

K.K. Wagh Institute of Engineering Education and Research, Nashik **Curriculum B.Tech Computer Engineering 2023 Pattern** w.e.f.: AY 2023-2024

B. Tech Computer Engineering (2023 pattern)

Class	Semester	Total Credits	Total Marks
EV DTECH	Ι	20	700
FY BTECH	II	22	800
SY BTECH	III	22	750
SYBIECH	IV	22	750
τν ρτερμ	V	22	750
TY BTECH	VI	22	750
FINAL DTECH	VII	22	750
FINAL BTECH	VIII	20	750
Total		172	6000

Summary of Credits and Total Marks for Under Graduate (UG) Programme:

Description of various Courses:

Type of Course	Description	Type of Course	Description
ESC	Engineering Science Courses	PCC	Program Core Course
BSC	Basic Science Courses	PEC	Program Elective Courses
CC	Co-curricular courses (Liberal Learning courses)	OE	Open Elective Courses of other than particular program
CEP/FP	Common Engineering Project(CEP)/Field Project(FP)	VEC	Value Education Courses
OJT	On Job Training	ASM	Additional Specialized/MOOCs
MDM	Multidisciplinary Minor	HSSM	Humanities, Social Science and Management
AEC	Ability Enhancement Course	VSEC	Vocational and Skill Enhancement Course
PROJ	Project	RM	Research Methodology
IKS	Indian Knowledge System		

		F.Y. B	8. Tee	ch Co	ompu	iter Eng	ineering w	ef AY	2023-	24					
						SEM	[-I								
Course	Couse	Title of Course		eachii Schem	0		Evaluation	Scheme	e and N	Iarks			C	Credits	6
Code	Туре	The of Course	ТН	TU	PR	INSEM	ENDSEM	CCE	TUT	тw	TOTAL	ТН	TU	PR*	TOTAL
2300101A	BSC	Linear Algebra and Differential Calculus	3	1	0	20	60	20	25	0	125	3	1	0	4
2300104A	BSC	Applied Chemistry	3	0	2	20	60	20	0	50	150	3	0	1	4
2300105A	ESC	Fundamentals of Electrical Engineering	3	0	2	20	60	20	0	50	150	3	0	1	4
2300108A	ESC	Programming in C	1	0	2	20	30	0	0	50	100	1	0	1	2
2300112A	AEC	Communication Skills	1	0	2	0	0	25	0	50	75	1	0	1	2
2300111A	VSEC	Workshop Practice	1	0	2	0	0	25	0	25	50	1	0	1	2
2300115A	CC	Sports, Yoga and Art	0	2	0	0	0	0	50	0	50	0	2	0	2
	То	otal	12	3	10	80	210	110	75	225	700	12	3	5	20

Note: Credits are as per the Teaching Scheme. *Credits for 'PR' head are linked with 'TW' marks

		F.Y. B	B. Te	ch Co	ompu	iter Eng	ineering w	ef AY	2023-	24					
						SEM-	II								
Course	Couse			eachii Schem	0		Evaluation	Schem	e and N	Iarks			0	Credits	\$
Code	Туре	Title of Course	тн	TU	PR	INSEM	ENDSEM	CCE	TUT	TW	TOTAL	ТН	TU	PR*	TOTAL
2300102A	BSC	Differential Equations and Integral Calculus	3	1	0	20	60	20	25	0	125	3	1	0	4
2300103A	BSC	Applied Physics (A)	3	0	2	20	60	20	0	50	150	3	0	1	4
2300107A	ESC	Fundamentals of Electronics Engineering	3	0	2	20	60	20	0	50	150	3	0	1	4
2300110A	ESC	Engineering Drawing	1	0	2	20	30	0	0	50	100	1	0	1	2
2300118A	PCC	Computational Thinking and Problem Solving	2	0	0	20	60	20	0	0	100	2	0	0	2
2300116A	IKS	Indian Knowledge System	0	2	0	0	0	0	50	0	50	0	2	0	2
2300117A	VSEC	Python Programming	1	0	2	0	0	25	0	25	50	1	0	1	2
2300115B	CC	Engineering Exploration	0	2	0	0	0	0	75	0	75	0	2	0	2
	То	otal	8	100	270	105	150	175	800	13	5	4	22		

		Depar	tme	nt S	peci	fic Exit (Courses (Te	o awai	d Cer	tifica	te)				
Course	Couse	Title of Course		eachi chem	0		Evaluation	Schem	e and N	Marks			(Credit	s
Code	Туре	The of Course	ТН	TU	PR	INSEM	ENDSEM	CCE	TUT	TW	TOTAL	ТН	TU#	PR*	TOTAL
2300119A	EXIT	Internship**	0	2	0	0	0	0	0	100	100	0	2	0	2
2300120A	EXIT 1	Web Designing using HTML & CSS	2	0	2	20	30	0	0	50	100	2	0	1	3
2300121A	EXIT 2	Web development using PHP and MYSQL	2	0	2	20	30	0	0	50	100	2	0	1	3
	Tot	al	4	2	4	40	60	0	0	200	300	4	2	2	8

Note: Credits are as per the Teaching Scheme. *Credits for 'PR' head are linked with 'TW' marks # Credits for 'TU' head are linked with 'TW' marks **Internship in industry for 2-weeks

□To get certificate student should get following credits	
Internship	2 credits
Exit course-1 Web Designing using HTML & CSS	3 credits
Exit course-2 Web development using PHP and MYSQL	3 credits
Total credits	8 credits

SEM-III															
Course	Couse	Title of Course		'eachin Scheme	0		Evaluation	Schem	e and M	larks			C	redit	s
Code	Туре	Title of Course	TH	TU	PR	INSEM	ENDSEM	CCE	TUT /TW	PR /OR	TOTAL	ТН	TU	PR	TOTAL
2301201	PCC	Discrete Structures	3	-	-	20	60	20			100	3	-	-	3
2301202	PCC	Operating Systems	3	-	-	20	60	20			100	3	-	-	3
2301203	PCC	Computer Graphics	3	-	-	20	60	20			100	3	-	-	3
2301204	PCC	Operating Systems Lab	-	-	2	-	-	-	25	25	50	-	-	1	1
2301205	PCC	Object Oriented Programming and Computer Graphics Lab	-	_	4				50	50	100	-	-	2	2
2301206	MDM	Digital Electronics and Logic Design	3	-	-	20	60	20	-	-	100	3	-	-	3
2301207	MDM	Digital Electronics Lab	-	-	2	-	-	-	25	25	50	-	-	1	1
2301208	OE	Digital Marketing	2	-	-	-	-	50	-	-	50	2	-	-	2
2301209	VEC	Democracy, Election and Governance	-	2	-	-	-	50	-	-	50	-	2	-	2
2301210	VSEC	Design Thinking	-	1	2	-	-	-	Tut-25 TW-25	-	50	-	1	1	2
	•	Total	14	03	10	80	240	180	150	100	750	14	3	5	22

B. Tech Computer Engineering (2023 pattern)

		S.Y. H	B. Te	ch Co	mpu	ter Engi	neering w	ef AY	2024-2	25					
						SEM-I	[V								
Course	Couse	Title of Course		'eachin Scheme	0		Evaluation	Schem	e and M	Iarks			C	redit	S
Code	Туре	The of Course	ТН	TU	PR	INSEM	ENDSEM	CCE	TUT /TW	PR /OR	TOTAL	ТН	TU	PR	TOTAL
2300211A	BSC	Probability & Statistics	3	-	-	20	60	20			100	3	-	-	3
2301212	PCC	Data Structures	3	-	-	20	60	20			100	3	-	-	3
2301213	PCC	Software Engineering	3	-	-	20	60	20			100	3	-	-	3
2301214	PCC	Java Programming Lab	-	-	2	-	-	_	25	25	50	-	-	1	1
2301215	PCC	Data Structures Lab	-	-	4				50	50	100	-	-	2	2
2301216	MDM	Data Communication and Networking	3	-	-	20	60	20	-	-	100	3	-	-	3
2301217	MDM	Data Communication and Networking Lab	-	-	2	-	-	-	25	25	50	-	-	1	1
2301218	OE	Customer Relationship Management	2	-	-	-	-	50	-	-	50	2	-	-	2
2301219	VSEC	Universal Human Values	-	2	-	-	-	50	-	-	050	-	2	-	2
2301220	AEC	Foreign Language	-	1	2	-	-	-	Tut-25 TW-25	-	50	-	1	1	2
Total	1		14	03	10	80	240	180	150	100	750	14	3	5	22

Course	Course		Teac Sche	ching eme		Evaluatio	on Scheme an	d Mark	5			Cre	dits		
Code	Туре	Title of Course	ТН	TU	PR	INSEM	ENDSEM	CCE	TUT /TW	PR /OR	TOTAL	ТН	TU /TW	PR	TOTAL
2301221	EXIT	Internship	2-we	eeks		Internshi	p Report					-	2	-	2
2301222	EXIT -1	Graphic Designing https://klic.mkcl.org/designing/gr aphic-designing		hours ine Co		Online C	Certification					6	0	0	6
	Total													8	

*Internship in industry for 2-weeks □ To get certificate student should get following credits

Internship Exit course-1 **Total credits**

2 credits 6 credits 8 credits

		T.Y. I	B. Te	ch Co	ompu	iter Eng	gineering v	vef A¥	2025-	26					
						SEM-	V								
Course	Couse	Title of Course		'eachin Scheme	0		Evaluation	Schem	e and M	larks			Cı	redits	5
Code	Туре	The of Course	TH	TU	PR	INSEM	ENDSEM	CCE	TUT /TW	PR /OR	TOTAL	ТН	TU	PR	TOTAL
2301301	PCC	Data Structures and algorithms	3	-	-	20	60	20	-	-	100	3	-	-	3
2311302	PCC	Artificial Intelligence	3	-	-	20	60	20	-	-	100	3	-	-	3
2301303		Database Management Systems	3	-	-	20	60	20	-	-	100	3	-	-	3
2301304	PCC	Database Management Systems Lab	-	-	2	-	-	-	25	25	50	-	-	1	1
2301305	PCC	Data Structures and algorithms Lab	-	-	2	-	-	-	25	25	50	-	-	1	1
2301306	PEC	Program Elective Course I	3	-	-	20	60	20	-	-	100	3	-	-	3
2301307	PEC	Program Elective Course I Lab	-	-	2	-	-	-	25	25	50	-	-	1	1
2301308		Management Information System	2	-	-	-	-	50	-	-	50	2	-	-	2
2301309	MDM	Computer Organization and Architecture	3	-	-	20	60	20	-	-	100	3	-	-	3
2301310	CEP	Project Based Learning	-	1	2	-	-	-	Tut-25 TW-25	-	050	-	1	1	2
		Total	17	01	08	100	300	150	125	75	750	17	1	4	22

		T.Y. I	3. Te	ch Co	ompu	iter Eng	ineering w VI	vet AY	2025-	26					
Course	Couse			'eachin Scheme	0		Evaluation	Scheme	e and N	larks			С	redits	5
Code	Туре	Title of Course	ТН	TU	PR	INSEM	ENDSEM	CCE	TUT /TW	PR /OR	TOTAL	тн	TU	PR	TOTAL
2301311	PCC	Data Science and Big data	3	-	-	20	60	20	-	-	100	3	-	-	3
2301312	PCC	Theory of Computation	3	-	-	20	60	20	-	-	100	3	-	-	3
2301313	PCC	Data Science and Big data Lab	-	-	2	-	-	-	25	25	50	-	-	1	1
2301314	PEC	Program Elective Course II	3	-	-	20	60	20	-	-	100	3	-	-	3
2301315	PEC	Program Elective Course III	3	-	-	20	60	20	-	-	100	3	-	-	3
2301316	PEC	Program Elective Course II + Program Elective Course III Lab	_	-	2	-	-	-	25	25	50	-	-	1	1
2301317	MDM	Microcontrollers and Embedded Systems	3	-	-	20	60	20	-	-	100	3	-	-	3
2301318	OE	Project Planning and Management	2	-	-	-	-	50	-	-	50	2	-	-	2
2301319	VSEC	Full Stack	-	1	2	-	-	-	25	25	50	-	1	1	2
2301320	RM	Research Seminar	-	-	2	-	-	-	50	-	50	-	-	1	1
		Total	17	01	08	100	300	150	125	75	750	17	1	4	22

	C		Teachi	ng Scl	neme	E	Evaluation	Scher	ne and	d Mar	ks		(Cred	its
Course Code	Course Type	Title of Course	TH	TU	PR	INSEM	ENDSEM	CCE	TUT /TW		TOTAL	тн	TU	PR	TOTAI
Program El	ective C	Course I (Sem-V) (Student have to choose any or	ne of the	follow	ing)										
2301306A		Internet of Things													
2301306B	PEC	Augmented Reality and Virtual Reality	3	-	-	20	60	20	-	-	100	3	-	-	3
2301306C		Software Testing and Quality Assurance													
Program El	ective C	Course I Lab (Sem-V) (Student have to choose)	lab based	l on se	lected	l Progra	m Electiv	ve Co	urse I)					
2301307A		Internet of Things Lab													
2301307B	PEC	Augmented Reality and Virtual Reality Lab	-	-	2	-	-	-	25	25	50	-	-	1	1
2301307C		Software Testing and Quality Assurance Lab													
Program El	ective C	Course II (Sem-VI) (Student have to choose any	one of th	e follo	wing)									
2301314A		User Interface and User Experience													
2301314B	PEC	Generative AI and Prompt Engineering	3	-	-	20	60	20	-	-	100	3	-	-	3
2301314C		High Performance Databases													
Program El	ective C	Course III (Sem-VI) (Student have to choose lab	based of	n selec	ted P	rogram	Elective	Cours	se II)		•	L	L	L1	-
2301315A		Cloud computing													-
2301315B	PEC	Natural Language Processing	3	-	-	20	60	20	-	-	100	3	-	-	3
2301315C		High Performance Computing													
Program El	ective C	Course II + Program Elective Course Lab III	Lab (Se	em-VI) (Lat	based o	on chosen e	lectiv	e cour	se II a	and III by	y stı	ıder	nts)	
2301316	PEC	Program Elective Course II + Program Elective Course Lab III Lab	-	-	2	-	-	-	25	25	50	-	-	1	1

		Department Spec	cific	: Ex	cit (Course	s (To B.	. Voc	: Deg	gree))					
Course	Course		Teaching Scheme			Evaluation Scheme and Marks							Credits			
Code	Туре	Title of Course	ТН	TU	PR	INSEM	ENDSEM	CCE	TUT /TW	PR /OR	TOTAL	тн	TU /TW	PR	TOTAL	
2301321	EXIT	Internship	2-w ^r	eeks		Internshi	ip Report					-	2	-	2	
2301322	EXIT1	Video Editing https://klic.mkcl.org/designing/video-editing	120 Onli Cour		;	Online C	Certification					6	-	-	6	
											Total			8		

*Internship in industry for 2-weeks To get certificate student should get following credits -2 credits

Internship

Exit course-1

Total credits

- 6 credits - 8 credits

	Final year of B. Tech Computer Engineering wef AY 2026-27														
	SEM-VII														
Course	Couse	Tide of Comme		'eachin Schem	0		Evaluation	Scheme	e and N	Iarks		Credits			
Code	Туре	Title of Course	ТН	TU	PR	INSEM	ENDSEM	CCE	TUT /TW	PR /OR	TOTAL	ТН	TU	PR	TOTAL
2301401	PCC	Deep Learning	3	-	-	20	60	20			100	3	-	-	3
2301402	PCC	Cyber Security	3	-	-	20	60	20			100	3	-	-	3
2301403	PCC	Deep Learning Lab	-	-	2	-	-	-	25	25	50	-	-	1	1
2301404	PCC	Cyber Security Lab	-	-	2	-	-	-	25	25	50	-	-	1	1
2301405	PEC	Program Elective Course IV	3	-	-	20	60	20	-	-	100	3	_	-	3
2301406	PEC	Program Elective Course V	2	-	-	20	30	-	-	-	50	2	-	-	2
2301407	RM	Research Methodology	3	-	-	20	60	20	-	-	100	3	-	-	3
2301408	HSSM - EEM	Banking, Financial Services and Insurance	2	-	-	-	-	50	_	-	50	2	-	-	2
2301409	PROJ	Project Work	_	-	8	-	-	-	100	50	150	-	-	4	4
		Total	16	00	12	100	270	130	150	100	750	16	-	6	22

	Final year of B. Tech Computer Engineering wef AY 2026-27															
						SEM-V	III									
Course	Couse	Title of Course		'eachin Scheme	0	Evaluation Scheme and Marks							Credits			
Code	Туре	The of Course	ТН	TU	PR	INSEM	ENDSEM	CCE	TUT /TW	PR /OR	TOTAL	тн	TU	PR	TOTAL	
2301411	PCC*	Software Architecture and Design Patterns	3	-	-	-	100	-			100	3	-	-	3	
2301412	PEC*	Program Elective Course VI	3	-	-	-	100	-	-	-	100	3	-	-	3	
2301413	HSSM- EEM*	Startup and Entrepreneurship	2	-	-	-	-	50	-	-	50	2	-	-	2	
2301414	2301414 INTER NSHIP Internship				24	-	-	-	300	200	500	-	-	12	12	
		Total	08	00	24	-	200	50	300	200	750	08	-	12	20	

* Considering Internship of 6 months, these courses to be offered in online mode

Program Elective Courses

	Course		Teach	ing Scl	neme	Ev	aluation S	chem	e and	l Ma	rks	Credits			its
Course Code	Туре	Title of Course	ТН	TU	PR	INSEM	ENDSEM	CCE	TUT /TW		TOTAL	тн	TU	PR	TOTAL
Program Ele	ective C	ourse IV (Sem-VII) (Student have to choose any	one of th	e follo	wing)										
2301405A		Computer Vision													
2301405B	PEC	Information Retrieval	3	-	-	20	60	20	-	-	100	3	-	-	3
2301405C		Business Intelligence and Analytics													
Program Ele	ective C	ourse V (Sem-VII) (Student have to choose any o	ne of the	follov	ving)			L				1			
2301406A		Operation Research													
2301406B	PEC	Unix Internals	2	-	-	20	30	-	-	-	50	2	-	-	2
2301406C		Compiler Design	-												
Program Ele	ective C	ourse VI (Sem-VIII) (Student have to choose any	one of t	he foll	owing)	1	1				1		11	
2301412A		Blockchain													
2301412B	PEC	Bioinformatics	3	-	-	-	100	-	-	-	100	3	-	-	3
2301412C		Digital Forensic	1												

]	B. Tech. Computer Eng Pattern 2023 Semester 301201: Discrete Struct	: III	
Teaching	Scheme:	Credit Scheme:	Examination Sch	eme:
Theory: ()3 hrs/week	03	Continuous Com Evaluation: 20 M InSem Exam: 20 EndSem Exam: 60	arks Marks
Prerequis	site Courses: - 2300101A:	Linear Algebra andDiffe	rential Calculus	
Compani	on Courses:-			
 To und To und To stu To stu 	bjectives: derstand the concepts of rel derstand the use of number dy concepts of graphs and t dy algebraic structures utcomes: On completion o	theory and propositional trees		
		Course Outcomes		Bloom's Level
CO1	Solve problems using num	ber theory and proposition	onal logic	3-Apply
CO2	Make use of relationsand	functions to solve associa	ated problems	3-Apply
CO3	Apply graph theory to repr	resent data and solve asso	ociated problems	3-Apply
CO4	Apply the concepts of trees prefix code	s to generate minimum s	panning tree and	3-Apply
CO5	Make use of algebraic stru	ctures to solve associated	dproblems	3-Apply
		COURSE CONTENT	S	
Unit I	Number Theory and Pro	opositional Logic	(06 hrs)	CO1
prime, grea Propositio	heory: Introduction, divisit test common divisors, appl nal Logic: Propositional ec al logic, mathematical indu	ications of number theor uivalences, predicates ar	y in hashing and cry nd quantifiers, applic	ptography.
Unit II	Relations and Functions	5	(08 hrs)	CO2
partitions, l	Properties, n-ary relations, Hasse diagram, lattices, cha Types of functions, proper	ins and anti-chains, closu	ures of relations, Wa	urshall's algorithm.
Unit III	Graph Theory		(08hrs)	CO3
and circuit,	inology, types of graphs, re Euler path and circuit, Har maximum flow labeling alg	nilton path and circuit, si		
Unit IV	Trees		(07hrs)	CO4

Trees terminology, properties of tree, prefix codes and Huffman coding, cut sets, tree traversal, spanning trees, minimum spanning tree, Kruskal's and Prim's algorithms.

Unit V	Algebraic Structures and Coding Theory	(07hrs)	CO5
--------	--	---------	-----

The structure of algebra, algebraic systems, semi groups, monoids, groups, homomorphism and normal subgroups, congruence relations, rings, integral domains and fields, coding theory.

Text Books

1. Kenneth H. Rosen, "Discrete Mathematics and its Applications", Tata McGraw-Hill, ISBN 978- 0-07-288008-3

 C. L. Liu, "Elements of Discrete Mathematics", Tata McGraw-Hill, ISBN 10:0-07-066913-9
 Bernard Kolman, Robert C. Busby and Sharon Ross, "Discrete Mathematical Structures", Prentice-Hall of India /Pearson, ISBN: 0132078457, 9780132078450.

Reference Books

1. N. Biggs, "Discrete Mathematics", 3rd Ed, Oxford University Press, ISBN 0-19-850717-8

2. NarsinghDeo, "Graph with application to Engineering and Computer Science", Prentice Hall of India, 1990, 0 – 87692 – 145 – 4.

				St	rength	of CC	D-PO	PSO	Mapp	ing				
				PSO										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	-	-	-	-	-	-	-	-	-	-	2	-
CO2	3	3	-	-	-	-	-	-	-	-	-	2	2	-
CO3	3	3	2	2	-	-	-	-	-	-	-	2	2	-
CO4	3	3	-	-	-	-	-	-	-	-	-	-	2	-
CO5	3	3	3	2	-	-	-	-	-	-	-	2	2	-
Average	3	3	2.5	2	-	-	-	-	-	-	-	2	2	-

	Guidelines for Continuous Comprehensive Evaluation of Theory	eory Course		
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Quiz on Unit 1, Unit-2, Unit-4, Unit 5 each of 15 marks (Total marks will be converted to 15 Marks)	15		
2	Theory assignment on Unit-3 of 15 marks. (Total marks will be converted to 5 Marks)	5		
	Total	20		

	Patter	ch. Computer Engineer n 2023 Semester: III 2 : Operating systems	ing	
Teaching Sch	eme:	Credit Scheme:	Examination S	Scheme:
Theory: 03 h	rs./week	03	Continuous Co Evaluation: 20 InSem Exam: EndSem Exam) Marks 20 Marks
Prerequisite (Course: -			
Companion C	Course:- 2301204: Operat	ing Systems Lab		
 and Linker To study pr To get acqualgorithms To learn co To learn do operating s 	nd understand different systems. s. rocess scheduling algorithm nainted with the concepts of oncepts of memory manager ifferent, I/O management ystems.	ns and multithreading tec f synchronization, deadlo ment and page replacement techniques and understa	hniques ock prevention an ent algorithms. and the basic co	nd avoidance
Course Outco	mes: On completion of the		able to	
	_	ourse Outcomes		Bloom's Level
CO1	Illustrate the concept of s	systems software		2- Understand
CO2	Illustrate the concept of p scheduling problems			2- Understand
CO3	Explain the concepts of or detect, prevent and avoid		e techniques to	2- Understand
CO4	Demonstrate the use of p management		nms for memory	2- Understand
CO5	Explain the concept of I/	O management techniqu	es	2- Understand
CO6	Demonstrate the use of I	Linux commands and bas	ic shell utilities	2- Understand
	CO	URSE CONTENTS		
Unit I	Introduction to syste	ems programming	(07 Hrs)	C01
processors, Con Assemblers: E	omponents of System Soft npilers, and Debuggers. lements of Assembly Lang semblers, Design of Two Pa	ware, Text editors, Load guage Programming, A	Simple Assembl	
Unit II	Process mai	÷ .	(08 hrs)	CO2
Types of opera Process: Conce Process schedu scheduling	Operating Systems ting systems: Batch, Time- pt, Process control block, P lling types: First come fi -core programming, Multitl	rocess state diagram, Int rst serve, Shortest job f	er-process comm irst, Round robi	unication n, Priority-based

Unit III	Process coordination	(07 hrs)	CO3
Synchronizati	on: The critical-section problem, Peterson's solu	tion, Synchroni	zation hardware,
Mutex locks, S	emaphores		
-	ms of synchronization: Producer-consumer proble	m, Reader/writer	problem, Dining
philosopher pro			
	adlock characterization, Methods for handling	deadlocks, Dead	llock prevention,
	ance and detection, Recovery from deadlock.		
Unit IV	Memory Management	(07 hrs)	CO4
Memory Parti	tioning: Fixed partitioning, Dynamic partitioning		
Contiguous M	emory allocation techniques: First fit, Best fit, We	orst fit, Swapping	, Structure of the
	mentation, Demand paging		
	nent algorithms: First in first out, Optimal page	replacement, Le	ast recently used
translation look			
Unit V	I/O management and Introduction to Linux	07 hrs	CO5,CO6
I/O devices, D	sk scheduling algorithms: First come first serve, S	hortest seek time	e first algorithm,
SCAN, Circula			
	pting: Basic shell commands and scripting language		
	o Linux: Essential features, File systems, directorie		
pwd, cd, ls, cat	rm, cp, mkdir and Linux utilities such as tr, sed, gre	p, egrep, awk. Fi	le access rights.
	Text Books		
	mdhere, Systems Programming, and Operating Sy	stems, Tata Mc	Graw-Hill, ISBN
	-463579-7, Second Revised Edition		
	ilberschatz, Peter Baer Galvin and Greg Gagne	, "Operating Sy	stem Concepts",
	BN:978-81-265-5427-0, 9th Edition	nainlaa? Drantia	LI-11 ICDN 10.
	llings, "Operating System: Internals and Design Pri 1-3, ISBN 13: 978-0-13-380591-8, 8th Edition	ncipies, Prentice	e Hall, ISBN 10:
0-13-38039	Reference Books		
1 John Donov	Reference DOOKS		
		8-0-07-460482 3	3
	an, "System Programming", McGraw Hill, ISBN 97		
2. Tom Adelst	an, "System Programming", McGraw Hill, ISBN 97 ein and Bill Lubanovic, "Linux System Administra		
2. Tom Adelst 059600952	an, "System Programming", McGraw Hill, ISBN 97	tion", O'Reilly	Media, ISBN 10:

	Strength of CO-PO / PSO Mapping													
		PO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	-	1	-	-	-	-	-	-	-	I	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	2	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	2	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-	-	-
CO5	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO6	3	-	-	-	-	-	-	-	-	-	-	-	-	-
Average	3	2	-	-	-	-	-	-	-	-	-	2	-	-

	Guidelines for Continuous Comprehensive Evaluation of Theory Course									
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted								
1	Quiz on Unit-1, Unit-2, Unit-4, Unit-5 each of 15 marks(Totalmarks will be converted to 15 out of 60 Marks)(Total)	15								
2	Theory assignment on Unit-3 (One Assignment on Unit-3 of 15 marks will be converted to 5 Marks)	05								
	Total	20								

]	B. Tech. Computer Eng Pattern 2023 Semester 301203: Computer Graj	: III				
Teaching	Scheme:	Credit Scheme:	Examination Sch	eme:			
Theory: 0)3 hrs/week	03	prehensive larks Marks 60 Marks				
Prerequis	site Courses: - 2300101A I	Linear Algebra and Differ	rential Calculus				
Compani	on Courses :-						
To acqTo leaseTo get	bjectives: Juaint the learner with the b rn the various algorithms for familiar with the 2D and 3 utcomes: On completion o	or generating and renderin D transformation techniq	ng graphical figures	;			
		Course Outcomes		Bloom's Level			
	Explain basic concepts of opposite polygon	computer graphics to gen	erate line, circle and	d 2-Understand			
	Use polygon filling and po	lygon clipping algorithm	S	3-Apply			
CO3	Apply geometric transform	nations on 2D and 3D obj	ects	3-Apply			
CO4	Make use of color models rendering 2D/3D objects	and hidden surface remov	val algorithms for	3-Apply			
CO5	Develop graphical applicat	tions using Curves and Fr	ractals	3-Apply			
		COURSE CONTENT	'S				
Unit I	Scan Conversion Algori Files	thms and Display	(08 hrs)	C01			
Applicatior Scan conve Circle draw Display Fil	Introduction: Graphics Primitives - Pixel, Resolution, Aspect ratio, Frame buffer, Display devices, Applications of computer graphics Scan conversion: Line drawing algorithms: Digital Differential Analyzer (DDA), Bresenham. Circle drawing algorithms: Bresenham, Midpoint Display Files: Structure, Algorithms and Display file interpreter. Primitive operations on display file. Segment: Segment table, Segment creation, closing, deleting and renaming, Visibility.						
Unit II							
 Polygons: Introduction to polygon. Inside test: Even-Odd method, Winding number method Polygon Filling: Seed fill, Scan line fill Windowing and clipping: Introduction to windowing, 2-D clipping: Cohen – Sutherland line Clipping algorithm, Sutherland-Hodgeman Polygon clipping algorithm, Weiler-Atherton generalized Polygon Clipping algorithm 							
Unit III	2D, 3D Transformati	0	(07hrs)	CO3			
	formations : Homogeneous bitrary point	s Coordinates, Translatio	on, scaling, rotatio	n and shear, rotation			

3-D transf	ormations: Translation, scaling, rotation, rotation al	bout an arbitrary ax	is					
Projections : Parallel (Oblique: Cavalier, Cabinet and orthographic: isometric, diametric, trimetric) and								
Perspective (Vanishing Points – 1 point, 2 point and 3 point).								
Unit IV	Color Models and Hidden Surface Removal	CO4						
Colour mo	dels: Properties of Light, CIE chromaticity Diagran	n, RGB, HSV, CMY	Y					
Hidden Su	rface Removal: Introduction, Back face detection a	nd removal, Algori	thms: Depth buffer					
(z), Depth s	orts (Painter), Area subdivision (Warnock)							
Unit V	Curves and Fractals	(07hrs)	CO5					
Curves: In	troduction, Interpolation and Approximation, Ble	ending function, B	-Spline curve, Bezier					
curve								
Fractals: In	ntroduction, Fractal generation: Koch curve, Hilbert	curve, Application	S.					
	Text Books							
1. S. F	Iarrington-Computer Graphics, "A Programming A	Approach", Second	Edition, McGraw-Hill					
Pub	lications, 1987, ISBN:0-07-100472-6							
2. D. I	Rogers, "Procedural Elements for Computer Graph	nics", Second Edition	on, Tata McGraw-Hill					
Pub	lication, 2001, ISBN:0-07-047371-4							
	Reference Books							
1. D. I	Rogers, J. Adams, "Mathematical Elements for Co	omputer Graphics",	Second Edition, Tata					
Mc	GrawHill Publication, 2002, ISBN:0 – 07 – 048677	- 8						
2. J. F	oley, V. Dam, S. Feiner, J. Hughes, "Computer G	raphics Principles	and Practice", Second					
Edition, Pearson Education, 2003, ISBN:81 – 7808 – 038 – 9								
	Hearn, M. Baker, "Computer Graphics - C Versie	on", Second Editio	n, Pearson Education,					
200	2, ISBN:81 – 7808 – 794 – 4							

	Strength of CO-PO PSO Mapping													
						I	20						PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	-	-	2	-	-	-	-	-	-	-	2	-
CO2	3	2	-	2	2	-	-	-	-	-	-	-	2	-
CO3	3	2	2	-	2	-	-	-	-	-	-	-	2	-
CO4	3	2	2	2	3	-	-	-	-	-	-	2	2	-
CO5	3	2	3	3	3	-	-	-	-	-	-	2	2	-
Average	3	2	2.33	2.33	2.4	-	-	-	-	-	-	2	2	-

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted					
1	Quiz on Unit 1, Unit-2, Unit-4, Unit 5 Each of 15 marks (Total marks will be converted to 15 Marks)	15					
2	Theory assignment on Unit-3 of 15 marks will be converted to 5 Marks	5					
	Total	20					

S. Y. B. Tech. Computer Engineering Pattern 2023 Semester: III 2301204: Operating Systems Lab							
Teaching Scheme:Credit Scheme:Examination Scheme:							
Practical: 02	hrs/week	01	Term Work: 25 Marks Practical Exam : 25 Marks				
Prerequisite (Courses:- 2300108A: Progr	amming In C					
Companion C	Course:- 2301202: Operati	ng Systems					
 To study p To get acqualgorithms To learn co To introdu 	and operating system service rocess scheduling algorithms uainted with the concepts of	s and multithreading tech synchronization, deadloc nent and I/O management	niques k prevention and techniques				
	(Course Outcomes		Bloom's Level			
CO1	Demonstrate the use of co basic shell commands	ontrol flow statements and	1	2- Understand			
CO2	Illustrate the concept of p scheduling problems			2- Understand			
CO3 Compare algorithms for deadlock detection, prevention and avoidance							
CO4	Demonstrate the use of pa	age replacement algorithr	ns	2- Understand			
CO5	Describe Linux command	ds and utilities such as gre	ep, tr, sed, awk	2- Understand			
Sr. No.	List of Laboratory	Assignments/ Experim	ents	COs Mapped			
				CO1			

Sr. No.	List of Laboratory Assignments/ Experiments	COs Mapped
1	Write a shell script for the implementation of control flow statements.	CO1
2	Write a shell script to find the factorial of a given number.	CO1
3	Write a C program to compute and print the average waiting time, average turnaround time, and CPU burst times for the given list of processes. Display/print the Gantt chart for first come first serve, shortest job first, priority scheduling, and round-robin scheduling algorithm.	CO2
4	Write a C program to implement the banker algorithm.	CO3
5	Write a C program to implement the producer-consumer problem.	CO3
6	Write a C program to implement page replacement algorithms such as first in first out, least recently used, and optimal page replacement.	CO4
7	Installation of Linux operating system and basic configuration.	CO5
8	Assignment on Unix basic commands such as pwd, ls, cat, redirection, and pipes and Unix utilities like tr, sed, grep, egrep, awk.	CO5
9	Execute the following AWK operations on the text file:	CO5

	1	Print the lines that match the given pattern	
	2	Splitting a Line into Fields	
	3	To find the length of the longest line present in the file	
	4	Printing the lines with more than specified characters	
÷		Guidelines for Laboratory Conduction	
Use of cod	ling st	andards and Hungarian notation, proper indentation, and comments.	
Use of op	en-soi	arce software is to be encouraged. Operating System Recommend	ed: Linux or its
derivative.	Prog	amming tools recommended: Open Source line gcc	
		Guidelines for Student's Lab Journal	
The labora	atory	assignments are to be submitted by students in the form of a jour	nal. The journal
consists of	f a C	ertificate, table of contents, and handwritten write-up of each as	signment (Title,
problem s	tatem	ent, theory concepts in brief, algorithm, flowchart, test cases, an	nd conclusions).
Program co	odes v	with sample outputs shall be submitted in soft form.	
		Guidelines for Term Work Assessment	
Continuous	asses	sment of laboratory work shall be based on the overall performan	ce of a student.
Assessment	ofea	ch laboratory assignment shall be based on rubrics that include	
R1- timely of	compl	etion (10),	
R2- underst	anding	g of assignment (10) and	
R3- present	ation/	clarity of journal writing (10).	

	Strength of CO-PO / PSO Mapping													
]	PO						PS	50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	-	I	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	2	-	-
CO3	3	-	-	-	-	-	-	-	-	-	-	2	-	-
CO4	3	-	-	-	-	-	-	-	-	-	-	-	-	-
CO5	3	-	-	-	-	-	-	-	-	-	-	-	-	-
Average	3	-	-	-	-	-	-	-	-	-	-	2	-	-

	S. Y. B. Tech.Computer Engineering Pattern 2023 Semester: III 2301205: Object Oriented Programming and Computer Graphics Lab							
Teaching	g Scheme:	Credit Scheme:	Examination Schen	ne:				
Practical	l: 04 hrs/week	02	Termwork: 50 Mar Practical Exam : 50					
	isite Courses: - 2300108A: 2300118A: ion Courses:- 2301203: Com	Computational Thinking	and Problem Solving					
To acTo un	nderstand the fundamental co equaint the learner with the b inderstand and apply various Dutcomes: On completion o	basic concepts of Comput methods and techniques	er Graphics of OOP to solve a give	en problem				
		Course Outcomes		Bloom's Level				
CO1	Apply Object Oriented Proproblems	ogramming features to sol	ve real world	3-Apply				
CO2	Develop an application usi	ng exception handling		3-Apply				
CO3	Make use of various algorithms for scan conversion, filling & clipping of polygon 3-Apply							
CO4	Apply geometric transform	nations on 2D objects		3-Apply				
CO5	Develop graphical applicat techniques	tions using Curves, Fracta	als and animation	3-Apply				

	List of Laboratory Experiments / Assignments					
Sr. No.	Laboratory Experiments / Assignments	CO Mapped				
1	 Write a C++ menu driven program to take integer number as input from user to calculate and display- i. Square ii. Cube iii. Square root iv. Factorial v. sum vi. product 	CO1				
2	Write a C++ program which will ask the user to enter his/her marks (out of100). Define a function that will display grades according to the marksentered as below:MarksGrade91-100O81-90A71-80B61-70C	CO1				

	51-60 D	
	51-60 D 41-50 Pass	
	<=40 Fail	
	Write a program by creating an 'Employee' class having the following functions and print the final salary.	CO1
	1 - 'getInfo()' which takes the salary, number of hours of work per day of employee as parameters	
3	2 - 'AddSal()' which adds Rs.10000 to the salary of the employee if it is less than Rs.50000.	
	3 - 'AddWork()' which adds Rs. 1000 to the salary of the employee if the number of hours of work per day is more than 6 hours.	
	Write a program to create a directory that contains the following information. (a) Name of a person	CO1
4	(b) Address(c) Telephone Number (if available with STD code)	
	(d) Mobile Number (if available)	
	(e) Head of the family	<u>CO1</u>
	Write a program that takes your full name as input and displays the abbreviations of the first and middle names except the last name which is	CO1
5	displayed as it is. For example, if your name is Anil Ramchandra Salunke,	
	then the output should be A. R. Salunke.	
	Make a class named Fruit with a data member to calculate the number of	CO1
6	fruits in a basket. Create two other class named Apples and Mangoes to	
	calculate the number of apples and mangoes in the basket. Print the number of fruits of each type and the total number of fruits in the basket.	
	Write a C++ program to create User defined exception to check the	CO1. CO2
	following conditions and throw the exception if the criterion does not met.	
	a. User has age between 18 and 55	
	b. User has income between Rs. 50,000 – Rs. 1,00,000 per month	
7	c. User stays in Pune / Mumbai/ Bangalore / Chennai	
	d. User has 4-wheeler	
	Accept age, Income, City, Vehicle type from the user and check for the conditions mentioned above. If any of the condition not met then throw the	
	exception.	
		CO1, CO3
	and Bresenham's circle drawing algorithm.	
8		
-		
9		CO1, CO3
	using Seed Fill /Scan LineFill algorithm.	<u> </u>

		a a4 a a a				
10	Write a menu driven C++ program to implement Cohen Southerland line clipping algorithm by accepting a window and a line to be clipped against it.	CO1, CO3				
11	Write C++ program to draw 2-D object and perform following basic transformations a)Scaling b) Translation c) Rotation.	CO1, CO4				
12		CO1, CO5				
13	Write C++ program to generate fractal patterns by using Kochcurves.	CO1, CO5				
14	Mini Project: Design and implement game / animation clip / Graphics Editor using open					
Additional	Programming Problems					
1	 We want to store the information of different vehicles. Create a class named Vehicle with two data member named mileage and price. Create its two subclasses *Car with data members to store ownership cost, warranty (by years), seating capacity and fuel type (diesel or petrol). *Bike with data members to store the number of cylinders, number of gears, cooling type(air, liquid or oil), wheel type(alloys or spokes) and fuel tank size(in inches) Make another two subclasses Audi and Ford of Car, each having a data member to store the model type. Next, make two subclasses Bajaj and TVS, each having a data member to store the information of an Audi and a Ford car (i.e. model type, ownership cost, warranty, seating capacity, fuel type, mileage and price.) Do the same for a Bajaj and a TVS bike. 	CO1				
2	Write a program to find the number of vowels, consonants, digits and white space characters in a string.	CO1				
3	Print the sum, difference and product of two complex numbers by creating a class named 'Complex' with separate functions for each operation whose real and imaginary parts are entered by the user.	CO1				
4	Write C++ program to draw 2-D object and perform following basic transformations:a)XShear b) Y Shear c) Reflection about Y=X.	CO1, CO4				
5	Write C++ program to draw a polygon and identify its type whether convex or concave.	CO1, CO3				
	Guidelines for Laboratory Conduction					
Use of open Operating S	ng standards and Hungarian notation, proper indentation and comments. source software is to be encouraged. ystem recommended: - Linux or its derivative g tools recommended: - Open Source line gcc/g++ Guidelines for Student's Lab Journal					
The laborate	ory assignments are to be submitted by students in the form of a journal. Journal	rnal consists of				
Certificate,	table of contents, and handwritten write-up of each assignment (Title, problem st brief, algorithm, flowchart, test cases and conclusions). Program codes with sample	atement, theory				
	Guidelines for Termwork Assessment					
each labora understandin	assessment of laboratory work shall be based on overall performance of a student tory assignment shall be based on rubrics that include R1- timely comple- ng of assignment (10) and R3- presentation/clarity of journal writing (10) (C Hungarian notation, input validation etc)	etion (10), R2-				

	Strength of CO-PO/PSOMapping														
						F	0						PS	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	3	-	2	-	-	-	-	-	-	3	3	3	
CO2	3	3	3	-	2	-	-	-	-	-	-	3	3	3	
CO3	3	3	-	3	3	-	-	-	-	-	-	3	3	3	
CO4	3	-	-	-	3	-	-	-	-	-	-	-	-	3	
CO5	3	3	3	3	3	-	-	-	-	-	-	3	3	3	
Average	3	3	3	3	2.6	-	-	-	-	-	-	3	3	2	

		B. Tech. Computer Eng Pattern 2023 Semester: Digital Electronics and	III		
Teaching S	Scheme:	Credit Scheme:	Examination Sche	me:	
Theory: 03 hrs/week03Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks					
Prerequisi	te Courses: - 2300107A: F	Fundamentals of Electron	ics Engineering		
Companio	n Course: - 2301207: Digi	tal Electronics Laborator	y		
To devTo dev	ojectives: dy logic minimization tech velop skills for design and i velop skills for design and i itcomes: On completion of	mplementation of combi mplementation of sequer	ntial logic circuits	its	
		Course Outcomes		Bloom's Level	
CO1 CO2	Solve the problem of minin method of Boolean express Build combinational circui	7 3-Apply 3-Apply			
CO2 CO3	Build combinational circui	5 5	ric	3-Apply	
CO3	Explain applications of Fli	2-Understand			
CO5	Develop sequential logic c			3-Apply	
		COURSE CONTENT			
Unit I	Logic Minimization Tec	hniques	(08 hrs)	CO1	
arithmetic,	nary Number Representation Boolean expression: sur on of Boolean expression u	n of product and produ	ict of sum form, I		
Unit II	Introduction to Combina	tional Circuits	(06 hrs)	CO2	
adder, Full	n to combinational circuits, adder, Half subtractor, Full k ahead carry generator, BO	l subtractor, Universal ad		•	
Unit III	Combinational Logic Des	CO3			
expression Programma	rs, Cascading multiplexers, using multiplexer and dem able Logic Devices: ROM,	ultiplexer, Comparators, PLA, PAL	Parity generator and	d Checker.	
	Introduction to Sequentia		(08 hrs)	CO4	
& clear, Cl Triggering	between Combinational an ocked-SR Flip Flop, JK Fli methods: Edge triggered ar ers, Bidirectional shift regis	p Flop, Master slave JK t nd level triggered, Truth	flip flop, T Flip Flop tables and excitation	p, D Flip Flop, n tables, Registers,	

Unit V Sequential Logic Design	(08 hrs)	CO5
Counters: Types – Synchronous and asynchronous counters		

Asynchronous Counters: Modulus of the counter, Decade counter, Up, Down and Up/Down counters Synchronous sequential circuit design, State diagram, State assignment, State table, State reduction, Design procedure, Sequence generator, Sequence detector (With and without overlap)

Text Books

- 1. R. P. Jain, Modern Digital Electronics, Fourth Edition, Tata McGraw Hill, ISBN 978-0-07-06691-16
- Moris Mano, Digital Logic and Computer Design, Second Edition, Pearson, ISBN: 978-8177584097

Reference Books

1. John Yarbrough, Digital Logic applications and Design, Fourth Edition, Thomson Publication , ISBN:978-8131500583

 Malvino, D.Leach Digital Principles and Applications, Sixth Edition, Tata McGraw-Hill, ISBN: 978-0070601758

				St	trength	of C	O-PO	PSO N	Mappi	ng					
						F	0						PS	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	-	-	-	-	-	-	-	-	-	-	-	-	
CO2	3	3	2	-	-	-	-	-	-	-	-	-	-	-	
CO3	3	3	2	-	-	-	-	-	-	-	-	-	-	-	
CO4	3	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO5	3	3	3	-	-	-	-	-	-	_	-	_	_	_	
Average	3	3	2.33	-	-	-	-	-	-	-	-	_	_	_	

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation						
1	Quiz on Unit 1, Unit 2, Unit 3 each of 15 marks	15					
	(Total marks will be converted to 15 Marks)						
2	Theory assignment on Unit 4, Unit 5 each of 10 marks	5					
	(Total marks will be converted to 5 Marks)						
	Total	20					

	S. Y. B. Tech. Computer Engineering Pattern 2023 Semester: III 2301207: Digital Electronics Lab								
Teaching	Credit Scheme: Examination Scheme:								
Practical	: 02 hrs/week	01	Term Work: 25 Ma Practical Exam: 25						
Prerequis	site Courses: - 2300107A: F	undamentals of Electro	onics Engineering						
Companio	on Course:- 2301206: Digita	l Electronics and Logic	Design						
Course O	bjectives:								
• To	study logic minimization tecl	nniques							
• To	develop skills for design and	implementation of com	binational logic circuit	S					
• To	develop skills for design and	implementation of sequ	ential logic circuits						
Course O	utcomes: On completion of	the course, students wi	ll be able to-						
		Course Outcomes		Bloom's Level					
CO1	Solve the problem of minim	ization using K Map and	d Quine Mc-Clusky	3-Apply					
	method of Boolean expressi	on	-						
CO2	Build combinational circuits	using AND-OR logic		3-Apply					
CO3	Build combinational circuits	using SSI and MSI log	ic	3-Apply					
CO4	Explain applications of Flip	Flops, registers and shift	ft registers	2-Understand					
	CO5 Develop sequential logic circuits using Flip Flops and MSI logic 3-Apply								

	List of Laboratory Experiments							
Sr. No.	Laboratory Experiments	CO Mapped						
1	To Realize Full Adder using logic gates	CO1,CO2						
2	Design and implement Code Converters-Binary to Gray	CO1,CO2						
3	Design and implement of BCD Adder using 4-bit Binary Adder (IC 7483)	C01,C02,C03						
4	Realization of Boolean Expression using Multiplexer	CO3						
5	Design and implement 2 bit comparator using logic gates	CO1, CO2						
6	Design and implement Parity Generator and checker	CO1, CO2						
7	Implement 2 bit Ripple Counter using JK Flip Flop	CO4, CO5						
8	Design Synchronous 2 bit Up/Down Counter with mode control using JK Flip Flop	CO1, CO4, CO5						
9	Design and implement Modulo-N counter using Decade Counter IC 7490	CO4,CO5						
10	Design and implement Sequence generator and detector using JK Flip Flop	CO1, CO4, CO5						
Additiona	l Assignments							
1	To Realize Full Subtractor using logic gates	CO1,CO2						

2	Design and implement Code Converters-BCD to Excess 3	CO1,CO2				
3	Realization of Full Adder using Decoder	CO3				
4	Implement 3/4 bits shift registers using D Flip Flop	CO4				
	Guidelines for Laboratory Conduction					

1. Faculty will brief the given experiment and its procedure to students.

2. Apparatus and equipment required for the allotted experiment will be provided by the lab assistants using Standard Operating Procedure.

3. Students will perform the allotted experiment in a group (three/four students in each group) under the supervision of faculty and lab assistant.

4. After performing the experiment students will show results to the faculty.

Guidelines for Student's Lab Journal

Write-up should include title, aim, steps of circuit designing (Block Diagram, Truth Table, K Map, Expression, Realization, Conclusion)

Guidelines for Termwork Assessment

Continuous assessment of laboratory work shall be based on the overall performance of a student. Assessment of each laboratory assignment shall be based on rubrics that include

R1- timely completion (10),

R2- understanding of experiment (10) and

R3- presentation/clarity of journal writing (10)

]	B. Tech. Computer Engineer Pattern 2023 Semester: III 2301208: Digital Marketing	ing					
Teaching		Credit Scheme:	Examination So	cheme:				
Theory: (02 hrs/week	02	Continuous Con					
Duonocui	aita Courraga		Evaluation: 50 N	larks				
	Prerequisite Courses:							
Compani	ion Course :							
Course O)bjectives:							
• To	acquaint the students with	the concepts of digital marketi	ng.					
• To	explain the features of soc	ial media marketing.						
• To	illustrate the overview of I	narketing on various digital pla	atforms such as Fa	cebook and				
Ye	ouTube.							
• To	develop a digital marketin	g plan that will address commo	on marketing chall	enges.				
• To	b learn about web based mai	rketing applications such as we	b analytics and co	ontent				
	anagement.	0 11	J					
		f the course, students will be a	ble to-					
		Course Outcomes		Bloom's Level				
CO1	Explain concept of digital			2-Understand				
CO2		entation, Targeting and Posit						
CO3	organizational marketing c	•		2-Understand				
CO4		g on the social media platforms		2-Understand				
CO5	Illustrate applications of marketing	web analytics and content	management in	2-Understand				
		COURSE CONTENTS						
Unit I	Introduction to Digital M	larketing	(04 hrs)	CO1				
Concept an	d definition of digital mark	eting; Traditional Vs. Digital r	narketing; Digital	marketing				
channels an	nd platforms; Skills require	d in digital marketing ; Creatin		an.				
Unit II	Marketing	and Positioning to Digital	(05 hrs)	CO2				
0	1	fits, Criteria for segmenting						
0 0		ss, Government and Customer						
	· · · ·	tive in digital marketing applic		002				
Unit III	Social Media Marketing		(05 hrs)	CO3				
		Purpose, types of social media						
		ons, Social Media Engagemen	i, Target audience	e, Snaring content				
Unit IV	on social media, Do's and don'ts of social media.Unit IVFacebook and YouTube Marketing(05 hrs)CO4							
		ő	× /					
	racebook Marketing: Pro and Settings.	ofiles and Pages, Business Ca	legomes, Creating	, racebook Pages;				
U	0	ogle Pages for YouTube Ch	annel Verify Ch	annel Wehmaster				
	nel customization; Monetiz	• •	uniter, verify Cli					
Unit V	Web Analytics and Conte	· · ·	(05hrs)	CO5				

Understanding Web Analytics: Purpose, Goals & objectives, Web Analytic tools, Web Analytics Mistakes and Pitfalls.

Basics of Content Marketing: Introduction, Content management, Content marketing statistics, Types of Content.

Text Books

- 1. Damian Ryan," Understanding Digital Marketing: Marketing Strategies for Engaging the Digital Generation", Kogan Page Publisher
- 2. Philip Kotler, "Marketing 4.0: Moving from Traditional to Digital", Publisher Wiley
- 3. Jan Zimmerman, DeborahNg,"Social Media Marketing All-In-One", For Dummies; 3rd edition (April 6, 2015)

Reference Books

- 1. Seema Gupta, "Digital Marketing", McGraw Hill Education
- 2. Punit Singh Bhatia," Fundamentals of Digital Marketing", Pearson

				S	trength	n of C	O-PO	PSO N	Mappi	ng				
						I	20						PS	50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO2	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO4	2	-	-	-	-	-	-	-	-	-	-	2	-	-
CO5	2	-	-	-	-	-	-	-	-	-	-	2	-	-
Average	2	-	-	-	-	-	-	-	-	-	-	2	-	-

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Marks Allotted						
1	Quiz on Unit 1, Unit 2, Unit 4 each of 20 marks (Total marks will be converted to 30 Marks)	30					
2	Assignment on Unit 3 and Unit 5 each of 10 marks	20					
	Total	50					

		B. Tech. Computer En Pattern 2023 Semester Democracy, Election ar	: III			
Teaching S	Scheme:	Credit Scheme:	Examination Sche	eme:		
Futorial: (utorial: 02 hrs/week 02 Continuous Comprehensive Evaluation: 50 Marks Total: 50 Marks					
Prerequisi	te Courses if any: -					
Course Ob	jectives:					
• Thi	s module also aims to ma	ke the individual unders	stand the different a	spects of democracy		
and	its implications in the over	all development of the s	tate.			
	e syllabus is introduced fr	1	1	Ũ		
	lege, enroll themselves as v	0		•		
	ticipate not only in election Itcomes: On completion of			ess in general.		
		Course Outcomes				
		Bloom's Level				
<u>CO1</u>	Understand and practice key principles of Democracy2-UnderstandIdentify how different rights are protected in Democratic systems2-Understand					
CO2		2-Understand				
CO3	Understand various approa			2-Understand		
CO4	Reflect on the various three	eats and challenges to D	emocracy	3-Apply		
		COURSE CONTEN	ГS			
Unit I	Democracy- Foundat	ion and Dimensions	(08 hrs)	COs Mapped - CO1, CO2, CO4		
	on of India, Evolution of D c, and Political	Democracy- Different Mo	odels, Dimensions o	f Democracy- Social		
Unit II	Decentra	lization	(08 hrs)	COs Mapped - CO1, CO2, CO3, CO4		
Indian tra period 73 ¹	dition of decentralization, and 74 th amendments, Cl			and ethnicity		
Unit III	Goveri	nance	(08 hrs)	COs Mapped – CO2, CO3, CO4		
Meaning a	nd concepts, Government a		n and exclusion			
		Text Books				
	oduction to the Constitution			lition		
2. Ess	ays on contemporary India,	Bipan Chandra, Har-Ar	and Publications.			

Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation			
1	Three Assignments on unit-1, Unit-2, Unit-3 & 4	30		
2	Group Presentation on Unit-5	10		
3	LMS Test on Each Unit	10		
	Total	50		

S.Y. B. Tech. Computer Engineering Pattern 2023 Semester: III 2301210:Design Thinking						
Teaching Scheme:		Credit Scheme:	Examination Scheme:			
Theory :01 hr/week Practical: 02 hrs/week		01 01	Tutorial: 25 Marks Termwork: 25 Marks			
Prerequ	isite Courses : FYE 221015	Engineering Exploration	1			
Compan	ion Course:					
Course	Objectives:					
• To	understand concepts of des	gn thinking				
	understand different phases	0 0				
Course Outcomes: On completion of the course, students will be able to–						
	1	Course Outcomes		Bloom's Level		
CO1	Explain stages and process of	design thinking		2- Understand		
CO2	Identify the methods to empathize and define the problem			3- Apply		
CO3	Apply the ideation techniques for problem solving			3- Apply		
CO4	Construct the prototype to evaluate a design			3- Apply		
CO5	Apply testing techniques to improve the performance.			3- Apply		
	I	COURSE CONTENT	Γ S			
Unit I	Overview of Design Thinkin	ng Process	(02 hrs)	CO1		
Introduction to DesignThinking - Definition, Ideas, Inventions, Innovations, Origin of Design Thinking, Importance of Design Thinking, Problem solving, Design Thinking tools. Human-Centered Design (HCD) process - Empathize, Define, Ideate, Prototype and Test. Week 1:https://drive.google.com/drive/folders/19wC ynKlyLYdnPRV aNrxIsUBvt9UcNo?usp=share_link						
Unit II	Empathy and Define		(02 hrs)	CO2		
lone prior Define - Ho	How to emphasize, Role of er to empathy mapping, Custome ow might we questions, The Fiv tps://drive.google.com/drive/fo	r journey mapping. ve Whys Method.				
Unit III	Ideation		(02 hrs)	CO3		
Value, Incl Appropriat	ation - Basic design directions usion, Sketching, Presenting i ion, Humour, Personification, tps://drive.google.com/drive/fo	deas, Refinement, Thinking Visual metaphors.	g in images, Thinking	; in signs,		

Unit IV	Prototype	(02 hrs)	CO4
• •	g - Assumptions during the Design Thinking process, Stor Dirty Prototyping, Validation in the market, Best practices	•	l prototypes,
<u> </u>	ps://drive.google.com/drive/folders/111xxzuCbCZ75Ut7j		et?usp=share_link
Unit V	Testing and Implementation	(02 hrs)	CO5
Obtaining f Implement	-Technique for interviews and surveys, Kano Model, De eedback to refine product usability. ation - Efficiency and effectiveness of innovation and im ps://drive.google.com/drive/folders/111xxzuCbCZ75Ut7j	plementation strategi	les.
	Text Books		
2.Christian 3. Design T	mbrose, Paul Harris,"DesignThinking", AVA Publishing Mueller- Rotenberg, "Handbook of DesignThinking - Tip hinking", "Change by Design: How Design Thinking Tra lovation", ISBN:9780061937743	os & Tools for how to)
	Reference Books		
Busines 2. Jeanne L	otee, Wiley,"Design Thinking for Strategic Innovation: W s or Design School", ISBN: 978-1-118-62012-0 iedtka,Tim Ogilvie,"Designing for Growth: A Design Thi ity Press, ISBN: 0231158386, 9780231158381		
	MOOC Course		
1. Design T	hinking - A Primer: Prof. Bala Ramadurai- https://archive	e.nptel.ac.in/courses/	110/106/110106124

				Str	ength o	of CO-	PO/PS	SO Ma	appi	ng				
		PO								Р	PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	-	-	-	-	-	2	-	-	-	-	3	2
CO2	2	2	-	-	-	-	-	2	-	-	-	-	2	2
CO3	3	3	3	-	-	-	-	2	-	-	-	-	2	-
CO4	2	3	3	-	-	-	-	2	-	-	-	-	-	-
CO5	2	2	3	-	-	-	-	2	-	-	-	-	-	-
Average	2.66	2.66	1.50	-	-	-	-	2	-	-	-	-	2.33	2

	Design Thinking Laboratory List of Tasks						
Sr. No.	Tasks to be performed	COs Mapped					
1	Creating teams, assigning roles and responsibilities	CO1					
2	Empathy : Brainstorming, ideation and setting actionable goal statements	CO1, CO2					
3	Identify stakeholders, people/organization, problems and opportunities, prepare questionnaire and discuss with stakeholders	CO1, CO2					
4	Draw mind maps	CO1, CO2					
5	Construct empathy map	CO2					
6	Develop customer journey map	CO1, CO3					

7	Identify required skills and techniques to solve listed problems	CO1, CO2, CO3		
8	Enlist all possible solutions	CO1, CO2,CO3		
9	Make a prototype for user testing	CO4		
10	Test the prototype	CO5		
	Guidelines for Laboratory Conduction			
• Ent	dents will work in a group, preferably 4-6 students per group. The project work is divided into 10 tasks. ulty is to monitor progress of each task during phases of project work.			
	Guidelines for students Lab Journal			
Students	will submit the term work in the form of a project report at the end of semester.			
	Guidelines for Term work Assessment			
Each tas	k carries 30 marks based on the following rubrics.			
R1: T	10 Marks			
R2: Understanding 10 Marks				
R3: I	R3: Documentation 10 Marks			
	esentation: 30 Marks Final eport : 30 Marks			

		S. Y. B. Tech. Semester: IV (Compute 0211A: Probability & S		DS)			
Teaching	Scheme:	Credit Scheme:	Examination Scheme:				
Theory :0)3hrs/week	03	03 Continuous Comprehens Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks				
Prerequis	ite Courses: - Basic concep	ts of statistics and probal	oility.				
Course O Probability	bjectives: To make the stude theory.	ents familiarize with concep	ts and techniques	s in Statistical methods &			
Course O	utcomes: On completion of	the course, students will	be able to				
		Course Outcomes		Bloom's Level			
CO1	Define and understand bas	2-Understanding					
CO2	Apply the basic concepts of	3- Apply					
CO3	Apply the basic concepts of problems	Apply the basic concepts of probability distribution theory to real life 3- Apply problems					
CO4	Analyze real life problems distribution	by using theory of statis	tics and Probab	ility 4-Analyze			
CO5	Evaluate real life problems distribution	by using theory of statis	tics and Probab	ility 5-Evaluate			
		COURSE CONTENT	S				
Unit I	Descriptive	measures	(08hrs)	Cos Mapped CO1, CO2, CO4, CO5			
	of central tendency (Mean, Deviation, Range), coefficient		-				
Unit II	Random Variable & D	istribution functions	(7hrs)	Cos Mapped CO1, CO3, CO4, CO5			
function, I	Variable, Distribution function Probability mass function (point function) In function (Continuous and	.m.f.), Probability density	· · •				
Unit III	Probability distributio	ns	(7hrs)	Cos Mapped CO1, CO3, CO4, CO5			
Moment g Probability	ical expectation and General enerating function y distributions: Geometric, H Normal, Uniform.	C	-				
Unit IV	Bivariate Distribu	ition Functions	(7hrs)	Cos Mapped CO1, CO3, CO4, CO5			

Joint and Marginal Probability Mass Function, Joint and Marginal Probability Density Function and Conditional Probability Functions.

Unit V	Correlation and Regression	(7hrs)	Cos Mapped		
			CO1, CO2, CO4, CO5		
Covarianc	e, Concept of correlation, Karl's Pearson's Coefficie	nt of Correlation	on, Rank correlation		
oefficient	t, Spearman's rank Correlation coefficient. Regression	on: Lines of reg	gression, Regression		
coefficient	ts. Fitting of Curve: Fit Straight Line, Parabola and E	xponential cui	rves.		
	Text Books				
 S.C. Gupta, V.K. Kapoor, "Fundamentals of Mathematical Statistics, S. Chand & Sons, Tenth revised edition. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publication, Delhi. 					
3. J. Med	lhi, "Statistical Methods: An Introductory Text", Sec	ond Edition, N	lew Age		
Interna	ational Ltd.				
	Reference Books				
2. Montg	Cowan, "Statistical Data Analysis", University of Siegomery Douglas C, "Applied Statistics and probabilit Wiley India Pvt. Ltd.				

3. Advanced Engineering Mathematics with MATLAB, 2e, by Thomas L. Harman, James Dabney and Norman Richert (Brooks/Cole, Thomson Learning).

			Strei	ngth of C	O-PO Ma	pping						
					PC)						
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	2										2
CO2	3	2	1		1							2
CO3	3	2	1		1							2
CO4	3	2	1	1	1							2
CO5	3	2	1	1	1							2
Average	3	2	1	1	1							2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted					
1	Tests on each unit using LMS (Each test for 15 M and total will be converted out of 05 M)	05					
2	Problem solving through Computational Software	05					
3	Tutorial (1 tutorial on each unit for 15 marks and total will be converted out of 05 M)	05					
4	Group Presentation on real life problem	05					

Sr. No.	Title	CO Mapped
1	Examples on descriptive measures.	CO1, CO2, CO4, CO5
2	Examples on Probability density function (p.d.f.) and Cumulative distribution function (Continuous and discrete).	CO1, CO3, CO4, CO5
3	Examples on Mathematical Expectation, Properties of expectation, Moment generating function.	CO1, CO3, CO4, CO5
4	Examples on bivariate distribution functions.	CO1, CO3, CO4, CO5
5	Examples on correlation and regression.	CO1, CO2, CO4, CO5

		B. Tech. Computer Eng Pattern 2023 Semester	0	
		2301212: Data Structur	res	
Teaching	Scheme:	Credit Scheme:	Examination Sch	eme:
Theory: (3 hrs/week	03	Continuous Com	prehensive
			Evaluation: 20 M	
			InSem Exam: 20	Marks
			EndSem Exam: 6	
Prerequis	site Courses: -2300118A:	Computational Thinking	and Problem Solvin	g
Compani	on Course: 2301214: Data	Structures Lab		
	bjectives:			
	understand basic concepts a			tures
	study data structures arrays	, linked lists, stack, queu	es and hash tables	
	learn sorting methods			
	select appropriate data stru			
Course O	utcomes: On completion of	of the course, students will	I be able to–	
		Bloom's Level		
	Describe the fundamental c			
CO1	algorithms, including arrays	2-Understand		
	sorting algorithms		1.11	
CO2	Identify appropriate data str and Hash Tables to solve a	3-Apply		
	Design and Develop an algo		d list operations such	1
CO3	as insertion, and deletion et		a list operations such	3-Apply
CO4	Use stack and / or queue to	solve the given problem		3-Apply
CO5	Apply the hash table ,conce	pts of collision resolution	methods to solve the	3-Apply
	given problem	COUDEE CONTENT		
		COURSE CONTENT	3	
Unit I	Introduction to Data St Algorithms	ructures and	(09hrs)	CO1, CO2, CO3
Basics Cor	Algorithms icepts -Data, Data objects, 1	Data types Data structure	Abstract Data Tvr	pes (ADT) Primitive
	mitive, linear and nonlinea			
-	s-Introduction, Characteris	• •	-	
	, Time complexity, Big O		I J	
- · ·	Organization - Concept, A		ype, Memory repres	sentation and address
calculation	, Inserting and deleting an	element,		
	ability in sorting, internal	Sorting methods, Quick	sort, merge sort, s	shell sort, radix sort,
-	external sorting			
Unit II	Multidimensional Array	s and Memory	(08 hrs)	CO1, CO2, CO3
N / 1 · 1 ·	Representation			
	isional arrays and memory			
-	iable Polynomial-Represe			2002
-	trix-Sparse matrix represe erations using arrays.	mation, addition, simple t	ranspose, rast trans	POSE
pu mg- Op	cianons using arrays.			

Unit III	Linked Lists	(08hrs)	CO1, CO2, CO3
Linked list	s-Concept, Linked list as an Abstract data type, Cor	nparison of sequent	tial and linked
	ns Realization of Linked list- using arrays, using dy	namic memory mar	nagement, header
	ntages and disadvantages of linked list		
	operations-Insert a node, delete a node, traverse, c		
	nked list-Linear, circular, Doubly linked list and op		
Unit IV	Stack & Queue	(09hrs)	CO1, CO2, CO4
	ncept, Stack as an ADT, Representation of stacks us	č	
	Multi-stacks Applications of Stack- Polish notation	, expression conver	sion and evaluation,
0	of function calls and Returns		
	Concept, Types of recursion-Direct recursion		
-	oncept, Queue as ADT, Realization of queues using	arrays and linked l	ist, Circular queue,
1	lti-queues, Linked queue and operations.		
	ns of Queue: Scheduling, Josephus problem		
Unit V	Hashing	(06hrs)	CO1, CO2, CO5
Hash table	Concepts-Hash function, bucket, Collision, Probe,	Synonym, Overflo	w, Open hashing,
	ning, Perfect hash function, Load density, Full table,	, Load factor, Reha	shing, Basic
1	Issues in hashing		
	tions- Properties of good hash function, Division, M	Iultiplication, Extra	ction, Mid-square,
folding and			
	esolution Strategies-Open addressing and Chaining	g, Hash table overfl	ow- Open addressing
and Chainii	ng, Closed addressing and Separate chaining.		
	Text Books		
1. Horowitz	, Sahani, Dinesh Mehata, "Fundamentals of Data Strue	ctures in C++", Galg	gotia Publisher, ISBN:
	3, 9788175152786		
2. J. Trembl	ay, P. Soresan, "An Introduction to data Structures wi	th applications", TM	IH Publication, 2nd
Edition, 198	34. ISBN:0-07-462471-7		
	Reference Books		
	hani, "Data Structures, Algorithms and Applications	in C++", Second Ed	lition, University Press
ISBN:9788			
2. G A V Pa	ii. "Data Structures and Algorithms". McGraw-Hill Co	ompanies, ISBN:978	30070667266

2. G A V Pai, "Data Structures and Algorithms", McGraw-Hill Companies, ISBN:9780070667266	
---	--

Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	Quiz on Unit-1, Unit-2, Unit-3, Unit-4, Unit-5 (each Quiz is of 10 marks will be converted to 20 Marks out of 50)	20				
	Total	20				

S. Y. B. Tech. Computer Engineering Pattern 2023 Semester: IV 2301213: Software Engineering							
Teaching	Scheme:	Credit Scheme:	Examination Sch	eme:			
Theory: 03 hrs/week 03 Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks							
Prerequisite Courses: - 2300118A: Computational Thinking and Problem Solving							
Companie	on Courses:-						
 To be require To app To unc 	n and understand the princ acquainted with methods	s of capturing, specifyin iples to software project nt through life cycle of th	ng, visualizing and development. ne project.	l analyzing software			
Course O	ucomes: On completion o	Course Outcomes		Bloom's Level			
			1 .				
CO1	Identify and apply proces		1	2-Understand			
CO2	Analyze and model softw			3-Apply			
CO3	Determine software proje	C	tion	3-Apply			
CO4	Design and model a given	-		3-Apply			
CO5	Design test cases for the s validation approaches			3-Apply			
		COURSE CONTENT	`S				
Unit I	Introduction to Softwar Software Process Model	8 8	(08 hrs)	C01			
 Software Engineering Fundamentals: Introduction to software engineering, The Nature of Software, Defining Software, Software Engineering Practice. Software Process: A Generic Process Model, defining a Framework Activity, Identifying a Task Set, Process Patterns, Process Assessment and Improvement, Prescriptive Process Models, The Waterfall Model, Incremental Process Models, Evolutionary Process Models, Concurrent Models, Agile software development: Extreme and Scrum Agile methods, Plan driven and Agile development. 							
Agile Tools Unit II	Software Requirements	Engineering and	(07 hrs)	CO2			
	Analysis		, , , ,				
Modeling: Requirements Engineering, Establishing the Groundwork, Identifying Stakeholders, Recognizing Multiple Viewpoints, working toward Collaboration, Asking the First Questions, Eliciting Requirements, Collaborative Requirements Gathering, Usage Scenarios, Elicitation Work Products, Developing Use Cases, Building the Requirements Model, Elements of the Requirements Model, Negotiating Requirements, Validating Requirements.							
Unit III	Estimation and Schedul		(07hrs)	CO3			
Estimation	for Software Projects:	The Project Planning	Process, Defining	Software Scope and			

Checking Feasibility, Resources management, Reusable Software Resources, Environmental Resources, Software Project Estimation, Decomposition Techniques, Software Sizing, Problem-Based Estimation, LOC-Based Estimation, FP-Based Estimation, Process-Based Estimation, Estimation with Use Cases, Reconciling Estimates, Empirical Estimation Models,

Project Scheduling: Defining a Task for the Software Project, Scheduling.

Unit IV	Design Engineering	

(07hrs) CO4

Design Concepts: Design within the Context of Software Engineering, The Design Process, Software Quality Guidelines and Attributes, Design Concepts - Abstraction, Architecture, design Patterns, Separation of Concerns, Modularity, Information Hiding, Functional Independence, Refinement, Aspects, Refactoring, Object-Oriented Design Concept, Design Classes, The Design Model, Data Design Elements, Architectural Design Elements, Interface Design Elements, Component-Level Design Elements, Component Level, Functional Design at the Component Level, Deployment-Level Design Elements.

Architectural Design: Software Architecture, What is Architecture, Why is Architecture Important, Architectural Styles, A brief Taxonomy of Architectural Styles.

A Strategic Approach to Software Testing, Verification and Validation, Organizing for Software Testing, Software Testing Strategy—The Big Picture, Criteria for Completion of Testing, Strategic Issues, Test Strategies for Conventional Software, Unit Testing, Integration Testing, Test Strategies for Object-Oriented Software, Unit Testing in the OO Context, Integration Testing in the OO Context, Test Strategies for WebApps, Validation Testing, Validation-Test Criteria, Configuration Review. Use of testing tools like Selenium, JUnit.

Text Books

1. Roger Pressman, "Software Engineering: A Practitioner's Approach" , McGraw Hill, ISBN 0–07–337597–7

2. Ian Sommerville, "Software Engineering", Addison and Wesley, ISBN 0-13-703515-2

Reference Books

1. Carlo Ghezzi, "Fundamentals of Software Engineering", PHI, ISBN-10: 0133056996

2. Rajib Mall, "Fundamentals of Software Engineering" ||, PHI, ISBN-13: 978-8120348981

3. Pankaj Jalote, "An Integrated Approach to Software Engineering", Springer, ISBN 13: 9788173192715.

	Strength of CO-PO PSO Mapping													
	PO											PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	2	-	-	-	-	-	-	-	3	-	3
CO2	3	3	-	2	-	-	-	-	-	-	-	3	-	3
CO3	3	3	-	-	-	-	-	-	-	-	-	3	-	3
CO4	3	3	3	3	-	3	3	3	-	-	-	3	-	3
CO5	3	-	2	-	-	-	-	-	-	-	-	3	-	3
Average	3.00	3.00	2.67	2.25	-	3.00	3.00	3.00	-	-	-	2.83	-	3.00

Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Components for Continuous Comprehensive Evaluation	Ma	arks Allotted			
1	Quiz on Unit 1, Unit-2, Unit-4, Unit 5 (Quiz 15 marks each and will be converted to 15 Marks)		15			
2	Theory assignment on Unit-3 (One Assignment on Unit III of 10 marks will be converted to 5 (Marks)		5			
	To	otal	20			

Pattern 2023 Semester: IV 2301214: Java Programming Lab							
Teaching	eaching Scheme: Credit Scheme: Examination Scheme:						
Practical: 02 hrs/week 01 Termwork: 25 Marks Practical Exam : 25 Marks Practical Exam : 25 Marks							
_	site Courses: - 2300118A: 2301205: O ion Courses:-	Computational Think bject Oriented Progra					
	Dbjectives:	ncents in Iava such as d	ata abstraction enca	nsulation inheritance			
 To unand p To stu To unand p 	Objectives: Iderstand object-oriented co- olymorphism Idythe concept of packages Iderstand the concepts of exa utcomes: On completion of	and interfaces ception handling and m	ultithreading.	apsulation, inheritance			
 To unand p To stu To unand p 	derstand object-oriented co olymorphism udythe concept of packages derstand the concepts of ex-	and interfaces ception handling and m	ultithreading.	apsulation, inheritance Bloom's Level			
 To unand p To stu To unand p 	derstand object-oriented co olymorphism udythe concept of packages derstand the concepts of ex-	and interfaces ception handling and m the course, students wi Course Outcomes	ultithreading. ll be able to–	- 			
 To un and p To stu To un Course O 	derstand object-oriented co olymorphism adythe concept of packages derstand the concepts of ex- utcomes: On completion of Apply inheritance, polymo	and interfaces ception handling and m the course, students wi Course Outcomes orphism, file handling to	ultithreading. Il be able to– solve real world	Bloom's Level			
 To un and p To stu To un Course O 	Iderstand object-oriented co- olymorphism Idythe concept of packages Iderstand the concepts of ex- utcomes: On completion of Apply inheritance, polymorproblems	and interfaces ception handling and m the course, students wi Course Outcomes orphism, file handling to ubstract classes, package	ultithreading. Il be able to– solve real world as and Interfaces	Bloom's Level 3-Apply			

List of Laboratory Experiments / Assignments								
Sr. No.	Laboratory Experiments / Assignments							
1.	 Write a Menu driven program in Java to implement banking application. Application should read the customer name, account number, initial balance, rate of interest, contact number and address field etc. Application should have following methods. createAccount() deposit() withdraw() computeInterest() displayBalance() 	CO1						
2.	Write a Java program to initialize and refer instance of class having parameterized constructor using this keyword. Make use of static keyword.	CO1						
3.	 Write a Java program to perform different operations on String. i. charAt() ii. compareTo() iii. concat() iv. equals() 	CO1						

	v. replace()	
	v. replace() vi. split()	
	vii. trim()	
	Write Java program to create a super class called "Shape" that receives the	CO1
	dimensions of objects. It also defines a method called area that computes the	001
	area of an object. The program derives two subclasses from "Shape". Each of	
	the sub class overrides area() so that it returns the area of a rectangle and a	
	triangle respectively	
	Write a Java program to calculate electricity bill for commercial and domestic	CO2
5.	plan using abstract class	
6.	Write a Java program to accept a file name and display number of	CO1
0.	characters, words and lines in the files	
	Write a Java program to create an interface named as"Sortable" with a	CO2
7.	method sort() that sorts an array of integers in ascending order. Create two	
	classes BubbleSort and SelectionSort that implement the "Sortable" interface	
	and provide their own implementations of the sort() method	~~~~
8.	Write a Java program to create calculator for performing arithmetic	CO2
	operations using packages	002
	Write a JAVA program to create User defined exception to check the	CO3
	following conditions and throw the exception if the criterion does not met.	
	i. User has age between 18 and 55	
9.	 ii. User has income between Rs. 50,000 –Rs. 1,00,000 per month iii. User stays in Pune / Mumbai/ Bangalore / Chennai 	
	iii. User stays in Pune / Mumbai/ Bangalore / Chennaiiv. User has 4-wheeler	
	Accept age, Income, City, Vehicle from the user and check for the conditions	
	mentioned above. If any of the condition not met then throw the exception	
	Write a Java program to implement a producer-consumer problem using the	CO3
10.	wait() and notify() methods for thread synchronization.	005
11.	Develop a Miniproject using maximum features of Java Programming.	CO4
Additional	l programming Problems	
	Write a Java program to create an interface Playable with a method play()	CO1, CO2
1	that takes no arguments and returns void. Create three classes Football,	
1	Volleyball, and Basketball that implement the Playable interface and	
	override the play() method to play the respective sports	
	Write a Java program to create a class Employee with a method called	CO1
2	calculateSalary(). Create two subclasses Manager and Programmer. In each	
-	subclass, override the calculateSalary() method to calculate and return the	
	salary based on their specific roles.	
3	Write a Java program that creates two threads to find and print even and odd	CO1, CO3
-	numbers from 1 to 20.	
	Guidelines for Laboratory Conduction	
	oding standards and Hungarian notation, proper indentation and comments.	
-	ben source software is to be encouraged.	
	g System recommended: - Linux or its derivative	
Fiograini	ning tools recommended: - JDK environment Guidelines for Student's Lab Journal	
The labo		nal Ioumal
	ratory assignments are to be submitted by students in the form of a jour of Certificate, table of contents, and handwritten write-up of each assign	
	statement, theory concepts in brief, algorithm, flowchart, test cases and c	•
-	codes with sample outputs shall be submitted in soft form	onciusions).
riogram	voues whit sample outputs shall be submitted in soft form	

Guidelines for Termwork Assessment

Continuous assessment of laboratory work shall be based on overall performance of a student. Assessment of each laboratory assignment shall be based on rubrics that include R1- timely completion (10), R2- understanding of assignment (10) and R3- presentation/clarity of journal writing (10) (Coding standard, Indentation, Hungarian notation, input validation etc)

	Strength of CO-PO/PSO Mapping													
	PO											PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	-	2	-	-	-	-	-	-	3	3	2
CO2	3	3	3	-	2	-	-	-	-	-	-	3	3	2
CO3	3	3	3	3	2	-	-	-	-	-	-	3	3	2
CO4	3	3	3	3	2	-	-	-	-	-	-	3	3	2
Average	3	3	3	3	2	-	-	-	-	-	-	3	3	2

S. Y. B. Tech. Computer Engineering Pattern 2023 Semester: IV 2301215: Data Structures Lab								
Teaching	eaching Scheme: Credit Scheme: Examination Scheme:							
Practica	Practical: 04 hrs/week 02 Termwork: 50 Marks Practical Exam : 50 Marks							
Prerequ	isite Courses: - 2300118A:	Computational Thinking	g and Problem Solving,	2300108A:				
Program	ming in C							
Compan	ion Course: 2301211: Data S	Structures						
 To To To To To 	Objectives: understand basic concepts a study data structures arrays learn sorting methods select appropriate data struc Dutcomes: On completion of	, linked lists, stack , quer ctures to solve a given pr of the course, students wi	ues and hash tables					
		Course Outcomes		Bloom's Level				
CO1		Demonstrate the ability to choose and implement appropriate data structures such as Array, linked list, stack , queue and Hash Tables to solve a given 2-Understand problem						
CO2	Implement an algorithms for array and linked list operations such as insertion, and deletion etc using C++3-Apply							
CO3	Make use of stack and / or c		roblem	3-Apply				
CO4	Apply the hash table ,conce given problem	pts of collision resolution	methods to solve the	3-Apply				

List of Laboratory Experiments / Assignments							
Sr. No.	Laboratory Experiments / Assignments	CO Mapped					
1	 Set operations: Write a menu driven C++ program to store sets for students' names participating in different events in Equinox such as Coding contest, Project competition, Paper Presentation, MasterMind etc. 1. Find out participants who have participated in Coding and Project both 2. Find out participants who have participated in Coding or Project competition or both or Mastermind 3. Find out participants who have participated in Coding but not in Master mind Find out participants who have participated in Coding but not in Master mind 	CO1,CO2					
2	Knight's tour: The problem is to move the knight, beginning from any given square on the chessboard, in such a manner that it travels successively to all 64 squares, touching each square once and only once. It is convenient to represent a solution by placing the numbers 1,2,,64 in the squares of the chessboard indicating the order in which the squares are reached. Note that it is not required that the knight be able to reach the initial position by one more move; if this is possible the knight's tour is called re-entrant. One of the more ingenious methods for solving the problem of the knight's tour is that given by J. C. Warnsdorff in 1823. His rule is that the knight must always be moved to one of the squares from	CO1,CO2					

	 which there are the fewest exits to squares not already traversed. Write a C++ program to implement Warnsdorff's rule and show it graphically. OR Random walk: A (drunken) cockroach is placed on a given square in the middle of a tile floor in a rectangular room of size n x m tiles. The bug wanders (possibly in search of an aspirin) randomly from tile to tile throughout the room. Assuming that it may move from his present tile to any of the eight tiles surrounding it (unless it is against a wall) with equal probability, how long will it take him to touch every tile on the floor at least once? 	
	Write a C++ program to graphically show a random walk of a (drunken) cockroach and find the no of moves made.	
3	 String Operations: Write a menu driven C++ program with a class for String. Write functions To determine the frequency of occurrence of a particular character in the string. Extract a new string from original string by accepting starting position and length To accept any character and return the string with by removing all occurrences of a character accepted To make an in-place replacement of a substring w of a string by the string x. Note that w may not be of same size that of x 	CO1,CO2
4	 5. To check whether given string is palindrome or not Sparse Matrix: Write a menu driven C++ program with class for Sparse Matrix. Write functions to perform Sparse Matrix operations as listed below Read sparse matrix Display sparse matrix Add two sparse matrices Find transpose using Simple transpose algorithm Find transpose using Fast transpose algorithm Compare complexity of simple and fast transpose using counter. 	CO1,CO2
5	 Polynomial operations: Write a menu driven C++ program with class for single variable polynomial and write functions to perform following polynomial operations using arrays Read polynomial Display polynomial Add two polynomials You can try above polynomial operation using Linked list 	
6	 Appointment Management: Write a menu driven C++ program for storing appointment schedules for the day. Appointments are booked randomly using linked lists. Set start and end time for visit slots. Write functions for 1. Display free slots 2. Book appointment 3. Cancel appointment (check validity, time bounds, availability etc) 4. Sort list based on time 5. Sort list based on time using pointer manipulation 	CO1,CO2
7	 5. Soft fist based on time dsing pointer manipulation Expression conversion: Write a menu driven C++ program for expression conversion and evaluation 1. infix to prefix 2. prefix to postfix 3. prefix to postfix 4. postfix to infix 5. postfix to prefix 	CO1,CO2, CO3

		1
8	String operations: A palindrome is a string of characters that's identical when read in forward and backward direction. Typically, punctuation, capitalization, and spaces are ignored. For example, "1.Poor Dan is in a droop!!" is a palindrome, as can be seen by examining the characters "poordanisinadroop" and observing that they are identical when read forward and backward directions. One way to check for a palindrome is to reverse the characters in the string and compare them with the original-in a palindrome, the sequence will be identical. Write C++ program with functions using Standard Template Library (STL) stack- To print original string followed by reversed string using stack 	CO1,CO2, CO3
9	Simulation of pizza parlor: Pizza parlor accepting maximum M orders. Orders are served on a first come first served basis. Order once placed cannot be canceled. Write C++ program to simulate the system using simple queue or circular queue	CO1,CO2, CO3
10	 Sorting: Write a C++ menu driven program to store the percentage of marks obtained by the students in an array. Write function for sorting array of floating point numbers in ascending order using 1. Selection Sort 2. Bubble sort 3. Insertion sort 4. Shell Sort 5. Quick sort 6. Radix sort 7. Display top five scores Implement any 4 methods of sorting. Provide choice to user to take input from user or using random numbers. Use Standard Template Library (STL) sort function 	CO1,CO2
11	A Dictionary using Hash table: A Dictionary stores key and value pairs Data: Set of (key, value) pairs, Keys are mapped to values, Keys must be comparable, Keys must be unique. Standard Operations: Insert(key, value), Find(key), Delete(key) Write a menu driven C++ program to provide above standard operations on dictionaries Write a menu driven C++ program to provide all the functions of a dictionary (ADT) using hashing and handle collisions using chaining.	
12	 A list of data representing various environmental parameters such as temperature, humidity, pollution levels, etc is maintained using appropriate data structure. Write a C++ program that uses data structures to perform the following operations: Find the maximum and minimum values of each parameter in the list. Calculate the average value of each parameter in the list. Sort the list in ascending order of any one parameter. Find the highest and lowest values of any one parameter that are considered safe for the environment. Calculate the impact of the parameter values on the environment based on certain pre-defined criteria. Analyze the impact of the environmental parameters on the health and safety of the society. Ensure that the program follows ethical and professional practices, such as ensuring the privacy and security of the data. You should implement the program using appropriate data structures that take into account the size and complexity of the data, and demonstrate an understanding of the societal and environmental issues related to the data.	

	Your preserver should also demonstrate on understanding of the impact of	
	Your program should also demonstrate an understanding of the impact of the perspector values on the environment, and the need for sustainable	
	the parameter values on the environment, and the need for sustainable	
	development. Finally, your program should adhere to ethical principles	
	and professional practices, such as ensuring the confidentiality, privacy,	
	and security of the data	
Mini Proj		
	Develop a mini project in a group Following is the sample problem	CO1 to CO4
	statements based on concepts learned in the course	
	1. Implement an efficient system to monitor and analyze sound pollution	
	levels in a given area. The system should be able to store and process large	
	amounts of sound data, and provide relevant insights and visualizations to	
	help identify areas of high sound pollution.	
	The system should have the following functionalities:	
	 Data Collection: Collected sound data from various sources, such as sound sensors or microphones is stored in a structured format as a file system. 	
	 Data Processing: The system should be able to process the collected data to identify patterns and trends in sound pollution levels. This 	
	could involve tasks such as noise filtering, signal processing, and	
	feature extraction.	
	• Data Analysis: The system should be able to analyze the processed	
	data to provide insights into sound pollution levels in a given area. This could involve tasks such as trend analysis, outlier detection,	
	•	
	and clustering.	
	• Visualization: The system should be able to provide relevant	
	visualizations to help identify areas of high sound pollution. This	
	could involve tasks such as heat map generation, time-series	
	plotting, and spatial analysis.	
	The system should be designed to handle large volumes of sound data	
	efficiently and provide real-time or near-real-time analysis and	
	visualization. The implementation of the system should be efficient in	
	terms of space and time complexity, and should be scalable to handle	
	increasing volumes of data.	
	Students are free to implement any other relevant mini project problem	
	statement as follows.	
	2. Operations on Big number	
	3. Appointment management	
	4. Phone book operations	
	5. Sorting methods simulation and comparison	
Additiona	l programming Problems	
	Binary Number operations: Write a C++menu driven program for	CO1, CO2
4	storing binary numbers using doubly linked lists. Write functions-	
1	1. To compute 1's and 2's complement	
	2. Add two binary numbers	
	Eight Queens: A classic problem that can be solved by backtracking is	CO1, CO2,
	called the Eight Queens problem, which comes from the game of chess.	CO3
	The chess board consists of 64 squares arranged in an 8 by 8 grid. The	
	board normally alternates between black and white squares, but this is not	
2		
	relevant for the present problem. The queen can move as far as she wants	
	in any direction, as long as she follows a straight line, Vertically,	
	horizontally, or diagonally. Write C++ program with a recursive function	
	for generating all possible configurations for 8-queen's problem.	

	DEQUE: A double-ended queue (deque) is a linear list in which additions	CO1, CO2,			
	and deletions may be made at either end. Obtain a data representation	CO3			
2	mapping a deque into a one-dimensional array. Write C++ menu driven				
3	program to simulate deque with functions to add and delete elements from				
	either end of the deque.				
	Also implement using STL				
	Design and implement a hash table to efficiently store and manage a	CO1, CO2,			
	student database. The student database contains the following information	CO5			
4	for each student: Student ID, Name, Age, and GPA. The system should				
	support the following operations: insert, search, delete student and				
	Analyze the time complexity of key operations				
	Guidelines for Laboratory Conduction				
Use of cod	ling standards and Hungarian notation, proper indentation and comments.				
Use of ope	en source software is to be encouraged.				
	System recommended: - Linux or its derivative				
Programm	ing tools recommended: - Open Source line gcc/g++				
	Guidelines for Student's Lab Journal				
	atory assignments are to be submitted by students in the form of a journal. Jou				
	, table of contents, and handwritten write-up of each assignment (Title, prob				
-	ncepts in brief, algorithm, flowchart, test cases and conclusions). Program cod	es with sample			
outputs sh	all be submitted in soft form				
	Guidelines for Termwork Assessment				
	Continuous assessment of laboratory work shall be based on overall performance of a student. Assessmer				
	poratory assignment shall be based on rubrics that include R1- timely comp				
	ing of assignment (10) and R3- presentation/clarity of journal writing (10) (C	oding standard,			
Indentation	, Hungarian notation, input validation etc)				

	S. Y. B. Tech. (Computer Engineering) Pattern 2023 Semester: IV 2301216: Data Communication and Networking					
Teaching	Scheme:	Credit Scheme:	Examination Sc	heme:		
Theory: 0	3 hrs/week	03	Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks			
Prerequis	ite Courses: - 2301201: D	iscrete Structures	I			
 To intr To An To exp Explor Exami 	 Course Objectives: To introduce the fundamental various types of computer networks. To Analyze Data Communication To explore the various layers of OSI Model Explore Transport Layer Concepts Examine Application Layer Protocols 					
Course O	utcomes: On completion o	f the course, students wi	ll be able to–			
		Course Outcomes		Bloom's Level		
CO1	Summarize fundamental of architectures, protocols and		etworks,	2-Understand		
CO2	Illustrate the working and	functions of data link la	nyer	2-Understand		
CO3	Analyze the working of d	ifferent routing protocol	s and mechanisms	3-Apply		
CO4	Understand Elements of T	1 1		2-Understand		
CO5	Illustrate role of application architectures			2-Understand		
		COURSE CONTENT	ГS			
Unit I	Data Communications		(06 hrs)	C01		
Introduction to Data Communication, importance of data communication. Modes of Data Transmission, Signals and Modulation, Data Transmission Concepts(Bandwidth,Data,Rate,Latency), Data Transmission Modes, Error Detection and Correction, Protocols and Standards (e.g., TCP/IP, OSI model), Network Models(OSI,TCP/IP), Multiplexing, Media Access Control (MAC)						
Unit II	Data Link Layer		(08 hrs)	CO2		
Introduction, functions. Design Issues: Services to Network Layer, Framing, Addressing, Flow Control Protocall: Stop-and-Wait Protocol, The Go-Back-N ,Sliding Window Protocol, Automatic Repeat request (ARQ), Error Control, Address Resolution Protocol (ARP),L logical Link Control (LLC), Frame Synchronization, Fragmentation and Reassembly						
(LLC), IIC						

Introduction: Functions of Network layer. Switching Techniques: Circuit switching, Message Switching, Packet Switching. IP Protocol: Classes of IP (Network addressing), IPv4, IPv6, Network Address Translation, Sub-netting, CIDR. Network layer Protocols: ARP, RARP, ICMP, IGMP. Network Routing and Algorithms: Static Routing, Dynamic Routing, Distance Vector Routing, Link State Routing, Path Vector. Routing Protocols: RIP, OSPF, BGP

	Unit IV	Transport Layer	(08hrs)	CO4		
	Process to I	Process Delivery, Services, Socket Programming. El	ements of Transpor	rt Layer Protocols:		
	Addressing	, Connection establishment, Connection release, Flo	w control and buffe	ering,Multiplexing,		
Congestion Control. Transport Layer Protocols: TCP and UDP, SCTP, RTP, Congestion control and						
	Quality of Service (QoS), Differentiated services, TCP and UDP for Wireless networks					
	I Init V	Application Lavon	(Ochma)	CO5		

Umt v	Application Layer	(UOIITS)	005
Introduction	n, Web and HTTP, Web Caching, DNS, Email: SM	ГР, MIME,POP3, V	Webmail, FTP,
TELNET,C	HCP, SNMP, Client-Server Architecture, APIs and	Interfaces, Authent	tication and

Authorization, Error Handling and Recovery

Text Books

- 1. Data Communication and Networking by Behrouz A. Forouzan (Fourth Edition), Tata McGraw Hill
- 2. Computer Networks by Andrew S. Tanenbaum (Fifth Edition), Pearson Education

Reference Books

- 1. Kurose, Ross, "Computer Networking a Top Down Approach Featuring the Internet",Pearson, ISBN-10: 0132856204
- 2. L. Peterson and B. Davie, "Computer Networks: A Systems Approach", 5th Edition, Morgan-Kaufmann, 2012.

	Strength of CO-PO PSO Mapping													
						F	0						PS	50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	3	2	-	-	-	-	-	-	-	3	3	2
CO2	3	3	2	2	-	-	-	-	-	-	-	3	3	3
CO3	3	3	3	2	-	-	-	-	-	-	-	3	3	3
CO4	3	3	3	2	-	-	-	-	-	-	-	3	3	3
CO5	3	3	3	2	-	-	-	-	-	-	-	3	3	3
Average	3	3	2	2	-	-	-	-	-	-	-	3	3	3

	Guidelines for Continuous Comprehensive Evaluation of Theory				
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation				
1	Quiz on Unit 1, Unit-2, Unit-4, (Quiz 15 marks each and will be converted to 15 Marks)	15			
2	Theory assignment on Unit-3 and Unit 5	10			
	Total	20			

	S. Y. B. Tech. (Computer Engineering) Pattern 2023 Semester: IV 2301217: Data Communication and Networking Lab						
Teaching	g Scheme:	Credit Scheme:	Examination Sche	me:			
Practical	Practical: 02 hrs/week 01 Termwork: 25 M Practical Exam :						
Prerequi	isite Courses: - 2300108A:	Programming In C, 2300	117A Python Program	nming			
Course (Objectives:						
• To lea	arn computer network hardv	vare and software compo	nents				
• To le	earn computer network topo	logies and types of netwo	ork				
• To de	evelop an understanding of	various protocols, moder	n technologies and ap	oplications			
	earn modern tools for netwo	-	C 1	-			
	earn network programming						
- 1010	and network programming						
Course (Dutcomes: On completion of	of the course, students will	ll be able to-				
		Course Outcomes		Bloom's Level			
CO1	Analyze the requirements media	of network types, topolog	gy and transmission	3-Apply			
CO2	CO2 Demonstrate error control, flow control techniques and protocols and analyze them 3-Apply						
CO3	CO3 Demonstrate the subnet formation with IP allocation mechanism and apply various routing algorithms 3-Apply						
CO4	Develop Client-Server arc			3-Apply			
CO5	Implement web applications and services using application layer						

	List of Laboratory Experiments / Assignments					
Sr. No.	Laboratory Experiments / Assignments	CO Mapped				
1	Setup a wired LAN using Layer 2 Switch. It includes preparation of cable, testing of cable using line tester, configuration machine using IP addresses, testing using PING utility and demonstrating the PING packets captured traces using Wireshark Packet Analyzer Tool.	CO1				
2	Demonstrate the different types of topologies and types of transmission media by using a packet tracer tool	CO1				
3	Setup a WAN which contains wired as well as wireless LAN by using a packet tracer tool. Demonstrate transfer of a packet from LAN 1 (wired LAN) to LAN2	CO1				

	(Wireless LAN).				
4	Write a program for error detection and correction for 7/8 bits ASCII codes using Hamming Codes or CRC.	CO2			
5	5 Write a program to simulate Go back N and Selective Repeat Modes of Sliding Window Protocol in Peer-to-Peer mode.				
6	Write a program to demonstrate Sub-netting and find subnet masks	CO3			
7	Write a program to implement link state /Distance vector routing protocol to find suitable path for transmission	CO3			
8		CO1,CO4			
9	Write a program using UDP Sockets to enable file transfer (Script, Text, Audio and Video one file each) between two machines.	CO1,CO4			
10	Write a program for DNS lookup. Given an IP address as input, it should return URL and vice-versa.	CO4			
11	 expressions to accomplish the following and save the output in file: 1. Capture all TCP traffic to/from Facebook, during the time when you log in to your Facebook account 2. Capture all HTTP traffic to/from Facebook, when you log in to your Facebook account 3. Write a DISPLAY filter expression to count all TCP packets (captured under item #1) that have the flags SYN, PSH, and RST set. Show the fraction of packets that had each flag set. 4. Count how many TCP packets you received from / sent to Face book, and how many of each were also HTTP packets. 				
12	Analyze the performance of HTTP, HTTPS and FTP protocol using Packet tracer tool.	CO5			
14	Mini Project: Installing and configuring DHCP server and assign IP addresses to client machines using DHCP server.	CO1 to CO5			
programmi	ng Problems				
1	To study the SSL protocol by capturing the packets using Wireshark tool while visiting any SSL secured website (banking, e-commerce etc.).	CO3			
2	Illustrate the steps for implementation of S/MIME email security, POP3 through Microsoft Office Outlook.	CO4			
	Guidelines for Laboratory Conduction				
Use of ope Operating	ing standards and Hungarian notation, proper indentation and comments. en source software is to be encouraged. System recommended: - Linux or its derivative ing tools recommended: - Open Source line gcc/g++				
T T1 1 1	Guidelines for Student's Lab Journal	1 • ~			
	tory assignments are to be submitted by students in the form of a journal. Jour, table of contents, and handwritten write-up of each assignment (Title, prob				

theory concepts in brief, algorithm, flowchart, test cases and conclusions). Program codes with sample outputs shall be submitted in soft form

Guidelines for Termwork Assessment

Continuous assessment of laboratory work shall be based on overall performance of a student. Assessment of each laboratory assignment shall be based on rubrics that include R1- timely completion (10), R2- understanding of assignment (10) and R3- presentation/clarity of journal writing (10) (Coding standard, Indentation, Hungarian notation, input validation etc)

]	. B. Tec Computer Eng Pattern 2023 Semester Customer Relationship	r: IV	
Teaching	g Scheme:	Credit Scheme:	Examination Sc	heme:
Theory:	mprehensive Marks			
Prerequi	isite Courses:-			
Compan	ion Courses:-			
To unTo ena	derstand the concepts and prin derstand the role and changing able managing Customer Relat	, face of CRM as an IT ena tionship.		
Course (Dutcomes: On completion of	of the course, students wi	ill be able to-	
		Bloom's Level		
CO1	Understand the nuance of cu	2-understand		
CO2	Make a use of various CRM	3-Analyze		
CO3	Understand of the Role of C	2-understand		
CO4	Understand the different CR	2-understand		
CO5	Analyze the different issues i	4-Analyze		
		COURSE CONTEN	ГS	
Unit I	Evolution of Customer Rela	tionship	(04 hrs)	CO1
FCRM, B	inition, Emergence of CRM Pr enefits of CRM, Types of CRM	· •	0	ures Trends in CRM.
Unit II	CRM Concepts	CO2		
ustomor V	Value, Customer Expectation,		stomer Centricity, Cu Customer Experience	
Customer F	Profitability, Enterprise Market			

Steps in Planning-Building Customer Centricity, Setting CRM Objectives, Defining Data Requirements, Planning Desired Outputs, Relevant issues while planning the Outputs, Elements of CRM plan, CRM Strategy: The

Strategy De	velopment Process, Customer Strategy Grid.				
Unit IV	Marketing Strategy(04hrs)CO4				
CRM Marketing Initiatives, Sales Force Automation, Campaign Management, Call Centres. Practice of CRM: CRM in Consumer Markets, CRM in Services Sector, CRM in Mass Markets, CRM in Manufacturing Sector.					
Unit V	CRM Planning and Implementation	(04hrs)	CO5		
Issues and Problems in implementing CRM, Information Technology tools in CRM, Challenges of CRM Implementation. CRM Implementation Roadmap, Road Map (RM) Performance: Measuring CRM performance, CRM Metrics.					
Text Books					
1. Francis Buttle, Stan Maklan, Customer Relationship Management: Concepts and Technologies, 3rd edition, Routledge Publishers, 2015					
2. 2. Kumar, V., Reinartz, Werner Customer Relationship Management Concept, Strategy and Tools, 1st edition, Springer Texts, 2014					
	Reference Books				
U	dish N.Sheth, Atul Parvatiyar & G.Shainesh, "Custor acepts, Tools and Application", 2010, TMH.	ner Relationship Ma	anagement", Emerging		

- 2. 2. Dilip Soman & Sara N-Marandi," Managing Customer Value" 1st edition, 2014, Cambridge.
- 3. 3. Alok Kumar Rai, "Customer Relationship Management: Concepts and Cases", 2008, PHI.

				S	trength	of C	O-PO	PSO N	Ларрі	ng				
						F	0						PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	1	1	-	-	-	-	-	-	-	-	1	1	1
CO2	1	1	1	-	-	-	-	-	-	-	-	1	1	1
CO3	1	1	1	-	-	-	-	-	-	-	-	1	1	1
CO4	1	1	1	-	-	-	-	-	-	-	-	1	1	1
CO5	1	1	1	-	-	-	-	-	-	-	-	1	1	1
Average	1	1	1	-	-	-	-	-	-	-	-	1	1	1

	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted			
1	Quiz on Unit-1, Unit-2, Unit-3 (Quiz 10 marks on each unit and will be converted to 10 Marks)	10			
2	Assignment on Unit 4 & Unit 5 (10 marks on each unit and will be converted to 10 Marks)	10			
	Total	20			

S. Y. B. Tech. Computer Engineering Pattern 2023 Semester: IV 2301219: Universal Human Values					
Teaching Scheme:	Credit Scheme:	Examination Scheme:			
Tutorial: 02 hrs/week	02	Continuous Comprehensive Evaluation: 50 Marks Total: 50 Marks			

Prerequisite Courses, if any: - NA

Course Objectives:

- To help the students appreciate the essential complementarity between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.
- To facilitate the development of a Holistic perspective among students towards life and profession as well as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of existence. Such a holistic perspective forms the basis of Universal Human Values and movement towards value-based living in a natural way.
- To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling human behavior and mutually enriching interaction withNature.

Thus, this course is intended to provide a much-needed orientation input in value education to the young enquiring minds.

Course Outcomes:	On completion of the course,	, students will be able to-
-------------------------	------------------------------	-----------------------------

	Course Outcomes	Bloom's Level
CO1	Evaluate the significance of value inputs in formal education and start applying them in their life and profession	5
CO2	Distinguish between values and skills, happiness and accumulation of physical facilities, the Self and the Body, Intentionand Competence of an individual.	
CO3	Analyze the value of harmonious relationship based on trust and respect in their life and profession	4
CO4	Examine the role of a human being in ensuring harmony in society and nature.	4
CO5	Apply the understanding of ethical conduct to formulate the strategy for ethical life and profession.	3
	COURSE CONTENTS	
Unit I	Os Mapped - 1	
understan	human aspirations and their fulfilment through Right understanding and ding and Resolution as the activities of the Self, Self being central to Hum ssing Resolution for a Human Being, its details and solution of problems n	an Existence; All

Unit II	Right Understanding (Knowing)- Knower, Known & the Process	(05 hrs)	COs Mapped – 2			
The domain of right understanding starting from understanding the human being (the knower, the experiencer and the doer) and extending up to understanding nature/existence – its interconnectedness and co-existence; and finally understanding the role of human being in existence (human conduct).						
Unit III	Understanding Human Being	(05 hrs)	COs Mapped – 3			
Understanding the human being comprehensively as the first step and the core theme of this course human being as co-existence of the self and the body; the activities and potentialities of the self; Basis for harmony/contradiction in the self						
Unit IV	Understanding Nature and Existence	(05 hrs)	COs Mapped – 4			
of inner ev activities o Understand	ensive understanding (knowledge) about the existence, i volution (through self-exploration, self-awareness and f the Self: Realization, Understanding and Contemplation ling of Harmony in Nature and Contemplation of Parti- comprehensive knowledge about the existence).	self-evaluation), par on in the Self (Realiz	ticularly awakening to ation of Co-Existence,			
Unit V	Understanding Human Conduct, All-	(05 hrs)	COs Mapped – 5			
	encompassing Resolution & Holistic Way of Living					
(participat Existence	ion in the larger order) leading to harmony at all lo Text Books					
	Gaur, R Asthana, G P Bagaria, 2019 (2nd Revised ues and Professional Ethics. ISBN 978-93-87034-47					
v ui	Reference Books	1, Exect Books, 10				
 E.F. Sc Briggs, Sussan Donelli Limitst A Nagi P L Dh A N Tr Subhas Amrav E G Se Univer 	ich, 1974, Energy & Equity, The Trinity Press, Wor chumacher, 1973, Small is Beautiful: a study of econ britain. George, 1976, How the Other Half Dies, Penguin P a H. Meadows, Dennis L. Meadows, Jorgen Randers to Growth – Club of Rome's report, Universe Books raj, 1998, Jeevan Vidya EkParichay, Divya Path San ar, RR Gaur, 1990, Science and Humanism, Commo ipathy, 2003, Human Values, New Age Internationa Palekar, 2000, How to practice Natural Farming, Pa ati. ebauer& Robert L. Berry, 2000, Fundamentals of Ets sity Press indrajran, S Natrajan& V.S. Senthil Kumar, Engine	omics as if people i ress. Reprinted 198 s, William W. Behro s. Isthan, Amarkantak onwealth Publishers Il Publishers. racheen (Vaidik) K thics for Scientists o	mattered, Blond & 6, 1991 ens III, 1972, s. rishi Tantra Shodh, &Engineers, Oxford			

Mode of Evaluation

Based on participation of student in classroom discussions/Self-assessment/Peer assessment/Assignments/ Seminar/Continuous Assessment Test/Semester End Exam Socially relevant project/Group Activities/Assignments may be given importance in this course

Guidelines for Continuous Assessment of Theory Course			
Components for Continuous Comprehensive Evaluation	Marks Allotted		
Assignment on Unit 1,2	30		
Group presentations on Unit 3	10		
LMS test on each unit	10		
Total	50		

S. Y. B. Tech. Computer Engineering Pattern 2023 Semester: IV 2301220: Foreign Language					
Teaching Scheme:	Credit Scheme:	Examination Scheme:			
Tutorial: 01 hrs/week Practical :02 hrs/week	02	Tutorial: 25 Marks Termwork: 25 Marks			
Prerequisite Courses: -					
Companion Courses:-					
Course Objectives:To learn language					