legislation.(05hrs)COs Mapped –CO3										
	n, Objective, Employment	8	(051113)	005 mapped -005						
		Text Books								
1 т.	traduction to Traducture 1		Wayna C. Tar							
I. In	troduction to Industrial and	Systems Engineering" by	y wayne C. Turner,	UKU Press, 2020.						

- 2. Production and Operations Management" by R. B. Khanna, Golden Swan Publications, 2019.
- 3. Total Quality Management: Text, Cases and Readings" by Joel E. Ross, Wiley, 2018.
- **4.** Supply Chain Management: Strategy, Planning, and Operation" by Sunil Chopra and Peter Meindl, Pearson, 2019.

Reference Books

- 1. Operations Management" by Nigel Slack and Alistair Brandon-Jones, Pearson, 2020.
- 2. Lean Thinking: Banish Waste and Create Wealth in Your Corporation" by James P. Womack and Daniel T. Jones, Free Press, 2019.
- 3. Six Sigma for Green Belts and Champions: Foundations, DMAIC, Tools, Cases, and Certification" by Howard S. Gitlow, Wiley, 2021.
- 4. Warehouse Management: A Complete Guide to Improving Efficiency and Minimizing Costs in the Modern Warehouse" by Gwynne Richards, Kogan Page, 2019.

	Strength of CO-PO/PSO Mapping													
Strength]	90						PS	0
of COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	2	-	-	2	-	-	-	-	2	2	2	2
CO 2	3	3	2	-	-	2	-	-	-	-	2	2	2	2
CO 3	3	3	2	-	-	2	-	-	-	-	2	2	2	2
Avg	3	3	2	-	-	2	-	-	-	-	2	2	2	2

	Guidelines for Continuous Comprehensive Evaluationof Theory Course							
Sr. No. Components for Continuous Comprehensive Evaluation Marks Allottee								
1	One Assignments on Unit-1, Unit-2, Unit-3	30						
2	Offline Test	10						
3	Online test	10						
	Total	50						

	Semeste	. Y. B. Tech. Pattern 2023 er: III Mechanical Engir 05209: Professional Ethio	eering					
	Teaching Scheme:	Credit Scheme:		nination	Scheme:			
Tutorial: 02hrs/week02Tutorial: 50 marks								
Prerequ	isite Courses: Communication	skill						
1.To spre 2.To pron 3.To prov	Objectives: ad awareness amongst students note ethics and values amongst s ide openings to get involved in Dutcomes: On completion of th	students used in personal a a group so as to develop to	eam skills and					
COs	Course Outcomes				Bloom's Level			
CO1	Understand basic purpose of p and social issues	rofession, professional eth	ics and variou	us moral				
CO2	Describe professional rights a risk benefit analysis of an Eng	-	Engineer, sa	fety and	2-Understand			
CO3	CO3 Acquire and apply knowledge of various roles of Engineer in applying ethical principles at various professional levels							
	TUTO	DRIAL COURSE CONT	ENT					
Unit I	Introduction to Pro		(4 hrs)	CC	Os Mapped- 01, CO2, CO3			
	on to Professional Ethics, Mor de of Ethics by NSPE	als, Values and Ethics –	Personal and					
Unit II	Business		(5 hrs)	CC	Os Mapped- 01, CO2, CO3			
-	ical approaches to Business ility of Business, conflict of inte		•	ship				
Unit III	Psychological		(5 hrs)	CC	Os Mapped- 01, CO2, CO3			
	eories - Psychological and Philical perspective, ethical dilemm	1 11 7	ths about Mo					
Unit IV	Workplac		(5 hrs)	CC	Os Mapped- 01, CO2, CO3			
Managers	changing domains of Research Ethical issues in Diverse we crimination				0			
Unit V	Unit VSafety, Responsibilities and Rights(5 hrs)COs Mapped- CO1, CO2, CO3							
	Engineering, Economy, Risk ber rate Sustainability, CSR in Indi	•	· · ·	ate socia	l responsibility			
 Nagara Ethics "Profest 	sional Ethics: R. Subramanian, G san. R.S. Professional Ethics ar in Engineering Practice & Rese ssional ethics & human values" private ltd. Delhi, Third Printing	d Human Values. New Ag arch, Caroline Whitbeck, 6 by M. Govindarajan, S. Na	ge Internation Cambridge Ui	niversity	Press 2015.			

Reference Books

1. Engineering Ethics, Concepts Cases: Charles E Harris Jr., Michael S Pritchard, Michael J Rabins, 4e, Cengage learning, 2015.

2. Business Ethics concepts & Cases: Manuel G Velasquez, 6e, PHI, 2008.

	Strength of CO-PO Mapping											
	PO											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1						1		2	2	1		1
CO2							1	2	2	1		1
CO3								2	2	1		1
Aver age						1	1	2	2	1		1

	List of Tutorial Assignments and guidelines for Continuous Comprehensive Evaluation						
Tut. No.	Tutorial Assignments	Marks Allotted	CO Mapped				
1	Assignment No. 1 on Introduction to Professional Ethics	30	CO1, CO2, CO3				
2	Group presentations on Business Ethics	30	CO1, CO2, CO3				
3	Assignment No. 2 Ethical Theories	30	CO1, CO2, CO3				
4	Assignment No. 3 on Workplace Ethics and Safety, Responsibilities and Rights	30	CO1, CO2, CO3				
5	Combined MCQ/Class Test on all Units	30	CO1, CO2, CO3				

Guidelines for Tutorial Conduction

Faculty will explain details about the tutorial activity in short. Students will complete all 5 tutorial assignments as shown in the above section.

Guidelines for Continuous Comprehensive evaluation

Each tutorial assignments will be assessed for 30 Marks according to following rubrics:

R1- Timely completion of assignments (10 Marks)

R2- Understanding of concept/assignment/communication skills (10 Marks)

R3- Presentation/Clarity of activity done (10 Marks)

All five tutorial assignments with total marks of 150 will be converted into 50 Marks

	Pattern 202	S. Y. B. Tech. 3Semester: III Mechani	ical Engineerin		
		2305210:Workshop Pra	0	Ig	
Teachin	g Scheme:	Credit Scheme:		ninatio	n Scheme:
Tutorial	: 01 hrs/week	01	Tutorial :	25Mai	rks
Practica	l : 02 hrs/week	01	Term work :	25Mai	rks
Prerequ	isite Courses, if any: - Wor	kshop Practice (F.Y. B	.Tech)		
Course	Objectives:				
· •	pply the basic knowledge for				
	equire skill to produce a FRF	-			
	cquire skills to handle CN 1ce a job.	IC/VMC, Slotting Macl	hine, surface f	inishing	g machine and to
Course	Dutcomes: On completion of	of the course, students wi	ll be able to-		
		Course Outcomes			Bloom's Level
CO1	Apply the basic knowledg	e for various operation d	one on lathe ma	achine	3-Apply
CO2	Apply the programming for Turning)	Apply the programming for CNC and VMC operation (Facing and			3-Apply
CO3	Development of fiber rein	Development of fiber reinforcement job			
CO4	Make a use of CNC progr turning and milling	am for appropriate mach	ining processes	s like	3-Apply
CO5	Demonstrate machining p manufacturing, indexing, t		0	d	3-Apply
	manufacturing, meexing, t				
T	Latha Mashina Onematian	COURSE CONTEN		(02	CO- Manual
Unit I	Lathe Machine Operation and parting, Gear train use		ng, threading,	(03 hrs)	COs Mapped – CO1,CO5
Unit II	CNC& VMC program	ning (Computer Nume	rical Control	(03	COs Mapped –
0111011	Programming)			hrs)	Co2,CO5
	Type of Codes, Simple software's for develop prog		Programme,		
	· · · ·				1
Unit III	Slotting machine and reciprocating mechanism manufacturing	-		(02h rs)	COs Mapped – CO5
Unit IV	FRP (Fibre-reinforced plass High Grade RESIN, Fibre RESIN, HDPE Material, N Die/mould manufacturing FRP Manufacturing process	glass Materials, Unsatur latural FRP. for FRP process,	ated Polyester	(02h rs)	COs Mapped – CO3
				10.0	
Unit V	Facing operation, Program Drilling and Tapping proce	e		(02h rs)	COs Mapped – CO2,CO4

Thread Pitch, Rotary motion with axial motion mechanism.					
Text Books					
1. A Text Book of Production Technology, P. C. Sharma, S.Chand Publication	18				
2. A Text Book of Manufacturing Technology, R. K. Rajput, Laxmi Publication	ons (p) LTD				
3. A Text book of Manufacturing Technology, Metal Cutting and Machine To	ols, P. N. Rao, Vol. 2, 2nd				
edition, Tata McGraw Hill Publishing Co. Ltd, New Delhi, 2002					
4. Elements of Workshop Technology, Vol-II, S. K. Hajra Chaudhary, Media	Promoters & Publications				
Pvt Ltd.					
5. S. K. Sinha, CNC Programming using Fanuc Custom Macro B, McGraw-H	ill Professional				
Reference Books					
References Books:					
1. Theory of Metal Cutting, M. C. Shaw, 1st Edition, Oxford and I.B.H. publis	shing, 1994				
2. Jigs & Fixtures, P.H. Joshi, Third edition, McGraw Hill, 2017					
3. Production Technology Manufacturing Systems VOL-I & II, R. K. Jain, Kh	anna Publishers				
4. Production Technology –HMT, Tata McGraw Hill publication					
	1000				

5. An Expert Process Planning System, Chang, T. C., Addison Wesley Longman, 1990

6. Process Planning- Design/Manufacture Interface, Scallan P, Butterworth-Heinemann, 2003

7. CNC Machines, B. S. Pabla, M. Adithan, New Age International, 2018

8. Manufacturing Science, Amitabh Ghosh and AshokKumar Mallik, Affiliated East-West Press, 2010

	Strength of CO-PO Mapping											
						Р	0					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	-	-	-	-	2	-	3	3	-	2
CO2	3	3	3	-	3	1	2	3	3	3	-	2
CO3	3	-	2	-	3	-	2	-	3	3	-	2
CO4	3	-	-	-	3	1	2	3	3	3	-	2
CO5	3	-	-	-	1	-	-	-	2	2	-	2
Average	3	2	3	-	3	1	2	3	3	3	-	2

Sr No	Tutorial Assignments	CO Mapped
1	Surface finishing, and Tapping operation by using simple programming	CO5
2	Manufacturing of Fibre-reinforced Composites by hand lay-up process or spray lay- up techniques.	CO3

List of Laboratory Experiments / Assignments					
Sr. No.	Laboratory Experiments	CO Mapped			
1	Various machining operation job on Lathe machine including, Facing, Liner-Taper turning, Threading, Grooving etc.	C01,C05			
2	CNC programming for Lathe and VMC machine for Facing and Turning operation	CO2,CO4			
3	Key way preparation by using slotting machine	CO5			
	Guidelines for Termwork Assessment				

A) Tutorial Assessment : 25 Marks

- 1. After completion of the unit in class room conduct 10 marks LMS Test.
- 2. Maximum 10 questions in test and each question having 02 Marks weight age.
- 3. Total 05 LMS test having 50 Marks
- 4. Final marks for student to be converted into 5 marks.
- 5. Two Assignments 10 Marks each.

Note: If student were absent for test conduct his/her test again through LMS or Offline mode and allot the marks.

B) Term work Assessment: 25 Marks

Term work assessment shall be based on the timely completion of jobs, quality of job, skill acquired, Completion of workshop diary and brief write-ups etc.

Guideline for Term work assessment:

- 1. Each laboratory assignments will be assessed for 30 marks according to following rubrics:
 - a. R1- Timely completion of assignments (10 Marks)
 - b. R2-Understanding of assignments (10 Marks)
 - c. R3- Presentation /Clarity of journal writing (10 Marks)

Example of R1

- i) Decide the date for completion of Job/Assignment, if completion date is 14th date of month and student completed his/her job/assignment then allots the 10 Marks.
- ii) If student check/submit the job/assignment after the same date practical (14th date) and before or at the time of next practical (21st Date of month) then allots 5 marks
- iii) If students submitted or check the job/assignment after above mention date then allot 0 Marks.
- 2. For machining operation/ job preparation allot the R2 based on quality of job and understanding about tool used and its process.
- 3. For all 05 assignment/practical total marks of 150 will be converted into 50 Marks for student (Marks= 150/3)

	23(S.Y.B.Tech. (R&A/Mechanica Pattern2023 Semeste 00201D: <mark>Applied Mat</mark> l	er:IV	
Teaching		Credit Scheme:	Examination Sch	e me:
Theory :()3hrs/week	03	Continuous ComprehensiveEv 20MarksInSem E 20MarksEndSem Marks	xam:
Prerequis	siteCourses:-HigherSeconda	ryMathematics		
Find Lapl Ordinary Recogniz Line, sur Solve bo of variable Find Lapl	t using different Methods. ace transform and Fourier tra D.E. using L.T. ze nature of vector fields, use face & Volume integrals & f oundary value problems for L es. ace transform and Fourier tra D.E. using L.T	e different vector differ its application aplace's equation, heat	rential operators& able	to evaluate quation by separation
CourseO	utcomes:On completion of t	he course, students wil	l be able to–	
		CourseOutcomes		Bloom'sLevel
CO1	Understand basic concept Transform, Statistics, Prol		-	2-Understanding
CO2	Calculate Laplace transfor Derivative, Line Integral a different Methods.			3-Apply
CO3	Apply Probability, Statisti life problems	cal methods and vector	calculus to solve real	
CO4	Calculate Laplace Transfo	rm and solution of LDI	E using MATLAB	3-Apply
	D5 Analyze real life problems by using concepts of LDE, statistics, probability and vector calculus			4-Analyze
CO5	probability and vector calc	ulus		
CO5	probability and vector calc	ulus COURSECONTEN	TS	

Application of LTtosolve LDE.

Fourier Transform (FT): Fourier transform, Fourier Sine &Cosinetransform,InverseFourier Transforms.

UnitII Linear Differential Equations with Constant	(07 hrs)	COs Mapped -
Coefficient		CO1, CO2

LDE of nth order with constant coefficients, Method of variation of parameters, Cauchy's & Legendre's DE,Simultaneous DE.

Unit	Applications of Linear Differential Equations	(07 hrs)	COsMapped
III	& Partial Differential Equations		CO1,CO2,
			CO5

Modeling of Mass-spring systems, Free & Forced Damped and undamped systems.Basic concepts,methodofseparationofvariables,modelingofVibratingString,Waveequation,one- and two-dimensionalHeat flow equations.

Unit	Statistics and Probability	(07 hrs)	COsMapped -
IV			CO1,CO3
			, CO5

Measures of central tendency, Measures of dispersion: Standard deviation, Coefficient of variation, Moments, Skewness and Kurtosis, Correlation and Regression, Curve fitting: fitting of straight line,parabolaandrelatedcurves,CorrelationandRegression,ReliabilityofRegressionEstimates.Probability,P robabilitydistributions: Binomial, Poisson and Normal distributions

UnitV	Vector Calculus	(07 hrs)	COs Mapped -
			CO1,CO3,
			CO5

Vector differentiation, Gradient, Divergence and Curl, Directional derivative, Solenoid and Irrotational fields, Vector identities. Line, Surface and Volume integrals, Green's Lemma, Gauss's Divergence theorem and Stokes theorem.

Text Books

- 1. B. V. Ramana, "Higher Engineering Mathematics", Tata McGraw-Hill.
- 2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publication, Delhi.
- 3. AdvancedEngineeringMathematics,7e,by Peter V. O"Neil (Thomson Learning)

Reference Books

- 1. Erwin Kreyszig," Advanced Engineering Mathematics", Wiley Eastern Ltd.
- 2. P. N. Wartikar and J. N. Wartikar," Applied Mathematics" (Volumes I and II), Pune Vidyarthi Griha Prakashan, Pune.

3. Advanced Engineering Mathematics, 2e, by M. D. Greenberg(Pearson Education).

Strength of CO-PO Mapping

		РО										
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	-	-	-	-	-	-	-	-	-	3
CO2	3	3	-	-	2	-	-	-	-	-	-	3
CO3	3	2	-	2	2	-	-	-	-	-	-	3
CO4	3	2	2	3	2	-	-	-	-	-	-	3
CO5	3	-	-	-	2	-	-	-	-	-	-	3

	Guidelines for Continuous Comprehensive Evaluation of Theory Course								
Sr. No.	r. No. Components for Continuous Comprehensive Evaluation								
1	Tests on each unit using LMS (Each test for 15 M and total will be converted out of 05 M)	05							
2	Problem solving through Computational Software	05							
3	Tutorial (1 tutorial on each unit for 15 marks and total will be converted out of 05 M)	05							
4	Group Presentation on real life problem	05							

	Topics for Tutorial								
Sr. No.	Title	CO Mapped							
1	Examples on transforms	CO1, CO2,CO3							
2	Examples on LDE of nth order with constant coefficients.	CO1, CO2							
3	Examples on Applications of LDE & PDE	CO1,CO2, CO5							
4	Examples on Statistics& Probability distributions.	CO1,CO3, CO5							
5	Examples on Vector Calculus.	CO1,CO3, CO5							

Teaching	g Scheme:	id Mechanics And Ma Credit Scheme:	Examination S	cheme•
	03 hrs/week	03	Continuous Comprehensiv 20MarksInSen 20MarksEndS 60Marks	eEvaluation: n Exam:
Prerequi	isiteCourses,ifany: -			
CourseC	Dutcomes:Oncompletion oft	hecourse, students will be	e ableto–	
		CourseOutcomes		Bloom'sLevel
CO1	Gain fundamental knowled Variousconditionsofintern		sandbehaviorunder	1-Knowledge
CO2	Developunderstandingabo lityof afloating body and a Energyequation in fluid flo	stabi 2-Understand		
CO3	Imbibebasiclawsandequati Fluids.	2-Understand		
CO4	Determine the losses in a flo	ow system,flow through	pipes,	3-Apply
CO5	Demonstrate hydraulic ma	chines.		3-Apply
		COURSECONTEN	TS	I
UnitI	FluidPropertiesand Fluid	lstatics	(08 hrs)	COs Mapped - CO1, CO2
ompressi Fluid stat	s of fluids : Density, specific bility, vapourpressure, capil ics: Concept of fluid static pers, Hydrostaticforces on pla	larityand surface tensio pressure, absolute and g	n. auge pressures. Pre	essure measurements l
	FluidKinematics	nest contro or prosouro,	(07	COsMapped -

Unit	FluidDynamics	(07	COsMapped-
III		hrs)	CO1,CO2,CO3

Fluiddynamics:Equationsofmotion:Navier'sstokesequation,Euler'sequationalongastreamline,Bernoulli's equation, flow measuring devices (venturi meter, orifice meter and Pitot tube).

Unit	Analysisof FlowThroughPipes	(07	COs Mapped -
IV		hrs)	CO1,CO3,CO4

Reynold's experiment, laminar flow through circular pipe (Hagen poiseulle's), hydraulic and energy gradient, flow through pipes, Darcy – Weisbach's equation, friction factor, Moody's diagram, major and minor losses of flow in pipes.

, Boundary layer for external and internal flows, laminar and turbulentboundarylayerdisplacement, energy and momentum thickness, Boundarylayers eparation and cont rol, drag and lift forces.

UnitV Hydraulic Machines	(07	COsMapped-
	hrs)	CO1,CO2,CO5

Rotodynamic machines: Basic equation of energy transfer, definition of impulse and reaction machines, Impact of jets, Classification of turbines and pumps, velocity triangles associated with turbine and pump, heads and efficiencies of turbines and pumps.

TextBooks

- 1. IntroductiontoFluidMechanics- Fox,Pichard,McDonald,Wiley
- 2. FluidMechanics-F.M. White,TATAMcGraw-Hill
- 3. FluidMechanics,-Dr.R.K.Bansal-Laxmi Publication(P) Ltd.NewDelhi
- 4. FluidMechanics,-Cengel&Cimbla,TATAMcGraw-Hill
- $5. \ Hydraulics and Fluid Mechanics-ModiP.N. and Seth S.M, Standard Book House$
- 6. FundamentalsofFluid Mechanics-Munson, YoungandOkiishi,WileyIndia
- 7. FluidMechanics-PotterWiggert,Cengage Learning

ReferenceBooks

1. FluidMechanics-Kundu,Cohen,Dowling,ElsevierIndia

2. FluidMechanics-ChaimGutfingerDavidPnueli,CambridgeUniversitypress.

3.Introduction to Fluid Mechanics- Edward Shaughnessy, Ira Katz James Schaffer, OXFORD

UniversityPress

GuidelinesforContinuousComprehensiveEvaluationofTheoryCourse								
Sr.No.	Components forContinuousComprehensiveEvaluation MarksAllotted							
1	Any Three Assignments on unit-1, Unit-2, Unit-3, Unit-4, Unit-5	10						
2	Online and offline test	10						
	Total	20						

Sr.No.	LaboratoryExperiments/Assignments	COMapped
1	Determinationofpressureusingmanometers (minimumtwo)	CO1,CO2
2	Determination of fluid viscosity and its variation with temperature	CO1
3	DeterminationofMetacentricheightoffloatingobject	CO1,CO2
4	DeterminationofReynoldsnumberandflowvisualizationoflaminarandturbu lentflow usingReynolds apparatus.	CO1,CO3
5	Verificationofmodified Bernoulli'sequation	CO2,CO3
6	CalibrationofOrificemeter/Venturimeter	CO3
7	Determinationofminor/majorlossesthroughmetal/non-metalpipes	CO4,CO5
8	Study of Impact of Jet / Turbine /Pump .	CO5

1. Teacher will brief the given experiment to students its procedure, observations calculation, andoutcomeofthis experiment.

2. Apparatusand equipments required for the allotted experiment will be provided by the labassistant susing SOP.

3. Students will perform the allotted experiment in a group (two students in each group) under thesupervisionoffaculty and lab assistant.

- 4. Afterperforming the experiment students will check their readings, calculations from the teacher.
- 5. Aftercheckingtheyhaveto write the conclusion of the final result.

GuidelinesforStudent'sLabJournal

Write-upshouldincludetitle,aim,diagram,workingprinciple,procedure, observations, graphs,calculations,conclusionand questions, if any.

GuidelinesforTermworkAssessment

- 1. Each experiment from labjournal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journalwritingwhere eachrubriccarries ten marks.

		S. Y.	B. Tech.					
	Pattern	2023Semester: IV	W (Mechani	cal Engineer	ing)			
		2305213 :So	olid Mechan					
Teac	hing Scheme:	Credit Scheme:		Examination Scheme:				
				is Comprehe	nsive	e Evaluation:		
Theor	ry :03hrs/week	03	20Marks					
	- <u>j</u> • • • • • • • • • • • • • • • • • • •			am: 20Marks				
			EndSem F	Exam: 60Mar	·ks			
-	uisite Courses, if a ering Mechanics. 1	ny: - Mathematics I & 1	II. Fundam	entals of Med	hani	cal Engineering		
	Objectives:		i, i unuum					
	•	ious types of stress	es in machir	ne members				
		m theory with varie			lition	s		
		cept of complex st		TT				
		sion and Buckling p		l				
		mpletion of the cou			to-			
	Course Outcome	-	,			Bloom's Level		
	Use the concepts	of simple stresses	s, strains fo	r the analysi	s of	3 - Apply		
COI	CO1 Use the concepts of simple success, stains for the analysis of machine members and structures.							
CO2	Draw Shear force	e and Bending Mo	ment Diagr	am		3 - Apply		
CO3	Apply the conce	epts of Bending	and Shear	ing stresses	for	3 - Apply		
COS	Beams					5 - Appry		
CO4	Determine Slope	and deflection of b	eams & Buc	kling of colu	mns	3 - Apply		
CO5	Apply the concept	t of Principal stress	es and Torsi	on		3 - Apply		
		COURSE	CONTENT	<u>S</u>				
Unit I	Simple stresses	and strains		(8 hrs)	COs	s Mapped - CO1		
		operties, Bulk Mo						
		es and strains in						
homoge	1	ite bars under conc		ds. Thermal st	tresse	es		
Unit II	Shear Force and Diagrams	d Bending Momen	it	(7hrs)	CO	s Mapped – CO2		
Shear for	orce and bending	moment diagrams	for Simply	supported &	Can	tilever beams for		
Point lo	ad, UVL, UDL &	couple, Maximu	um bending	moment and	posi	ition of points of		
contra f	lexure.							
Unit	Stresses in Mac	hing Flomonts		(7hrs)	CO	s Mapped – CO2		
III	Stresses in Mac.	line Liements		(7111.5)		s wapped – CO2		
-	•	of simple bending,						
		ess distribution for	ormula & o	distribution d	liagra	ims for common		
	rical sections				ſ			
Unit	Slope and defle	ction of beams & l	Buckling	(7hrs)	CO	s Mapped –		

IV	of columns		CO2, CO3						
Slope and deflection of determinate beams, Macaulay's method, slope and deflection for									
standard o	standard cases.								
Buckling	Buckling of columns: Euler's formula, Rankine's formula, safe load on columns								
Unit V	Principal stresses and strains, Torsion	(7hrs)	COs Mapped – CO3						
Expressio	n for principal stresses and maximum shear str	ess, position	of principal planes and						
planes of	maximum shear.Graphical solution using Mohr	's circle of str	esses.						
Torsion e	quation, Basic Numerical on Torsion Equation								
	Text Books								
1. R. K. B	Bansal, "Strength of Materials", Laxmi Publication	on							
2. S. Ram	amrutham, "Strength of material", DhanpatRai	Publication							
3. S.S. Ra	ttan, "Strength of Material", Tata McGraw Hill	Publication C	Co. Ltd.						
4. Punmia	a and Jain, "Mechanics of Materials", Laxmi pu	blications							
5. Singer	and Pytel, "Strength of materials", Harper and re	ow Publicatio	n						
6. R. C. H	libbeler, "Mechanics of Materials", Prentice Hal	l Publication							
	Reference Books								
1. Egor. P	P. Popov, "Introduction to Mechanics of Solids",	Prentice Hal	l Publication						
2. Gere ar	nd Timoshenko, "Mechanics of Materials",CBS	Publishers							
3. Beer an	nd Johnston, "Strength of materials", CBS Public	cation							
4. James 1	M. Gere, "Mechanics of Materials", CL Enginee	ering							
5. Timosh	nenko and Young, "Strength of Materials", CBS	Publication,	Singapore						

	Strength of CO-PO/PSO Mapping													
	РО									PS	0			
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	3	3	2	-	-	-	-	-	2	-	-	2	2	-
CO 2	3	3	2	-	-	1	-	1	2	-	-	2	2	-
CO 3	3	3	2	-	-	1	-	1	2	-	-	2	2	-
CO 4	3	3	2	-	-	1	-	1	2	-	-	2	2	-
CO 5	3	3	2	-	-	-	-	-	2	-	-	2	2	-

Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive	Marks Allotted	
	Evaluation		
1	One Assignment on each unit	10	
2	Online or Offline Test on Each Unit	10	
	Total	20	

		S.Y. B. Tech.		
		Semester:IV(Mechanica 1id Mechanics and Macl	0 0,	
Teachir	ng Scheme:	Credit Scheme:	Examination Schen	ne:
Practica	al:02hrs/week	01	Termwork:25 Marks Oral :25Marks	
Prerequ	uisite Courses ,if any: -			
Course	Outcomes: On completion of t	th course, students will be	e able to-	
		Course Outcomes		Bloom's Level
CO1	Gain fundamental knowledge of fluid, its properties and behavior under Various conditions of internal and external flows.			1-Knowledge
CO2	Develop understanding about hydrostatic law, principle of buoyancy and Stability of a floating body and application of mass, momentum and energy equation in fluid flow.			2-Understand
CO3	Imbibe basic laws and equations used for analysis of static and dynamic Fluids.			2-Understand
CO4	Determine the losses in a flow system, flow through pipes, boundary Layer flow and flow past immersed bodies			3-Apply
CO5	Demonstrate hydraulic mac	chines.		3-Apply

List of Laboratory Experiments/Assignments		
Sr. No.	Laboratory Experiments/Assignments	CO Mapped
1	Determination of pressure using manometers.	C01,C02
2	Determination of fluid viscosity and its variation with temperature	CO1
3	Determination of Metacentric height of floating object	C01,C02

Determination of Reynolds number and flow visualization of laminar and turbulent flow using Reynolds apparatus.	C01,C03
Verification of modified Bernoulli's equation	CO2,CO3
Calibration of Orifice meter / Venturimeter	CO3
Determination of minor/major losses through metal/non-metal pipes	CO4,CO5
Study of Impact of Jet / Turbine /Pump .	CO5
-	using Reynolds apparatus. Verification of modified Bernoulli's equation Calibration of Orifice meter / Venturimeter Determination of minor/major losses through metal/non-metal pipes

1. Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.

2. Apparatus and equipments required for the allotted experiment will be provided by the lab assistants using SOP.

3. Students will perform the allotted experiment in a group (two students in each group) under the supervision off faculty and lab assistant.

- 4. After performing the experiment students will check their readings, calculations from the teacher.
- 5. After checking they have to write the conclusion of the final result.

Guidelines for Student's Lab Journal

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Term work Assessment

1. Each experiment from lab journal is assessed for thirty marks based on three rubrics.

2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

	S. Y. B. Tech.	
Pattern 2023	Semester: IV (Mechanical Engineering)	
2305215:Geometric Modeling and Production Drawing		

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Practical: 04 hr / week	02	Term work: 50 Marks Practical: 50 Marks

Prerequisite Courses: - Systems in Mechanical Engineering, Engineering Graphics, Engg. Math I & II

Course Objectives:

To understand basic concepts of 3D modeling and to create geometric models and assemblies of simple engineering components. The student should be able to employ their knowledge to create more complicated models.

To read, understand and explain basic Geometric Dimensioning & tolerancing concepts.

To apply various geometric and dimension tolerances based on type of fit

To create engineering drawings, design documentation and use in manufacturing activities.

To ensure that the components of the assembly fit together properly, without excessive clearance or interference.

	Course Outcomes	Bloom's
		Level
CO1	READ the Industrial drawing to understand standard industrial	2-
	practices.	Understanding
CO2	CONSTRUCT solid models, assemblies of real life components using	3- Apply
	various modeling techniques	
CO3	APPLY geometric and dimensional tolerance, surface finish symbols in	3- Apply
	production drawing	
CO4	EVALUATE dimensional tolerance based on type of fit	5 - Evaluate
CO5	READ & ANALYSE industrial drawings with Manual drafting	4 -Analyze
	COURSE CONTENTS	
	Part A	
Ι	Assignment on parametric solid modeling and Surface modeling (04hrs	s) COs
	of a machine component.	Mapped –
		CO1, CO2
Introduction to parametric solid modeling, Introduction to the CAD software interface, basic		
drawing tools, sketching techniques, Introduction to 2D sketching techniques, apply/modify		
constraints and dimensions, and geometric relations in creating 2D profiles of the machine		

II	Assembly modeling of the parts modeled in Practical (04 h	ars) COs
	assignment-1 using proper assembly constraint conditions and	Mapped -
	generation of exploded view for assemblies	CO1, CO
	ly modeling – defining relationship between various parts of maching nts, generation of exploded view	ine, creation of
III	Generation of production drawings of the parts and assembly (04 h	urs) COs
	with appropriate tolerance.	Mapped -
		CO2, CO
	ion drawing – generation of 2-D sketches from parts and assemb iate dimensioning, tolerancing and symbols	bly 3-D mode
	Part B	
Ι	Assignment I : Limits Fits and Tolerances (06hr	
	Assignment II : Calculation of Tolerances based on Type of	Mapped
	Fits in Assembly	CO4, CO
	Fits, Dimensional Tolerances, Geometric Tolerances, calculate toleranc	es based on th
• 1	fit required for an assembly.	
II	Study and reading of Industrial Drawings to understand standard (06 h	
• 1	Study and reading of Industrial Drawings to understand standard (06 h industrial procedure	Mapped
• 1	Study and reading of Industrial Drawings to understand standard (06 h industrial procedure Assignment III : Study and use of geometrical tolerances in	
• 1	Study and reading of Industrial Drawings to understand standard (06 h industrial procedure Assignment III : Study and use of geometrical tolerances in production drawing	Mapped
• 1	Study and reading of Industrial Drawings to understand standard (06 h industrial procedure Assignment III : Study and use of geometrical tolerances in	Mapped
• 1	Study and reading of Industrial Drawings to understand standard (06 h industrial procedure Assignment III : Study and use of geometrical tolerances in production drawing Assignment IV: Student has to draw a A2 size drawing sheet for	Mapped
I	Study and reading of Industrial Drawings to understand standard (06 h industrial procedure Assignment III : Study and use of geometrical tolerances in production drawing Assignment IV: Student has to draw a A2 size drawing sheet for a mechanical component, including dimensional and geometrical	Mapped CO4, CO
II Introduc	Study and reading of Industrial Drawings to understand standard (06 h industrial procedure Assignment III : Study and use of geometrical tolerances in production drawing Assignment IV: Student has to draw a A2 size drawing sheet for a mechanical component, including dimensional and geometrical tolerances. ction to ASME Y14.5-2018, straightness, perpendicularity, flatness, angue ss, concentricity, cylindricity, runout, profile, true position, parallelism, face finish, Welding symbols	Mapped CO4, CO
II Introduc	Study and reading of Industrial Drawings to understand standard (06 h industrial procedure Assignment III : Study and use of geometrical tolerances in production drawing Assignment IV: Student has to draw a A2 size drawing sheet for a mechanical component, including dimensional and geometrical tolerances. ction to ASME Y14.5-2018, straightness, perpendicularity, flatness, angue sss, concentricity, cylindricity, runout, profile, true position, parallelism,	Mapped CO4, CO
II Introduc roundne &T, Sur . Bhatt,	Study and reading of Industrial Drawings to understand standard (06 h industrial procedure Assignment III : Study and use of geometrical tolerances in production drawing Assignment IV: Student has to draw a A2 size drawing sheet for a mechanical component, including dimensional and geometrical tolerances. ction to ASME Y14.5-2018, straightness, perpendicularity, flatness, angue ss, concentricity, cylindricity, runout, profile, true position, parallelism, face finish, Welding symbols	Mapped CO4, CO
II Introduc roundne &T, Sur . Bhatt, .td, Anar	Study and reading of Industrial Drawings to understand standard (06 h industrial procedure Assignment III : Study and use of geometrical tolerances in production drawing Assignment IV: Student has to draw a A2 size drawing sheet for a mechanical component, including dimensional and geometrical tolerances. etion to ASME Y14.5-2018, straightness, perpendicularity, flatness, angue ess, concentricity, cylindricity, runout, profile, true position, parallelism, face finish, Welding symbols Text Books N. D. and Panchal, V. M., (2014), "Machine Drawing", Charotar Publi	Mapped CO4, CO Ilarity, orientation, GI shing House P
II Introduct roundne &T, Sur L. Bhatt, Ltd, Anat 2. Ajeet S 3. Naraya	Study and reading of Industrial Drawings to understand standard (06 h industrial procedure Assignment III : Study and use of geometrical tolerances in production drawing Assignment IV: Student has to draw a A2 size drawing sheet for a mechanical component, including dimensional and geometrical tolerances. ction to ASME Y14.5-2018, straightness, perpendicularity, flatness, angue ess, concentricity, cylindricity, runout, profile, true position, parallelism, face finish, Welding symbols Text Books N. D. and Panchal, V. M., (2014), "Machine Drawing", Charotar Publi nd, India, ISBN-13: 978-9385039232	Mapped CO4, CO Ilarity, orientation, GI shing House P
II Introduc roundne &T, Sur L. Bhatt, Ltd, Anar 2. Ajeet S 3. Naraya New Age 4. Chang	Study and reading of Industrial Drawings to understand standard (06 h industrial procedure Assignment III : Study and use of geometrical tolerances in production drawing Assignment IV: Student has to draw a A2 size drawing sheet for a mechanical component, including dimensional and geometrical tolerances. ction to ASME Y14.5-2018, straightness, perpendicularity, flatness, anguess, concentricity, cylindricity, runout, profile, true position, parallelism, face finish, Welding symbols Text Books N. D. and Panchal, V. M., (2014), "Machine Drawing", Charotar Publind, India, ISBN-13: 978-9385039232 Siingh, " Machine Drawing", Mc Graw Hill Publications, New Delhi 201 ana, K. L., Kannaiah, P., Venkata Reddy, K., (2016), "Machine Drawing"	Mapped CO4, CO Ilarity, orientation, GI shing House P 12 ng", 2nd editio

3rd edition, McGraw-Hill Education

2. Blokdyk, Gerardus, (2019), "Geometric Dimensioning and Tolerancing: A Complete Guide - 2020 Edition", 5STARCooks

Codes / Handbooks

Standards: ASME Y14.5 – 2018

Standards: ISO/TR 23605:2018, ISO 1101:2017, SP 46, IS 15054(2001)

e resources

1 https://geotol.com/resources/

2 https://www.sae.org/learn/professional-development/gdt

Useful websites / Video

- 1 <u>https://nptel.ac.in/courses/112/102/112102102/</u>
- 2 https://nptel.ac.in/courses/112/103/112103019/

3 https://nptel.ac.in/courses/112/106/112106179/

- 4 <u>https://youtu.be/0IgOapAtauM</u>
- 5 https://youtu.be/aS9OgYadjpY

1 2	2	3	4	5	-	1							PS	0					
1 2	2	3	4	5	6			PO PSO											
				5	6	7	8	9	10	11	12	1	2						
3 -	-	-	-	-	-	-	-	2	2	1	2	2	1						
3 -	-	-	-	3	-	-	-	2	2	1	2	2	1						
3 -	-	-	-	3	-	-	-	2	2	1	2	2	1						
3 -	-	-	-	-	-	-	2	2	2	1	2	2	1						
3				-	-	-	3	2	2	1	2	2	1						
	3 · 3 ·	3 - 3 - 3 - 3 -	3 - - 3 - - 3 - - 3 - -	3 - - - 3 - - - 3 - - - 3 - - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														

	Guidennes for Tutorial / Terniwork Assessment									
Sr. No.	Components for Termwork Assessment	Marks Allotted								
1	Assignment on Geometric Modeling	10								
2	Assignment on Production Drawing	15								
	Practical Exam									
Sr. No.	Components for Practical Exam	Marks Allotted								
1	Geometric Modeling	40								
2	Production Drawing (One numerical on Tolerance Calculation)	10								

	Pattern20	S.Y. B.Tech. 23 Semester IV (Mechanical 2305216:Machine Intelliger	8)	
Teaching Sc	heme:	Credit Scheme:	on Sche	eme:	
Theory:03 h	rs/week	03	orehensive ks Marks Marks		
Prerequisite	Courses:-Engineer	ing Mathematics, Linear Alge	bra, Probabili	ty, Basio	c Statistics
 APPI APPI APPI DEM essen EXPI 	ERSTAND the func LY Feature Extraction LY fundamental of constracted ONSTRATE the abilitial steps, emphasized LORE the concepts	damentals of Artificial Intellig on and Selection techniques to classification and regression al pility to develop machine lean ing practical application in me of reinforced and deep learnin on of the course, students wil	process datas gorithms. ming models echanical engi g, digital twin	ets. by outli neering	ning and executing contexts.
		Course Outcomes			Bloom's Level
CO1	APPLY fundame Machine Learning	ental principles of Artificia	l Intelligence	and	2-Understanding
CO2	EXPLORE eme problems using M	rging technologies in sol Iachine Learning.	lving engine	ering	2-Understanding
CO3	APPLY feature e the given dataset	extraction and selection techni	iques to prepro	ocess	3-Apply
CO4		E classification and regressior nical engineering, enabling the le solutions	-		3-Apply
CO5		hine learning models, to nanical engineering by follow s.		-	4-Analyze
		COURSECONTEN	NTS		
UnitI	Introduction	to AI & ML	(08 hrs)	COs	Mapped -CO1
learning Basi and manipul	cs of AI: Reasoning ation. Approaches	and history of AI, Comparison g, Knowledge representation, to AI: Cybernetics and brain cietal Impact and Responsible	Planning, Lea 1 simulation,	rning, P	erception, Motion

to Machine Learning.

Approaches to ML: Supervised learning, Unsupervised learning, Reinforcement learning.

UnitII	Feature Engineering(07 hrs)Cos Mapped -CO3										
Feature selec	tion: Filter Method, Wrapper Method, Emb	edded Metho	ods, Greedy forward &								
backward meth	ods, feature Ranking techniques, Decision tree										
Feature extra	action: Statistical features, Principal Compon	ent Analysis	. (Numerical based on								
Statistical featu	ares and PCA)										
UnitIII	Machine Learning Algorithms(07 hrs)Cos Mapped -CO4										
Classification	Decision tree- Entropy reduction and information	on gain, Rand	lom Forest, Naive Bayes,								
Support vector	machine. (Numerical based on Decision tree using	ng IG and Ba	ys theorem only)								
Regression: L	ogistic Regression, K-Means, K-Nearest Neigl	nbor (KNN),	Time series forecasting								
Algorithms (Al	RIMA, SARIMA, LSTM)										
Unit IV	Development of Machine Learning	(07 hrs)	COs Mapped – CO4,								
	Model		CO5								
Problem identi	fication: classification, clustering, regression, r	anking. Steps	s in ML modeling, Data								
Collection, Da	ta pre-processing, Model Selection, Model train	ning (Trainin	g, Testing, K-fold Cross								
Validation), pa	rameters for Model evaluation of classification	and regression	on algorithms (confusion								
matrix, Accura	acy, Precision, Recall, True positive, false pos	sitive etc.), H	Iyper parameter Tuning.								
Introduction to	Artificial Neural Network, Convolution Neural	Network.									
Unit V	Introduction to Emerging Technologies	(07 hrs)	COs Mapped –CO2								
Characteristics	of reinforced learning Algorithms: Value Based	, Policy Base	d, Model Based; Positive								
vs Negative Re	einforced Learning Models, Markov Decision Pr	rocess, Deep 1	Learning, Introduction to								
digital twin (D	efinition, Components, Characteristics, Applicati	ons) and basi	cs of Transfer Learning.								
Application of	Artificial Intelligence and Machine Learning										

Fext Books

1. B Joshi, Machine Learning and Artificial Intelligence, Springer, 2020.

2. Parag Kulkarni and Prachi Joshi, "Artificial Intelligence – Building Intelligent Systems", PHI learning Pvt. Ltd., ISBN – 978-81-203-5046-5, 2015

ReferenceBooks

1. Stuart Russell and Peter Norvig (1995), "Artificial Intelligence: A Modern Approach," Third edition, Pearson, 2003.

2. Solanki, Kumar, Nayyar, Emerging Trends and Applications of Machine Learning, IGI Global, 2018.

3. Mohri, Rostamizdeh, Talwalkar, Foundations of Machine Learning, MIT Press, 2018.

4. Kumar, Zindani, Davim, Artificial Intelligence in Mechanical and Industrial Engineering, CRC Press, 2021.

	StrengthofCO-POMapping													
		РО												
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	3	3	1	2	2	2	-	1	2	2	-	2		
CO2	3	3	1	2	2	2	-	1	2	2	-	2		
CO3	3	3	1	2	2	2	-	1	2	2	-	2		
CO4	3	3	1	2	2	2	-	1	2	2	-	2		
CO5				2				1						
	3	3	1		2	2	-		2	2	-	2		

	${\bf Guidelines for Continuous Comprehensive Evaluation of Theory Course}$								
Sr.No.	ComponentsforContinuousComprehensiveEvaluation	Marks Allotted							
1	Assignments- Total5Assignment	10							
	Assignment on each unit for 10 Marks								
	(These 50 markswill beconverted to 10 Marks)								
2	Testsoneachunitusing LMS \ Learni-Co	10							
	(Each test for 10 Mandtotal 50 marks will be converted to 10M)								

		S.Y.B.Tech.		
		023 Semester: IV Mecha 2305217:Machine Intellig	0 0	
Teaching		CreditScheme:	ExaminationSche	eme:
_	:02hrs/week	01	Term work:25 M	arks
Tucticui		Ŭ.	Oral:25 Marks	
Prerequi	siteCourses:-Engine	eering Mathematics, Linear	Algebra, Probability, B	asic Statistics
	bjectives:			
		undamentals of Artificial In	U U	e Learning.
		ction and Selection techniqu	1	
		of classification and regress	U	1 .1
		e ability to develop mac	-	
	-	teps, emphasizing practica	application in meel	nanical engineering
	ontexts.	ots of reinforced and deep le	arning digital twin and	Transfer learning
	=	letion of thecourse, students		i Transfer learning.
		Course Outcomes		Bloom'sLevel
<u> </u>			· 1 · T / 11' 1	
CO1		ental principles of Artific	ial Intelligence and	2-Understanding
	Machine Learning			2 Un denston din e
CO2	problems using M	000	olving engineering	2-Understanding
CO3		extraction and selection tech	niques to preprocess	3-Apply
005	the given dataset	Arraction and selection teer	inques to preprocess	J-Apply
CO4	e	E classification and regressi	on Algorithms in the	3-Apply
		nical engineering, enabling	-	
	implement suitab			
CO5	-	hine learning models, to	address complex	4-Analyze
	problems in mech	nanical engineering by follo	wing systematic and	
	well-defined step	5.		
		List of Experime	nts	

	List of Experiments									
Sr.No.	Title	COMapped								
1	To Visualize and analyze the Mechanical Engineering domain dataset	CO1								
2	To Evaluate Statistical Features from given dataset	CO1, CO3								

3	To apply feature selection and Extraction techniques to given dataset	CO1, CO3, CO4
4	To develop classification model and evaluate its performance	CO1, CO3, CO4,CO5
5	To develop regression model and evaluate its performance	CO1, CO3, CO4, CO5
6	To Develop ANN Model and evaluate its performance	CO1, CO3, CO4, CO5
7	To Develop Deep learning model for Image-based dataset	CO1,CO2, CO4, CO5

Text Books

B Joshi, Machine Learning and Artificial Intelligence, Springer, 2020.

Parag Kulkarni and Prachi Joshi, "Artificial Intelligence – Building Intelligent Systems", PHI learning Pvt. Ltd., ISBN – 978-81-203-5046-5, 2015

Reference Books

Stuart Russell and Peter Norvig (1995), "Artificial Intelligence: A Modern Approach," Third edition, Pearson, 2003.

Solanki, Kumar, Nayyar, Emerging Trends and Applications of Machine Learning, IGI Global, 2018.

Mohri, Rostamizdeh, Talwalkar, Foundations of Machine Learning, MIT Press, 2018.

Kumar, Zindani, Davim, Artificial Intelligence in Mechanical and Industrial Engineering, CRC Press, 2021.

	StrengthofCO-POMapping														
		РО													
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	3	2	1	2	2	2	-	1	2	2	-	2			
CO2	3	2	1	2	2	2	-	1	2	2	-	2			
CO3	3	2	1	2	2	2	-	1	2	2	-	2			
CO4	3	2	1	2	2	2	-	1	2	2	-	2			
CO5	3	2	1	2	2	2	-	1	2	2	-	2			

	Guidelines for Term work Assessment						
Sr.No.	Sr.No. Components for Term work Assessment						
1	Presentation in group of 2-3 students on unit No. IV and V	5					
2	Experiment(EachExperimentcarries30marks) R1- Timely completion of assignments (10 Marks) R2- Understanding of assignment (10 Marks) R3 – Presentation/Clarity of journal writing (10 Marks) For all Experiments total marks will be converted into 20 Marks.	20					

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

Second Year B. Tech. Pattern: 2023Semester: IV (Mechanical Engineering) 2305218 :Industrial Psychology and Organizational Behaviour

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Theory: 02 hr / week	02	Continuous Comprehensive
		Evaluation : 50

Prerequisite Courses: - Industrial Management, Professional Ethics

Course Objectives:

To align the students to the application of principles of psychology in an industrial and organizational workplace.

To demonstrate the understanding of job requirement and related fatigue, boredom and ways to handle it.

To develop the insights into performance management and understanding related improvement strategies.

To have an understanding of human behavior in groups and develop knowledge and skills in leadership, power, communication, negotiation and conflict management.

To develop the expertise to understand the organizational culture, change management and organizational development.

	Course Outcomes		Bloom's Level					
CO1	Understand the importance of Psychology in industry, vari	ious aspects	2- Understand					
	of team, leadership and conflict management and organizat	tional						
	behavior.							
CO2	Discuss the organizational culture, Theories and understand	s	2- Understand					
	organizational development approaches							
CO3	Demonstrate fundamental knowledge about need and scop	pe of	3- Apply					
	industrial -organizational psychology and behavior.							
CO4	Illustratethe job analysis, have understanding of fatigue, b	oredom	3- Apply					
	and improve the job satisfaction							
COURSE CONTENTS								
Ι	Industrial Psychology ((06hrs) C	COs Mapped –					
		C	CO1, CO3					

Introduction to Industrial Psychology, Brief History of Industrial Psychology, Nature, Scope and Problems, psychology as a science and areas of applications, Individual differences and their evaluation, Role of heredity and environment, study of behavior and stimulus to response behavior, Types of individual differences, Scientific management and it's limitations. Hawthorne Studies

II	Job Analysis , Industrial Fatigue and Industrial	(06 hrs)	COs Mapped –			
	Boredom		CO1, CO3, CO4			
Job Analysis and Evaluation.						

Industrial Fatigue: Introduction, Concept and Meaning, Types of Industrial Fatigue, Causes of

Fatigue, Contents, Fatigue Symptoms, Industrial Studies on Fatigue, Causes and Remedies of Industrial Fatigue, Effects of Industrial Fatigue

Industrial Boredom: Introduction, Concept and Meaning, Causes and Remedies of Boredom, Effects of Boredom, Reducing Boredom

III	Organizational Behavior and Group Behavior	(06 hrs)	COs Mapped –
			CO1, CO2, CO3

Concept of organization & organizational behavior, Organizational structure, factors affecting behavior in organizations

Group Behavior: Groups: Concept and Classification, Stages of Group Development, Group Structure, Roles and Norms, Premise and Issues. Group Decision-Making: Group vs Individual, Groupthink and Groups Shift, Group Decision Making Techniques and Process

Team work: meaning, concept, types, creating, an effective team

Leadership: Functions and approaches; trait, behavioral and contingency models; characteristics of successful leaders; role of power in leadership

IV	Organizational Cultureand Organizational Development (06 hrs)	COs Mapped –
		CO1, CO2, CO3

Organizational Culture: Concept, Dominant Culture, Strong vs Weak Cultures, Creating and Sustaining Culture, Employees Learning of the Culture, Creating a Customer-Responsive Culture.

Organizational theory and development:

Organizational Theory: Classical organizational THEORY, Humanistic Theory, Open-System Theory

Organizational development: Need, models of Organizational change, Organizational development interventions

Organizational Changes:Concept and Forces for Change, Managing Planned Changes, Resistance to Change, Approaches to Manage Organizational Change

Text Books

1. Vikram Bisen and Priya, Indistrial Psychology, New Age Publication, 2010.

2. Michael Aamodt, Organizational/ Industrial Psychology, Wadsworth Cengage Learning, 2010

3. Robbins, S.P. Organizational Behaviour. Prenctice-Hall, latest edition.

4. Spector, P.E. Industrial and Organizational Psychology: Research and Practice. International Student Version. Latest Edition. Wiley.

5. Davis K. & Newstrom J.W., Human Behaviour at work, Mcgraw Hill International, 1985

6. Stephen P. Robbin & Seema Sanghi, Organizational behavior, Pearson, 2011

7. L.M. Prasad, Organizational behavior, S Chand & sons

Reference Books

1. Blum M.L. Naylor J.C., Horper & Row, Industrial Psychology, CBS Publisher

2. Luthans Fred, Organizational Behaviour, McGraw Hill International.

3. Morgan C.t., King R.A., John Rweisz & John Schoples, Introduction to Psychology, McHraw Hill, 1966.

4. Schermerhorn J.R.Jr., Hunt J.G &Osborn R.N., Managing, Organizational Behaviour, John Willy.

5. Arnold J., Robinson, Iran, T. and Cooper, Cary L, Work Psychology, Macmillan IndiaLtd.

6. Muchincky (2009). Psychology applied to work. New Delhi: Cengage.

7. Griffin, Ricky W: Organizational Behaviour, Houghton Mifflin co., Boston.

8. Ivancevich; John and Micheeol T. Matheson, Organizational Behaviour and Management, Tata McGraw-Hill, New Delhi.

9. Newstrom, John W. and Keith Davis: Organizational Behavior: Human Behavior at Work, Tata McGraw-Hill, New Delhi.

Program Outcome (PO) and Program Specific Outcome (PSO)

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

	PO	РО	PO	PO	РО	PSO	PS							
	1	2	3	4	5	6	7	8	9	10	11	12	1	O2
2305219.1	1	-	-	-	-	2	2	2	2	-	2	1	-	-
2305219.2	1	-	-	-	-	2	2	2	-	-	1	1	-	-
2305219.3	1	-	-	-	-	2	2	2	-	-	1	1	-	-
2305219.4	1	-	-	-	-	2	2	2	-	-	1	1	-	-
Avg.	1	-	-	-	-	2	2	2	2	-	1	1	-	-
Level	1	-	-	-	-	2	2	2	2	-	1	1	-	-

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

		S. Y. B. Tech.						
		Semester: IV (Mechan						
T	2305219 : Democracy Election and Governance							
Teachin	g Scheme:	Credit Scheme:	Examination Sch	eme:				
Tutorial	:02 hrs/week	02	Tutorial : 50 Mar	·ks				
D .	·· · · · · · · · · · · · · · · · · · ·	a :						
Prerequis	site Courses, if any: -Social	Sciences						
		Course Objectives						
1 To intro	duce the students meaning o	•	of the governance					
	them understand the various			governance				
Course	Outcomes: On completion o	f the course, students wil	l be able to-					
Course Outcomes Bloom's Leve								
	Understand the concepts of							
C01								
Constitution of India								
CO2								
Apply constitutional values to ensure just, equitable and secure								
CO3	CO3 environment for the protection of human rights, liberty and balancing the 3-Apply							
	interests of the individuals Develop an understanding		in their day to day					
CO4	life through introduction to			3-Apply				
	via constitutional amendm	=		0 · · · · · · · · · · · · · · · · · · ·				
COF	Analyze the effectiveness	of governmental policies	and programmes	4 A polyzo				
CO5	through exposure to gover	nance theories		4-Analyze				
		COURSE CONTENT	`S					
Unit I	Democracy- Foundation		(08hrs)	COs Mapped -				
	and Dimensions,			CO1				
	Elections							
Constituti	on of India							
Evolution	of Democracy- Different M	odels						
Dimensio	ns of Democracy- Social, Ec	conomic, and Political						
Unit II	Decentralization		(08hrs)	COs Mapped -				
				CO1, CO2				
India	n tradition of decentralization	on						

History of panchayat Raj institution in the lost independence period

 73^{rd} and 74^{th} amendments

Challenges of caste, gender, class, democracy and ethnicity

UnitGovernance(08 hrs)COs MIIICO1, C	
	apped -
	O2,CO3

Meaning and concepts

Government and governance

Inclusion and exclusion

Text Books

Banerjee-Dube, I. (2014). A history of modern India. Cambridge University Press. Basu, D. D. (1982). Introduction to the Constitution of India. Prentice Hall of India. Bhargava, R. (2008). Political theory: An introduction. Pearson Education India

Reference Books

1 Guha, R. (2007). India After Gandhi: The History of the World's Largest. Democracy, HarperCollins Publishers, NewYork.

2. Guha, R. (2013). Gandhi before India. PenguinUK.

3. Jayal. N.G. (2001). Democracy in India.New Delhi: Oxford UniversityPress.

				Stren	gth of	CO-F	PO/PS	O Ma	pping					
Strength						Р	0						PSO	
of COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1						3		3	3	2				
CO 2						3		3	3	2				
CO 3						3		3	3	2				
CO 4						3		3	3	2				
CO 5						3		3	3	2				
Avg						3		3	3	2				

	Guidelines for Continuous Comprehensive Evaluationof Theory Course						
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted					
1	One Assignments on Unit-1, Unit-2, Unit-3	30					
2	Oral Presentation	20					
	Total	50					

	S. Y. B. Tech.						
Pattern 2023 Semester: IV (Mechanical Engineering)							
	2305220 : Soft Ski	lls					
Teaching Scheme:	Credit Scheme:	Examination Scheme:					
Tutorial : 1hr/week	01	Tutorial : 25 Marks					
Practical: 02hrs/week	01	Termwork: 25 Marks					

Prerequisite Courses, if any: ----

Course Objectives:

1. To highlight the need to improve soft skills among engineering students so as to become good professionals.

2. To facilitate a holistic development of students by enhancing soft skills.

3. To develop and nurture the soft skills of the students through individual and group activities.

4. To expose students to right attitudinal and behavioural aspects and assist in building the same through activities.

Course Outcomes: On completion of the course, students will be able to-

	Course Outcomes	Bloom's Level	
CO1	CO1 Develop effective communication skills including Listening, Reading, 3		
	Writing and Speaking		
CO2	Practice professional etiquette and present oneself confidently.	3-Apply	
CO3	Function effectively in heterogeneous teams through the knowledge of	3-Apply	
	team work, Inter-personal relationships, conflict management and		
	leadership quality.		
CO4	Use Time management and Stress management skills.	4-Evaluate	
CO5	Constructively participate in group discussion, meetings and prepare	4-Evaluate	
	and deliver Presentations.		

Text Books

1. Gajendra Singh Chauhan, Sangeeta Sharma, "Soft Skills – An Integrated Approach to Maximize Personality", Wiley India, ISBN:13:9788126556397

 Simon Sweeney, "English for Business Communication", Cambridge University Press, ISBN 13:978-0521754507

Reference Books

1. Indrajit Bhattacharya, "An Approach to Communication Skills", Delhi, Dhanpat Rai, 2008

2. Sanjay Kumar and Pushpa Lata, "Communication Skills", Oxford University Press, ISBN 10:9780199457069

3. Business Communication & Soft Skills, McGraw Hill Education.

4. Atkinson and Hilgard, "Introduction to Psychology", 14th Edition, Geoffrey Loftus, ISBN-10:0155050699, 2003.

 Kenneth G. Mcgee, "Heads Up: How to Anticipate Business Surprises & Seize Opportunities First", Harvard Business School Press, Boston, Massachusetts, 2004, ISBN 10:1591392993
 Krishnaswami, N. and Sriraman T., "Creative English for Communication," Macmillan

	Strength of CO-PO Mapping											
	РО											
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	-	-	-	-	-	-	-	-	3	3	-	-
CO2	-	-	-	-	-	-	-	-	3	3	-	-
CO3	-	-	-	-	-	-	-	-	3	3	-	-
CO4	-	-	-	-	-	-	-	-	3	3	-	-
CO5	-	-	-	-	-	-	-	-	3	3	-	-

COURSE CONTENTS							
Unit I	Communication Skills	(4 hrs) COs Mapped- CO1, CO2, CO5					
Importance	Importance of communication, Barriers in communication and how to overcome these barriers,						
Significanc	Significance of non-verbal messages as augmentation to verbal communication, Group Discussion,						
Listening Vs Hearing, Reading to comprehend, Learning to skim and scan to extract relevant information							
Unit II	Unit IITeam building and Team work(2 hrs)COs Mapped- CO3, CO5						
Team build	ling, Team Work, Skills needed for Team	Work, Asj	pects of Team building, Model of Team				
building, R	ole of a Team leader, Intergroup collabora	tion					
Unit III	Unit IIIEtiquettes and manners(2 hrs)COs Mapped- CO2						
Corporate g	grooming and dressing, Email and Telepho	one etique	ttes, Etiquettes in social and office setting				
Unit IV	Time management	(2 hrs)	COs Mapped- CO4				
The 80-20 rule, Features of time, Time management matrix, Successful time management, Difficulties in							
time management, Time wasters, Time savers							
Unit V	Stress management	(2 hrs)	COs Mapped- CO4				
Stress, Eustress, Distress, Effects of stress, Kinds of stress, Sources of stress, Behaviour identified with							
stress, Sign	stress, Signs of stress						

	List of Laboratory Experiments						
Sr. No.	L	Laboratory Experiments / Assignments					
1	Phonetics & Vocabulary building activity	To have discussion on phonetic chart by International Phonetic Alphabet (IPA). Vocabulary development methods should be discussed. Every student should maintain a daily record of minimum 2 (or maximum 5) unknown words, across which they have come. Students should use these words in their communication. This	CO1				

		activity should be continued during the entire semester.	
2	Story telling	Every student will get 5 minutes, to share a fictional or real life story.	CO1,CO2
3	Group activity/Teamwork activity	The batch will be divided into groups of 4-5 students. For each group same activity (like preparation of drama, skit,play etc.) will be assigned. Maximum 30 minutes should be given to each group,simultaneously, to plan the activity. After 30 minutes, every group will get 10 minutes to present their work. At the end, there will be discussion between teacher and students, about things necessary for successful Teamwork, problems faced by students during teamwork etc.	C01,C03,C05
4	Presentation Skills	Every student will have to choose a topic of his/her choice and make a 10-minute presentation using audio-video aids / PPT. Every student will make presentation on either technical or non-technical topic. Focus and evaluation of each presentation should be the depth of knowledge about the topic, originality of perspective on the topic, well- researched or not, verbal and non-verbal skills and ability to answer questions effectively.	C01,C02
5	Group Discussion	The batch will be divided into groups of 6-7 students for a discussion lasting 15 minutes. Topics should be provided by teachers. After each group finishes its discussion, the teacher will give critical feedback including areas of improvement. The teacher should act as a moderator / observer only	C01,C03,C05
6	Reviewing an Editorial article	Either by using e-paper / printed copy, students have to select a recent editorial (that is non-controversial), read it and explain to the audience what the editor's perspective is and what the student's perspective is. (10 minutes for each student to share author's perspective and their own perspective.)	C01,C02
7	Listening Skills	Listening Worksheets will be distributed among students. Each student will be given specifically designed worksheets that contain blanks / matching / MCQs that are designed to an audio (chosen by the faculty). Students have to listen to the audio (only once) and complete the worksheet as the audio plays. This will help reiterate active listening as well as deriving information (listening to information between the lines)	C01,C02
8	Time Management	Use Pomodoro Technique. Write your experience about it. (Self study)	C01,C04

9	Stress Management	Discuss stress management. Ask students about, What do they do to relieve stress?	C01,C04
	•		CO1,CO2,CO3, CO4,CO5

Guidelines for Laboratory Conduction

The teacher may design specific assignments that can highlight the learning outcomes of each unit. Each activity conducted in the lab should begin with a brief introduction of the topic, purpose of the activity from a professional point of view and end with the learning outcomes as feedback from students. Most of the lab sessions can be designed to be inclusive; allowing students to learn skills experientially; which will benefit them in the professional environment. Every student must be given sufficient opportunity to participate in each activity and constructive feedback from the instructor / facilitator at the end of the activity should learn towards encouraging students to work on improving their skills. Activities should be designed to cater to enhancement of multiple skills – e.g. Team Building Activity can highlight 'open communication', 'group discussion', 'respecting perspectives', 'leadership skills', 'focus on goals' which can help students improve their inherent interpersonal skills.

Guidelines for Student's Lab Journal

Each student should have a Lab Workbook (sample workbook attached) which outlines each lab activity conducted. The student must respond by writing out their learning outcomes and elaborating the activities performed in the lab., group discussion, group exercises and interpersonal skills and similar other activities/assignments.

Guidelines for Term work Assessment

Continuous assessment of laboratory work is to be done based on overall performance and lab assignments and performance of student. Each lab assignment assessment will be assigned grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include- timely completion, performance, punctuality, neatness, enthusiasm, participation and contribution in various activities.