

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous w.e.f. A.Y.2022-23) Department of Electronics and Telecommunication Engineering Details of Course Structure: Semester - I F.Y.M.Tech (VLSI and Embedded System)

Course Code	Cours e Type	Title of Course	Teaching Scheme Hrs./week		Assessment Scheme and Marks					Credits					
			ТН	TU	PR	In Sem	End Sem	CA	TU/ TW	PR/ OR	Total	TH	TU / TW	PR/ OR	Total
ETC225101	DCC	F1: Embedded Product Design	3	-	-	20	60	20	-	-	100	3	-	-	3
ETC225102	DCC	F2: ASIC Design	3	-	-	20	60	20	-	-	100	3	-	-	3
ETC225103	DCC	F3: VLSI Design Verification and Testing	3	-	-	20	60	20	-	-	100	3	-	-	3
ETC225104	DEC	F4: Elective 1A: Linux in Embedded SystemB: Static Timing AnalysisC: MEMS and Microsystem Design	3	-	-	20	60	20	-	-	100	3	-	-	3
ETC225105	LH SM	F5 : Research Methodology and IPR	3	-	-	20	60	20			100	3	-	-	3
ETC225106	DCC	F6: Lab. Practice I	-	-	4	-	-	-	25	25	50	-	-	2	2
		Total	15	-	4	100	300	100	25	25	550	15	-	2	17

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous w.e.f. A.Y.2022-23) Department of Electronics and Telecommunication Engineering Details of Course Structure: Semester -II F.Y.M.Tech (VLSI and Embedded System)

Course Code	Course Type	Title of Course		ching S Hrs./we		Assessment Scheme and Marks				Credits					
			ТН	TU	PR	In Sem	End Sem	CA	TU/ TW	PR/ OR	Total	TH	TU / TW	PR/ OR	Total
ETC2251 07	DCC	F7: Real Time Embedded System	3		-	20	60	20	-	-	100	3	-	-	3
ETC225108	DCC	F8: ML in Chip Design	3		-	20	60	20	-	-	100	3	-	-	3
ETC225109	DCC	F9: VLSI for AI & Neural Networks	3		-	20	60	20	-	-	100	3	-	-	3
ETC225110	DEC	F10: Elective II A: Embedded Computing and Networking B: VLSI Architectures for DSP C: Advanced IoT Applications	3		-	20	60	20	-	-	100	3	-	-	3
ETC225111	DCC	F11: Lab. Practice II	-		4	-	-	-	25	25	50	-	-	2	2
ETC225112	PSI	F12: Seminar1	-		4	-	-	-	25	25	50	-	-	2	2
ETC225113	IMC	F13: Software application for professional skill upgradation (LATEX, Power Point &Excel)	-		4			25		25	50	-	-	2	2
		Total	12		12	80	240	105	50	75	550	12	-	6	18

K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous w.e.f. A.Y.2022-23) Department of Electronics and Telecommunication Engineering Details of Course Structure: Semester – III S.Y.M.Tech (VLSI and Embedded System)

Course Code	Course Type	Title of Course	Teaching Scheme Assessment Scheme and Marks Hrs./week Image: Scheme and Marks				Credits								
			TH	TU	PR	In Sem	End Sem	CA	TU/ TW	PR/ OR	Total	ТН	TU / TW	PR/ OR	Total
ETC226101	DEC	S1:Elective III A:Communication Buses and standards B:Automotive embedded Product Development C:Embedded Systems Security	3		-	20	60	20	-	-	100	3	-	-	3
ETC226102	LHSM	S2: Indian Constitution	2		-	-	25	25	-	-	50*	2	-	-	2
ETC226103	PSI	S3: Dissertation Phase-1	-		20	-	-	50	50	50	150	-	-	10	10
ETC226104	IMC	S4: Internship Seminar 2	-		4	-	-	-	25	25	50	-	-	2	2
		Total	5		24	20	85	95	75	75	350	5	-	12	17

*Assessment/evaluation shall be done for 100 marks which must be converted to 50 marks as per structure.

S4 will be seminar on internship and report submission. The internship of minimum 4 weeks is required to be done during the vacation after 2^{nd} semester

K.K.Wagh Institute of Engineering Education and Research, Nashik(Autonomous w.e.f. A.Y.2022-23) Department of Electronics and Telecommunication Engineering Details of Course Structure:Semester - IV S.Y.B.Tech (Group B)

Course Code	Course Type	Title of Course		ching S Hrs./we	cheme eek		Assessm	ent Sche	eme and	Marks			Cre	dits	
			ТН	TU	PR	In Sem	End Sem	CA	TU/ TW	PR/ OR	Total	TH	TU / TW	PR/ OR	Total
ETC226105	MOO CS	S5:MOOCs/NPTEL	-		-		100*	-	-	-	100	3	-	-	3
ETC226106	PSI	S6: Dissertation Phase-II	-		30		-	50	100	100	250	-	-	15	15
		Total			30	-	-	50	100	100	250	3	-	15	18

For S5 (MOOCs/NPTEL), students shall enroll for the MOOCs/NPTEL course in third semester and its evaluation shall be considered in the fourth semester. A course of minimum 8 weeks is mandatory.

For S5 (MOOCS/NPTEL), students can choose subjects from the following list

A: Parallel Computing

B: SOC Verification using System Verilog

C: Introduction to Embedded Systems Software and Development Environments

D: Introduction to Embedded Machine Learning

E: Introduction to FPGA Design for Embedded Systems

F: Courses based on advanced topics as per recommendations from BOS based on available courses in relevant semester.

K. K. Wagh Institute of Engineering Education and Research, Nashik Department of Electronics and Telecommunication Engineering

nbedded System) ester: I					
roduct Design					
Examination Schen	ae:				
InSem Exam: 20M Continuous Assess					
End Sem Exam: 60 TermWork: -					
athematics					
will be able to-					
es	Bloom's Leve				
embedded products	Applying				
	Understanding				
CO3 Understand the aspects of Mechanical Packaging, Testing, reliability and failure analysis, EMI/RFI Certification and Documentation					
CO4 Demonstrate the knowledge of embedded product design related hardware and software design tools					
proves the quality of a	Remembering				
ENTS	i				
(08hrs)	COs Mapped – CO1				
f product need of hardwar omponents, Iteration and r	re and software, refinement of the				
(07hrs)	COs Mapped – CO2				
, their features, different	Processor				
(07hrs)	COs Mapped – CO3				
	(07hrs) pose processors, Softwar sign, firmware design, dr				

Unit IV	Testing and verification	(07hrs)	COs Mapped – CO4
Embedded	d products-areas of technology, Design and verification	on, Integration of the	e hardware and
software c	components, testing- different tools, their selection crit	iterion.	
Unit V	Documentation	(07hrs)	COs Mapped – CO5
	al Packaging, Testing, reliability and failure analysis, I) and its documentation. Study of any two real life en	-	
	Text Books		
1. "Eı	mbedded System Design" by Marwedel P, Springer P	Publication	
	Reference Books		
1. "E	mbedded System Design: A Unified Hardware/South	ftware Introduction'	' by Vahid Frankand

- Tony Givargis, Student Edition, John Wiley Publication
- 2. "Embedded Systems A Contemporary Design Tool" by James K. Peckol, Wiley publication

	Strength of CO-PO/PSO Mapping									
	PO	PSO								
	1	2	3	4	5	6	1	2		
CO1	3	-	2	-	-	-	-	-		
CO2	3	-	2	-	-	-	-	-		
CO3	3	-	2	-	-	-	2	-		
CO4	3	-	-	3	-	-	2	-		
CO5	3	3	-	-	-	-	-	-		

Sr. No.	Components for Continuous Assessment	Marks Allotted
1	Assignment:	20
	Assignment No. 1 - Unit 1, 2 (10 Marks)	
	Assignment No. 2 - Unit 3, 4, 5 (10 Marks)	
2	Test	20
	Test 1 (15 Marks)	
	Test 2 (15 Marks)	

K. K. Wagh Institute of Engineering Education and Research, Nashik Department of Electronics and Telecommunication Engineering (Autonomous from Academic Year 2022-23)

	F. Y. M.	Tech. (VLSI and Embe		
		Pattern 2022 Semester		
Toochin	g Scheme:	ETC 225102: ASIC De Credit Scheme:	sign Examination Schem	
-	03 hrs/week	03	InSem Exam: 20Ma	
Practica	1:		Continuous Assessr End Sem Exam: 60	
			TermWork: -	
Prerequi	isite Courses, if any: Semic	onductor Theory, Mather		
Course (Dutcomes: On completion o	f the course, students wil	l be able to-	
		Course Outcomes		Bloom's Level
COI	Illustrate the idea of AS	SIC, Data logic cells		Understanding
CO2	Explore knowledge of ASIC interconnect.	ASIC design flow along	with programmable	Understanding
CO3	B Discuss about low leve	l design in ASIC construe	ction.	Applying
CO4	Understand issues and implementation	tools related to ASIC	/FPGA design and	Applying
COS	-	on floor planning and pla	cement and routing	Analyzing
		COURSE CONTENT	ГS	
Unit I	Introduction to ASICs		(07hrs)	COs Mapped – CO1
	ASICs , Design flow , Econors , I/O cells – cell compilers.		ell libraries , CMOS l	ogic cell data path
.				
Unit II	ASIC design		(08hrs)	COs Mapped –
ASIC Lib	rary design: Transistors as r		tance , logical effort P	CO2
ASIC Lib	rary design: Transistors as r ftware: Design system, logic	synthesis, half gate ASI	tance , logical effort P C.	CO2 rogrammable ASIC
ASIC Lib design so	rary design: Transistors as r	synthesis, half gate ASI	tance , logical effort P	CO2
ASIC Lib design so Unit III	rary design: Transistors as r ftware: Design system, logic	synthesis, half gate ASI sign entry:	tance , logical effort P C. (08hrs)	CO2 rogrammable ASIC COs Mapped – CO3
ASIC Lib design so Unit III Schemati	orary design: Transistors as r ftware: Design system, logic Low level de	synthesis, half gate ASI sign entry: guages, PLA tools, EDIF	tance , logical effort P C. (08hrs)	CO2 rogrammable ASIC COs Mapped – CO3 and Verilog COs Mapped –
ASIC Lib design so Unit III Schemati Unit IV	orary design: Transistors as r ftware: Design system, logic Low level de c entry. low level design lan Logic synthesis and Testir	synthesis, half gate ASI sign entry: guages, PLA tools, EDIF	tance , logical effort P C. (08hrs) F, overview of VHDL (08hrs)	CO2 rogrammable ASIC COs Mapped – CO3 and Verilog
ASIC Lib design so Unit III Schemati Unit IV	orary design: Transistors as r ftware: Design system, logic Low level de c entry. low level design lan	synthesis, half gate ASI sign entry: guages, PLA tools, EDIF	tance , logical effort P C. (08hrs) F, overview of VHDL (08hrs)	CO2 rogrammable ASIC COs Mapped – CO3 and Verilog COs Mapped –
ASIC Lib design so Unit III Schemati Unit IV Logic syr	orary design: Transistors as r ftware: Design system, logic Low level de c entry. low level design lan Logic synthesis and Testir	synthesis, half gate ASI sign entry: guages, PLA tools, EDIF	tance , logical effort P C. (08hrs) F, overview of VHDL (08hrs)	CO2 rogrammable ASIC COs Mapped – CO3 and Verilog COs Mapped –

Floor planning & placement, Routing ,Low power VLSI design techniques, Technology Challenges

Text Books

- 1. "Application specific Integrated Circuits", J.S. Smith, Addison Wesley.
- "Principles of CMOS VLSI Design : A System Perspective", N. Westle & K. Eshraghian ,Addison – Wesley Pub.Co.1985.

Reference Books

- Basic VLSI Design :Systems and Circuits, Douglas A. Pucknell & Kamran Eshraghian, Prentice Hall of India Private Ltd., New Delhi, 1989.
- 2. Introduction to VLSI System, C. Mead & L. Canway, Addison Wesley Pub
- 3. Introduction to NMOS & VLSI System Design, A. Mukharjee, Prentice Hall
- 4. The Design & Analysis of VLSI Circuits, L. A. Glassey & D. W. Dobbepahl, Addison Wesley Pub Co. 1985.
- 5. Digital Integrated Circuits: A Design Perspective, Jan A. Rabey, Prentice Hall of India Pvt Ltd

Sn No	Guidelines for Continuous Assessment of Theory Course Sr. No. Components for Continuous Assessment Marks								
Sr. 10.	Components for Continuous Assessment	Allotted							
1	Assignment:	20							
	Assignment No. 1 - Unit 1, 2 (10 Marks)								
	Assignment No. 2 - Unit 3, 4, 5 (10 Marks)								
2	Test	20							
	Test 1 (15 Marks)								
	Test 2 (15 Marks)								

K.K.Wagh Institute of Engineering Education and Research, Nashik Department of Electronics and Telecommunication Engineering (Autonomous from Academic Year 2022-23)

		Tech.(VLSI and Embed Pattern 2022 Semester : VLSI Design Verifica	::I				
Teaching	g Scheme:	Credit Scheme:	Examination Scheme:				
Theory :	03 hrs/week	03	InSem Exam: 20Marks Continuous Assessment: 20Marks End Sem Exam: 60Marks				
Prerequis	site Courses, if any: UG Co	urses on Digital Electron	ics and VLSI Design &	Technology			
Course C	Dutcomes: On completion of	the course, students will	l be able to–				
		Course Outcomes		Bloom's Level			
CO1	Understand basics of m	odeling and simulation.		Understanding			
CO2	Identify and model faul	t.		Understanding			
CO3	Apply compression tech	nique and understand th	e self-checking system.	Applying			
CO4	Understand design for the	estability.		Understanding			
CO5	Understand system testi	ng & core based design.		Understanding			
		COURSE CONTENT	ſS	I			
Unit I	Modeling and Logic Simul	ation:	(07hrs)	COs Mapped – CO1			
simulation Hazard Do Unit II	Fault Modeling and Fault	piled simulation, Event-	driven simulation, diffe (08hrs)	rent delay models. COs Mapped – CO2			
Dominand Testing fo fault sim	ault models, Fault detectio ce, Single stuck-fault models or single stuck fault and Brid ulation, Deductive fault so onal circuits, Fault sampling	, Multiple stuck fault mo ging fault, General fault simulation, Concurrent	odel, stuck RTL variable simulation techniques, fault simulation, Fau	es, Fault variables Serial and Paralle			
Unit III	Compression techniques System:	and Self checking	; (07hrs)	COs Mapped – CO3			
Parity – cl Bit Errors totally se	spects of compression techn heck compression, Syndrom s, self– checking checkers, F elf-checking equality chech onal circuits.	e testing and Signature A Parity – check function,	Analysis, Self checking totally self-checking n	Design, Multiple - n/n code checkers			

Unit IV	Design for testability	(07hrs)	COs Mapped –	
			CO4	
Scan and	Boundary scan architectures, JTAG, Built-in Self-tes	t (BIST) and current-	based testing, analog	
test bus s	tandard.			
Unit V	System test and core-based design	(07hrs)	COs Mapped –	
			CO5	
ATPG, E	mbedded core test fundamentals. Design verification	echniques based on	simulation, analytical	
and form	al approaches, Functional verification, Timing verification	ation, Formal verific	ation, Basics of	
equivalence checking and model checking, Hardware emulation.				
	Text Books			
1. "Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits", by				
В	ushnell M L, Agrawal V D, Kluwer Academic Publisl	ners		
2. "Digital systems and Testable Design" by, Abramovici M, Breuer M A and FriedmanA D, Jaico				
Publications				
Reference Books				
1. "Design Test for Digital IC's and Embedded Core Systems" by Crouch A L, Prentice Hall				

"Design Test for Digital IC's and Embedded Core Systems" by Crouch A L, Prentice Hall\
 "Introduction to Formal Hardware Verification" by Kropf T, Springer Publications

Sr. No.	Components for Continuous Assessment	Marks Allotted
1	Assignment:	20
	Assignment No. 1 - Unit 1, 2 (10 Marks)	
	Assignment No. 2 - Unit 3, 4, 5 (10 Marks)	
2	Test	20
	Test 1 (15 Marks)	
	Test 2 (15 Marks)	

Department of Electronics and Telecommunication Engineering

(Autonomous from Academic Year 2022-23)

F. Y. M. Tech.(VLSI and Embedded System) Pattern 2022 Semester: I ETC225101: Linux in Embedded system(Elective I)

Teaching Scheme:	Credit Scheme:	Examination Scheme:
Theory :03 hrs/week	03	InSem Exam: 20Marks
		Continuous Assessment: 20Marks
		End Sem Exam: 60Marks

Prerequisite Courses, if any: Embedded System

Course Outcomes: On completion of the course, students will be able to-

	Course Outcomes		Bloom's Level
CO1	Create complex applications with multiple process incorporating synchronization and inter-process c features		Applying
CO2	Understand kernel basics		Understanding
CO3	Recognize the standard Linux and Embedded file simple tasks based on the file system.	systems and emulate	Applying
CO4	Development Interrupt management system using	g ARM	Applying
CO5	Understand embedded Linux development mode	1.	Understanding
	COURSE CONTENT	S	1
• · • ·			

Unit I	Linux OS Introduction:	(08hrs)	COs Mapped –
			CO1

User/Kernel Model, Processes, Daemons, Threads, System Calls, Shell, Shell, Virtual Memory. Executable file layout User Level Programming: Creating Processes, Linking/Loading, Signals, Shared Library, Threads and multithreaded program, Semaphores, Mutex, IPC mechanism Pipes, Shared memory.

Unit II	Kernel Internals Basics:	(08hrs)	COs Mapped –
			CO2

Process Internal representation, Linux File System Abstraction, Virtual File system, iNodes, files, /proc, Kernel Queue Data Structure, Memory Allocation (buddy system, slab cache), Embedded File systems

Unit III Working with Kernel Artifacts:	(08hrs)	COs Mapped –
		CO3

Kernel Layers, Basic Driver Architecture, Device drivers, Kernel configuration. Block & character driver distinction, Low level drivers, OS drivers etc, Device major, minor number, Interfaces to driver read, write, ioctl etc, Blocking and non-blocking calls, Semaphores, Mutex Multi core Synchronization, and spin locks, Proc & Sysfs interfaces, Block driver examples, BIOS versus boot-loader, Booting the kernel

Unit IV Interrupt Management:	(08hrs)	COs Mapped –		
		CO4		
Interrupt Handling in Normal Processor, Traditional ARM7	multi mode interrupts,	Interrupt Control		
Mechanism, Interrupts and bottom halves, Writing interrupt di	riven drivers, Implemen	nting bottom		
halves, Kernel Threads & Work Queues, Kernel timer, Jiffies,	Timer interrupts			
Unit V Linux Control Groups and TCP/IP Networking:	(08hrs)	COs Mapped –		
		CO5		
Resource limiting, Prioritization, Accounting and Control, S	Sockets APIs, Client a	nd Server design,		
Remote Procedure Call Embedded Linux Specific: Boot s	equence, I2C, SPI dri	iver structure and		
application, Study of Simulated PCI driver, Linux Kernel Structure, BSP.				
Text Books				

1. "Embedded Linux Primer: A Practical Real World Approach" by Christopher Hallinan, Wiley, Ninth Edition

Reference Books

- 1. "Operating System Concepts" by Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Wiley, Ninth Edition
- 2. "Linux Device Drivers" by Jonathan Corbet, Alessandro Rubini, O'Reilly, Third Edition
- 3. "Building Embedded Linux Systems" by KarimYaghmour, O'Reilly & Associates

	Guidelines for Continuous Assessment of Theory Course			
Sr. No.	Components for Continuous Assessment	Marks		
		Allotted		

1	Assignment:	20
	Assignment No. 1 - Unit 1, 2 (10 Marks)	
	Assignment No. 2 - Unit 3, 4, 5 (10 Marks)	
2	Test	20
	Test 1 (15 Marks)	
	Test 2 (15 Marks)	

Department of Electronics and Telecommunication Engineering (Autonomous from Academic Year 2022-23)

	F. Y. M. 7	Fech. (VLSI and Emb	edded System)		
		Pattern 2022 Semest	er: I		
	ETC	225104: Static Time	Analysis		
Teaching Scheme:Credit Scheme:Examination Scheme:					
Theory :0	3 hrs/week	03	InSem Exam: 20Mar	ks	
Practical :-				sment: 20Marks	
			End Sem Exam: 60M	arks	
			TermWork: 25Marks	5	
Prerequis	site Courses, if any: Semico	onductor Theory, Mathe	ematics		
Course O	utcomes: On completion of	f the course, students w	ill be able to–		
		Course Outcomes		Bloom's Level	
C01	Understand the basics of S	Static time analysis		Understanding	
CO2	Explain what static timing	analysis is and how it is u	used for timing verification	Understanding	
CO3	Explain timing terminolog	Explain timing terminology related to static timing analysis U		Understanding	
CO4 Explain various techniques				Applying	
parasitic and cell delays		nd paths delays are comp	oute.		
CO5	Explain various methods f and multicycle paths	or specifying clocks, IO c	haracteristics, false paths	Applying	
		COURSE CONTEN	ITS	<u> </u>	
Unit I	Introduction to Static Tim	e Analysis(STA):	(07hrs)	COs Mapped – CO1	
	atic Timing Analysis (STA) Disadvantages of Static Tim			0	
Unit II	STA Concepts: CMOS Log	ric Design.	(08hrs)	COs Mapped – CO2	
-	of CMOS Cells, Switching ignals, Timing Arcs and Un	1.0	•	form, Skew	
Unit III '	Timing Modelling and An	alysis :	(08hrs)	COs Mapped – CO3	
	ning Model, Non-Linear De al Cells ,State-Dependent M	•		s, Timing Models	

Unit IV	Interconnect Parasitic sand Delay Calculation :	(08hrs)	COs Mapped –		
			CO4		
	nterconnect, Wire load Models, Reducing Parasitic fo	, 2	Calculation Basics		
	lculation with Interconnect, Interconnect Delay, Path	Delay Calculation			
Unit V	Configuring the STA Environment:	(08hrs)	COs Mapped –		
			CO5		
What is the STA Environment? Specifying Clocks, Generated Clocks, Constraining Input Paths and Output Paths, Timing Path Groups, Design Rule Checks, Refining the Timing Analysis, Path Segmentation					
	Text Books				
1. Static Timing Analysis for Nanometer Designsby J. Bhasker Rakesh Chadha Springer					
Reference Books					
1. Fu	ndamentals of digital circuits by A.Anand Kumar, 2n	d Edition, PHIPublisher	S		

Sr. No.	Components for Continuous Assessment	Marks Allotted
1	Assignment:	20
	Assignment No. 1 - Unit 1, 2 (10 Marks)	
	Assignment No. 2 - Unit 3, 4, 5 (10 Marks)	
2	Test	20
	Test 1 (15 Marks)	
	Test 2 (15 Marks)	

K.K.Wagh Institute of Engineering Education and Research, Nashik Department of Electronics and Telecommunication Engineering

(Autonomous from Academic Year 2022-23)

		Fech.(VLSI and Embed Pattern 2022 Semester Clective 1 MEMS and M	::I	
Teaching	Scheme:	Credit Scheme:	Examination Schem	ne:
Theory :03 hrs/week		03	InSem Exam: 20Ma Continuous Assessr End Sem Exam: 60	nent: 20Marks
Prerequisi	ite Courses, if any: UG Co	urses on Digital Electron	ics and VLSI Design	& Technology
Course O	utcomes: On completion of	the course, students will	l be able to-	
		Course Outcomes		Bloom's Level
CO1	Understand basics of M	EMS and microsystems.		Understanding
CO2	Study working principle	e of MEMS and microsys	stems.	Understanding
CO3	Explore materials used	for MEMS and Microsys	tems	Understanding
CO4	Explore fabrication tech	iniques used for MEMS a	and Microsystems	Understanding
CO5 Design electronic circuits for MEMS and Mic		ts for MEMS and Micros	systems Designing	
		COURSE CONTENT	ſS	
Unit I	Overview of MEMS and N	licrosystems	(05hrs)	COs Mapped – CO1
Introductio	on to MEMS and Microsys	tems, Typical MEMS a	nd Microsystems Pro	
	cation, Microelectronics and		tions of MEMS	
Unit II	Working Principles of ME	MS and Microsystems	(07hrs)	COs Mapped – CO2
Piezoelectr methods us	on to Microsensors and Microsensors and Microsensors and Optical string Thermal forces, Piezoe ors and Microactuators.	sensing methods, Microa	ctuation techniques for	or MEMS: Actuation
Unit III N	Materials for MEMS and 1	Microsystems	(06hrs)	COs Mapped – CO3
	Substrates and Wafers, Ac ls, Gallium Arsenide, Quart		,	,
	Fabrication Processes Microsystems	for MEMS and	(06hrs)	COs Mapped – CO4
Deposition	n processes: Photolithograp n, Physical Vapor Depositi s, Micromachining processe	on – Sputtering, Depos	ition by Epitaxy, Dr	ry and Wet Etching

Unit	V Electronic circuits for MEMS and Microsystems	(06hrs)	COs Mapped –
			CO5
Semico	onductor devices: Diodes, BJT, MOSFET, CMOS, Elect	tronic Amplifiers, Oper	ational amplifiers,
Differe	ence amplifier, Wheatstone Bridge circuit for measureme	ent of resistance, Analo	g to Digital
conver	ter, Differential charge measurement, Switched capacito	r circuits for capacitanc	e measurement.
	Text Books		
1.	"MEMS and Microsystems: Design and Manufacture",	T.R. Hsu, McGraw Hil	1
2.	"Analysis and Design Principles of MEMS Devices", H	. Bao, Elsevier	
	Reference Books		
1.	1. "Fundamentals of Microfabrication: The Science of Miniaturization", M. J. Madou, CRC Press		
2.	"Micro and Smart Systems", G.K. Ananthasuresh, K.J.	Vinoy, S. Gopalakrishr	nan, K.N. Bhat and
	V.K. Aatre, Wiley India		

3. "Microsystem Design", S.D. Senturia, Springer

	Guidelines for Continuous Assessment of Theory Course		
Sr. No.	Sr. No. Components for Continuous Assessment		
		Allotted	
1	Assignment:	20	
	Assignment No. 1 - Unit 1, 2 (10 Marks)		
	Assignment No. 2 - Unit 3, 4, 5 (10 Marks)		
2	Test	20	
	Test 1 (15 Marks)		
	Test 2 (15 Marks)		

K.K.Wagh Institute of Engineering Education and Research, Nashik Department of Electronics and Telecommunication Engineering (Autonomous from Academic Year 2022-23)

		Fech.(VLSI and Ember Pattern 2022 Semeste	•	
Teaching	ETC225105 : Research Methodology and IPRFeaching Scheme:Credit Scheme:Examination Scheme:			
Theory :03 hrs/week		nrs/week 03		ks
		•	InSem Exam: 20Marks Continuous Assessment: 20Marks End Sem Exam: 60Marks	
Prerequisi	ite Courses, if any: NA			
Course Ou	utcomes: On completion of	the course, students wil	l be able to-	
		Course Outcomes		Bloom's Level
CO1	Conduct a quality literat	ture review and find the	research gap.	Understanding
CO2	Identify an original and its solution.	Identify an original and relevant problem and identify methods to find Un its solution.		Understanding
CO3	Analyze strategy of performance prediction	Analyze strategy of experimentation, statistics for modeling and Analyzing performance prediction		Analyzing
CO4	Explain concept of Hyp	Explain concept of HypethesisUnderstanding		
CO5	5 Discuss research ethics and Understand IPR protection for further research and better products.		Understanding	
		COURSE CONTEN	ГS	
Unit I	Research techniques	s vs. Methodology	(08hrs)	COs Mapped – CO1, CO12
Analytical, applied and Literature the web as database, cr Defining a the problem Research J constructin	techniques vs. Methodolo Applied vs. Fundamental, l basic research process, cri review:-Primary and seco a source, web searching, c reation of working hypothe nd formulating the resea n, and the importance of com process: eight step model g instrument for data colle ssing data, writing research	Quantitative vs. Qualita teria of good research, ndary sources, reviews, ritical literature review, sis rch problem :- choosing nducting a literature revi - formulating research p ction, Selecting a samp	tive, Conceptual vs. Em monographs, patents, r finding gaps in the liter g the problem, the impo ew in problem definition problem, conceptualizin	pirical, concept of esearch databases, ature and research ortance of defining n, g research design,
Unit II	Design of Ex	periments	(08hrs)	COs Mapped - CO1, CO12

Taguchi Method to plan a set of experiments or simulations or build prototype, analyze your results and draw conclusions or Build Prototype, Test and Redesign, analysis Plagiarism, Introduction, Sample Design, Sampling and Non-sampling Errors, Sample Survey versus Census Survey, Types of Sampling Designs. Measurement and Scaling: Qualitative and Quantitative Data, Classifications of Measurement Scales, Goodness of Measurement Scales, Sources of Error in Measurement Tools, Scaling, Scale Classification Bases, Scaling Techniques, Multidimensional Scaling, Deciding the Scale.

Data Collection: Experimental and Surveys, Collection of Primary Data, Collection of Secondary Data, Selection of Appropriate Method for Data Collection, Case Study Method.

Unit III	Strategy of Experimentation	(08hrs)	COs Mapped –
			CO1, CO12

Strategy of Experimentation - Typical applications of experimental design - Guidelines for designing experiments - Basic statistical concepts - Statistical concepts in experimentation - Regression approach to analysis of variance.

Applied Statistics: Regression analysis, Parameter estimation, Multivariate statistics, Principal component analysis, Moments and response curve methods, State vector machines and uncertainty analysis.

Modeling and prediction of performance: Setting up a computing model to predict performance of experimental system, Multi-scale modeling and verifying performance of process system, Nonlinear analysis of system and asymptotic analysis, Verifying if assumptions hold true for a given apparatus setup, Plotting family of performance curves to study trends and tendencies, Sensitivity theory and applications.

Computer and its role in research, Use of statistical software SPSS, GRETL, etc. in research. Introduction to evolutionary algorithms - Fundamentals of Genetic algorithms, Simulated Annealing,

Neural Network based optimization, Optimization of fuzzy systems.

	1 1 5 5		
Unit IV	Hypothesis	(08hrs)	COs Mapped –
			CO1, CO12
Hypothes	Iypothesis , Basic Concepts Concerning Testing of Hypotheses, Testing of Hypothesis, Test Statistics		
and Critic	and Critical Region, Critical Value and Decision Rule, Procedure for Hypothesis Testing, Hypothesis		
Testing fo	Testing for Mean, Proportion, Variance, for Difference of Two Mean, for Difference of Two		
Proportion	Proportions, for Difference of Two Variances, P-Value approach, Power of Test, Limitations of the		
Tests of H	Tests of Hypothesis. Chi-square Test: Test of Difference of more than Two Proportions, Test of		
Independe	Independence of Attributes, Test of Goodness of Fit, and Cautions in Using Chi Square Tests		
Unit V	Intellectual Property	(08hrs)	COs Mapped –

Intellectual Property: IPR- intellectual property rights and patent law, commercialization, copy right, royalty, trade related aspects of intellectual property rights (TRIPS); scholarly publishing- IMRAD concept and design of research paper, citation and acknowledgement, plagiarism, reproducibility and accountability.

Meaning of Interpretation, Technique of Interpretation, Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Research Reports.

Text Books

- An Introduction to Research Methodology, RBSA Publishers, Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002
- 2. Research Methodology: A Step by Step Guide for Beginners, Second edition, SAGE Publications Ltd 3rd Edition, 2011, Ranjit Kumar
- Research Methodology: Methods and Trends, New Age International 4th Edition, 2018, Dr. Kothari C R

Reference Books

- 1. Research methodology: An Introduction for Science & Engineering students , Melville Stuart, Goddard Wayne
- 2. Methods: the concise knowledge base, Trochim Atomic Dog Publishing

	Guidelines for Continuous Assessment of Theory Course		
Sr. No.	Sr. No. Components for Continuous Assessment		
		Allotted	
1	Assignment:	20	
	Assignment No. 1 - Unit 1, 2 (10 Marks)		
	Assignment No. 2 - Unit 3, 4, 5 (10 Marks)		
2	Test	20	
	Test 1 (15 Marks)		
	Test 2 (15 Marks)		

K.K.Wagh Institute of Engineering Education and Research, Nashik Department of Electronics and Telecommunication Engineering (Autonomous from Academic Year 2022-23)

F. Y. M. Tech. Pattern 2022 Semester: I ETC225107: Lab Practice I		
Theory :-	02	OR:25Marks
Practical : 04 hrs/week		Term Work: 25Marks

The laboratory work will be based on completion of minimum two assignments/experiments confined to the following courses of that first semester

- A. Embedded Product Design
- B. VLSI Design Verification and Testing
- C. Elective I Linux in Embedded System
- D. Elective I MEMS and Microsystem Design
- E. ASIC Design
- F. Elective I Static Time Analysis

A. Embedded Product Design Group of Course: DCC Prerequisites for the course: Embedded System Design

Course Objectives and Outcomes:

Course	Description	Bloom's Level
Outcomes	After successful completion of the course	
	students will be able to	
CO1	Demonstrate the knowledge of embedded	Applying
	product design related hardware and	
	software design tools	
CO2	Understand the aspects of Testing and	Understanding
	estimate cost of embedded product	

List of Experiments:

Unit No.	Contents	CO mapped
1	Estimate techno-commercial feasibility of any one embedded product such as mobile phone, programmable calculator, tablet PC, set top box etc.	CO1
2	Study of design considerations of any one embedded product.	CO1
3	Design any one embedded product to solve any real life problems. Estimate cost of embedded product	CO1
4	Simulate the software and test the hardware designed for above assignment (3) using suitable simulation tool.	CO2
5	Develop Hardware for assignment 3. Select the Microcontroller, Memory and peripherals. Design the enclosure for the system. Test the hardware using emulator	CO1,CO2

CO-PO Mapping

B. VLSI Design Verification and Testing

Prerequisites for the course: VLSI Design Verification and Testing

Course Objectives and Outcomes:

Course	Description	Bloom's Level
Outcomes	On completion of the course,	
	student will be able to,	

CO1	Implement modelling and simulation technique for fault detection.	Applying
CO2	Implement and analyse various compression technique.	Applying

List of Experiments:

Sr. No.	Contents	CO mapped
	Simulate a single input signature analyser for given	CO1
1	characteristic equation and input sequence.	
2	Implement different compression techniques like ones- count, transition- count.	CO2
3	Implement a self-checking system in automatic detection of fault.	C01
4	Implement different fault models using back end tools.	CO1
5	Design event driven simulation model using VLSI simulation software.	CO1

CO-PO Mapping

	Strength of CO-PO/PSO Mapping							
	POs PSOs							
	1	2	3	4	5	6	1	2
CO1	-	-	3	3	-	-	3	-
CO2	-	-	3	3	-	-	3	-

C. Elective I - Linux in Embedded System

Group of Course: DEC

Prerequisites for the course: Embedded system

Course Objectives and Outcomes:

Course Outcomes	Description After successful completion of the course students will be able to	Bloom's Level
C01	Develop multithreaded applications, libraries	Applying
	and device drivers for Linux OS	
CO2	Configure, compile and load the embedded	Applying
	Linux kernel on to target platform.	

Course context, Relevance, Practical Significance:

.List of Experiments:

Unit No.	Contents	CO mapped
1	Linux file systems and emulating several	CO1,CO2
	commands related to file systems such as	
	ls, pwd	
2	Develop and use pseudo and serial	CO1,CO2
	communication Linux device drivers	
3	Design and implement custom network	CO1,CO2
	applications using socket programming	
4	Compile and install bootloader and use	CO1,CO2
	basic commands of bootloader	
_	Making a tiny embedded system with	CO1,CO2
5	busy box	

CO-PO Mapping

		Strength of CO-PO/PSO Mapping						
	PC	PO PSO						
	1	2	3	4	5	6	1	2
CO1	2	-	3	-	-	-	-	-
CO2	2	-	3	-	-	-	-	-

D. Elective1- MEMS and Microsystem Design

Prerequisites for the course: MEMS and Microsystem Design

Course Objectives and Outcomes:

Course	Description	Bloom's Level
Outcomes	On completion of the course, student will be able	
	to,	
C01	Explore various MEMS components and sensors.	Understanding
CO2	Explore fabrication techniques used for MEMS	Understanding
	and Microsystems	
CO3	Design electronic circuits for MEMS and	Analysing
	Microsystems	

List of Experiments:

Sr. No.	Contents	CO mapped
1	To study and simulate a piezoresistive pressure sensor.	CO1, CO3
2	To study and simulate a capacitive pressure sensor.	CO1, CO3
3	To study and simulate a cantilever based resonator.	CO1, CO3
4	To study and simulate a beam based MEMS switch.	CO1, CO3
5	To study and develop MASKs for various MEMS devices.	CO1, CO3
6	To study and simulate various fabrication processes involved in the development of MEMS devices.	CO2

CO-PO Mapping

	Strength of CO-PO/PSO Mapping							
	POs	POs						
	1	2	3	4	5	6	1	2
CO1	-	-	3	3	-	-	3	-
CO2	-	-	3	3	-	-	3	-
CO3	-	-	3	3	-	-	3	-

Department of Electronics and Telecommunication Engineering (Autonomous from Academic Year 2022-23)

		Tech.(VLSI and Embed Pattern 2022 Semester 25107: Real Time Embed	: II		
Teaching So	cheme:	Credit Scheme:	Examination Scheme:		
Theory :03	hrs/week	03	InSem Exam: 20Marks Continuous Assessment: 20Marks End Sem Exam: 60Marks		
Prerequisite	e Courses, if any: Embed	lded System			
Course Out	comes: On completion of	f the course, students wil	l be able to-		
		Course Outcomes		Bloom's Level	
CO1	Study concepts of Real	Time Embedded System	S	Understanding	
CO2	Design real time embed	ded Systems		Analyzing	
CO3	Interface Embedded sys	stem peripherals		Applying	
CO4 Design of real time Embedded System Software				Analyzing	
CO5	Do case study of real ti	me embedded system		Analyzing	
		COURSE CONTENT	ſS		
Unit I Int	roduction: I		(08hrs)	COs Mapped – CO1	
ntroduction t	o Real Time Embedded	Systems: design metrics	of embedded system	n, Comparison of	
	nbedded System from ot	her systems, real and no	on-real time embedde	ed system,	
1	of embedded system				
	nbedded Systems design		(07hrs)	COs Mapped – CO2	
	rocessors selection: Em C V800 Memory :Cach	1	-	RM, 486SX, Hitachi	
	es of Dynamic RAMs, sh	•	• 1		
Unit III En	ibedded system periphe	rals	(07hrs)	COs Mapped – CO3	
-	n speed I/O interfacing, A rial Bus Signals, IrDA sta			- -	
Unit IV De	sign of real time Embed	ded, System Software:	(07hrs)	COs Mapped – CO4	
RTOS, Testii	ng of Embedded System,	Boundary Scan Methods	and Standards		
Unit V Ca	se study of real time em	bedded system	(07hrs)	COs Mapped – CO5	

Mobile phone, Automatic cruise control system, Digital Camera, IOT application, real time, signal processing application

Text Books

1. "Embedded Microcomputer Systems: Real-Time Interfacing", Jonathan W. Valvano, Brookes/Cole, Pacific Grove, 2000.

Reference Books

1. "Embedded Systems Architecture, Programming and design" by Raj Kamal, Tata McGraw-Hill.

2. "Embedded / real time system" by Dr.K.V.K.K. Prasad, Dreamtech.

Sr. No.	Sr. No. Components for Continuous Assessment						
1	Assignment:						
	Assignment No. 1 - Unit 1, 2 (10 Marks)	20					
	Assignment No. 2 - Unit 3, 4, 5 (10 Marks)						
2	Test						
	Test 1 (15 Marks)	20					
	Test 2 (15 Marks)						

Department of Electronics and Telecommunication Engineering (Autonomous from Academic Year 2022-23)

]	Fech.(VLSI and Embe Pattern 2022 Semester C225108: ML in Chip	r: II		
Teaching	Scheme:	Credit Scheme:	Examination Sche	me:	
Theory :(03 hrs/week	03	InSem Exam: 20Marks Continuous Assessment: 20Marks End Sem Exam: 60Marks		
Prerequis	site Courses, if any: VLSI De	esign			
Course O	Dutcomes: On completion of	the course, students wi	ll be able to-		
			Bloom's Level		
CO1	Describe the Six categorie	s of Artificial Intelligence)	Understanding	
CO2	Explain problem solving a	nd Decision making appli	ications	Applying	
CO3	CO3 Explain machine learning for lithography and physical design			Understanding	
CO4 Implement Machine Learning for VLSI Chip Testing and Semiconductor Manufacturing Process				Applying	
CO5	Implement Fast Statistic	al Analysis Using Macl	nine Learning	Applying	
		COURSE CONTEN	TS		
	Introduction to Artificial I Machine Learning: ,	ntelligence and	(07hrs)	COs Mapped – CO1	
Intelligenc	s of Artificial Intelligence, T ce, Further Examination and nd Artificial Intelligence Sys to learn?	Impact of Artificial Inte	elligence and Algorith	hms, Types of Expert	
	Artificial Intelligence Six C	Cognitive Driven	(08hrs)	COs Mapped –	
	Algorithms:			CO1, CO2	
	Used in Problem-Solving ar on Drives Implementing a Pa		x Dominant Algorith	mic Pathways,	
Unit III Machine Learning for Lithography and Physical Design:			(07hrs)	COs Mapped – CO3	
Machine I	Learning for Compact Lithog Learning in Physical Verifica	tion, Mask Synthesis, a	nd Physical Design	•	
	Machine Learning for Mar Reliability:	ufacturing, Yield, and	d (07hrs)	COs Mapped – CO4	

Gaussian Process-Based Wafer-Level Correlation Modeling and Its Applications, Machine Learning Approaches for IC Manufacturing Yield Enhancement, Efficient Process Variation Characterization by Virtual Probe, Machine Learning for VLSI Chip Testing and Semiconductor Manufacturing Process Monitoring and Improvement, Machine Learning-Based Aging Analysis

i i o i ii to i ii	-8 and	, 1 ma j 515			
Unit V	Machine Learning for Failure Modeling:	(07hrs)	COs Mapped –		
			CO5		
Extreme Statistics in Memories, Fast Statistical Analysis Using Machine Learning, Fast Statistical					
Analysis of Rare Circuit Failure Events, Learning from Limited Data in VLSICAD					

Text Books

- 1. Artificial Intelligence in a Throughput Model Some Major Algorithms by Waymond Rodgers-CRC Press
- 2. Machine Learning in VLSI Computer-Aided Design by Ibrahim (Abe) M. Elfadel Duane S. Boning · Xin Li-Springer

	Guidelines for Continuous Assessment of Theory Course				
Sr. No.	Components for Continuous Assessment				
		Allotted			
1	Assignment:	20			
	Assignment No. 1 - Unit 1, 2 (10 Marks)				
	Assignment No. 2 - Unit 3, 4, 5 (10 Marks)				
2	Test	20			
	Test 1 (15 Marks)				
	Test 2 (15 Marks)				

Department of Electronics and Telecommunication Engineering

(Autonomous	from	Academic	Year	2022-23)
-------------	------	----------	------	----------

		Fech. (VLSI and Embo Pattern 2022 Semeste		
		109: VLSI for AI & Ne		
Teaching S	cheme:	Credit Scheme:	Examination Scheme	•
Theory :03			InSem Exam: 20Mar	
			Continuous Assessme End Sem Exam: 60M	
Prerequisite Technology.	e Courses, if any: Basic k	Knowledge of Artificial	Intelligence and VLSI D	esign &
	comes: On completion of	f the course, students with	ill be able to-	
		Course Outcomes		Bloom's Level
CO1	Apply basic principles of	of AI		Applying
CO2	Analyze applications of analog circuits	f AI techniques in intell	igent agents using	Analyzing
CO3	Demonstrate in intellige networks using VLSI te		ns, artificial neural	Applying
CO4	Develop applications in mining tool using multi		rt system shell, or data	Applying
CO5 Applying scientific met		thod to models of machine learning.		Applying
		COURSE CONTEN	ITS	
Unit I Ov	verview of AI& Neural N	Network: -	(03hrs)	COs Mapped – CO1
problem. Net of a neural	, hierarchical perspective ural Network: Biological network, Learning rules, of Neural Network.	neurons and brain, mat	hematical models of neu	ron, basic structur
Unit II Ar	nalog Circuits for Neura	l Networks:	(03hrs)	COs Mapped – CO2
learning capa Implementat the minimun	I Neural Learning Circui ability, Back propagation ion of the Boltzmann ma- n Entropy Neuron, A mul- ells in Mammalian Visual	learning Algorithms for chine with Programmal lti-layer Analog VLSI a	r Analog VLSI Implement ble learning Algorithms,	ntation, An Analog A VLSI Design o
Unit III	Digital Implementation	ns of Neural Networks	: (03hrs)	COs Mapped – CO3

A VLSI Pipelined Neuroemulator, A Low Latency Digital Neural Network Architecture, MANTRA: A multi-Model Neural-Network Computer, SPERT: A Neuro-Microprocessor, Design of Neural Self-Organization Chips for Semantic Applications, VLSI Implementation of a Digital Neural Network with Reward-Penalty Learning, Asynchronous VLSI Design For Neural System Implementation.

Unit IV	Neural Networks on Multiprocessor Systems and	(03hrs)	COs Mapped –
	Applications:		CO4

VLSI-Implementation of Associative Memory Systems for Neural Information Processing, A Dataflow Approach for Neural Networks, A custom Associative chip used as a building block for a software reconfigurable multi-network simulator, Parallel Implementation of Neural Associative Memories on RISC processors, Reconfigurable Logic Implementation of memory-based neural networks: A case study of the CMAC network, cascadable VLSI Design for GENET, Parametrised into Hardware Neural network design and compilation, Knowledge processing in Neural Architecture, Two methods for solving Linear equations using Neural Networks.

Unit V	VLSI Machines for Artificial Intelligence:	(03hrs)	COs Mapped –
			CO5

Hardware support for data Parallelism in production Systems, SPACE: Symbolic Processing in Associative Computing Elements, PALM: A Logic Programming System on a Highly Parallel architecture, A Distributed parallel (DPAP) for the Execution of Logic Programs, Performance analysis of a parallel VLSI Architecture for Prolog, A Prolog VLSI System for Real Time Applications, An Extended WAM Based Architecture for OR-Parallel Prolog Execution, Architecture and VLSI Implantation of a Pegasus-II Prolog Processor.

Text Books

- 1. "Artificial Intelligence & Soft Computing" by Purva Raut,Dipali V.Koshti, Nikahat Mulla, Techno Knowledge publications.
- 2. "Neural Networks" by Satish Kumar, McGraw-Hill.
- 3. "Introduction to Artificial Neural Systems" by Jacek M. Zurada, Jaico Publishing House.
- 4. "Artificial Intelligence" by Saroj Kaushik, Cengage Learning

Reference Books

- "VLSI for Neural Networks and Artificial Intelligence" by Jose G. Delgado-Frias W.R. Moore, Springer, Boston, MA.
- 2. "Artificial Intelligence and Machine Learning" by Chandra S.S.V, PHI.
- 3. "VLSI Artificial Neural Networks Engineering" by Elmasry, Mohamed I., Springer.
- 4. "Neural Networks and Learning Machines" by Simon O. Haykin, Pearson.

Guidelines for Continuous Assessment of Theory Course				
Sr. No.	Components for Continuous Assessment	Marks Allotted		
1	Assignment:	20		
	Assignment No. 1 - Unit 1, 2 (10 Marks)			
	Assignment No. 2 - Unit 3, 4, 5 (10 Marks)			
2	Test	20		
	Test 1 (15 Marks)			
	Test 2 (15 Marks)			

Department of Electronics and Telecommunication Engineering (Autonomous from Academic Year 2022-23)

	F. Y. M. 7	Fech. (VLSI and Embe	dded System)	
		Pattern 2022 Semester	:: II	
	ETC225110:	Embedded Computing	and Networking	
Teaching Sc	heme:	Credit Scheme:	Examination Scheme	:
Theory :03 hrs/week		03	InSem Exam: 20Mar Continuous Assessme End Sem Exam: 60M	ent: 20Marks
Prerequisite	Courses, if any: Knowl	ledge about microcontrol	ller, embedded processo	rs
Course Out	comes: On completion or	f the course, students wil	ll be able to-	
		Course Outcomes		Bloom's Level
CO1	Interpret the embedde	ed computing and illust	rate instruction set for	Understanding
		I C55xx DSP processor.		
CO2	-	U with Performance and	power consumption.	Analyzing
CO3	Categories two funda	mental abstraction of a	a complex system on	Applying
		process and the operating		
CO4 Design a video accelerator with the use of multiprocessors.		tiprocessors.	Create	
CO5 Elaborate network		used to build distributed embedded system.		Analyzing
		COURSE CONTEN	ГS	
Unit I Em	bedded Computing:		(08hrs)	COs Mapped – CO1
ntroduction,	complex systems and mi	croprocessors, embedde	d system design process	, formalism of
anguage. AR	n, model train controller 2M and TI DSP C55xx: F l flow control.	=		
Unit II CP	Us:		(08hrs)	COs Mapped – CO2
Programming	g I/O, supervisory, except	tion, trap, co-processors,	memory system mecha	nism, CPU
performance,	CPU power consumptio	n, design example: data	compressor	
Unit III Pro	cesses and operating sys	tems:performance,	(08hrs)	COs Mapped –
_	ver management and opti sign example: Telephone	=		CO3
	and multiple processes,		erating systems, priority	based scheduling
1	т т	ь <u>к</u> 11		6

Unit IV Multiprocessors:		(08hrs)	COs Mapped – CO4
Why multiprocessors, CPUs and ac	elerators, multiprocessors p	performance analysi	is, consumer
electronics architecture, Design exa	nple: cell phones, digital st	ill cameras, video a	ccelerators
Unit V Networks:		(08hrs)	COs Mapped – CO5
Distributed embedded architecture,	networks for embedded sys	tem, network based	design, internet-
enabled system, vehicles as network	•		
	Text Books		
1. "Computers as Components Hendrix Wolf ,2005.	Principles of Embedded Co	omputing System De	esign" By Wayne
2. "Embedded Systems Archit	cture, Programming and De	esign" By Raj Kama	al , 2011.
	Reference Books		
1. "Multiprocessing in Embed	ed Systems "by K. C. Wang	g.	
2. "Architecting High-Perform time digital systems based of		•	igh-performance real-

	Guidelines for Continuous Assessment of Theory Course				
Sr. No.	Sr. No. Components for Continuous Assessment				
		Allotted			
1	Assignment:	20			
	Assignment No. 1 - Unit 1, 2 (10 Marks)				
	Assignment No. 2 - Unit 3, 4, 5 (10 Marks)				

2	Test	20
	Test 1 (15 Marks)	
	Test 2 (15 Marks)	

K.K.Wagh Institute of Engineering Education and Research, Nashik Department of Electronics and Telecommunication Engineering

(Autonomous from Academic Year 2022-23)

		Tech.(VLSI and Embed Pattern 2022 Semester 5110: VLSI Architectur	::I			
Teaching	g Scheme:	Credit Scheme:	Examination Scheme:			
Theory :	03 hrs/week	03	InSem Exam: 20Marl Continuous Assessme End Sem Exam: 60M	nt: 20Marks		
Prerequi	site Courses, if any: DSP, V	LSI, Mathematics.				
Course (Dutcomes: On completion of	f the course, students will	l be able to–			
		Course Outcomes		Bloom's Level		
CO1	Understand the essentia which can be incorpora	l features of controller ar ted in VLSI chip	chitectures and find	Understanding		
CO2	Implementation of data	a path and control path		Applying		
CO3	Understand pipelining	and model it using HDL		Applying		
CO4	Understand important computation	building blocks relate	ed to highly accurate	Understanding		
CO5	5 Study architectures for	programmable digital sig	gnal processing devices	Understanding		
	·	COURSE CONTENT	ſS			
Unit I	Instruction set architectur control	res and performance	(8hrs)	COs Mapped – CO1		
implicati optimiza Instructio performa benchma Unit II	l features of Instruction se ions for implementation as ation through hardware fl on boundary interrupts, Imn ance: Overview CPU perform arks and performance of rece Data path-control and C in DSP implementations:	VLSI chips CISC Instr low-charting (without/w nediate interrupts and tra nance and its factors, eva ent INTEL processors, fal	ruction-set implementat with pipelining concept sps in processors Assess aluating performance, re llacies and pitfalls	ion and RT-Level ts) Handling of sing understanding		
cycle im of the descripti Introduc precision	tion, logic design conventio plementation, exceptions, M processor: simplifying con on language, fallacies an tion, number formats for n, sources of errors in DSP in version errors	Microprogramming appro trol design, an introdu d pitfalls Computation signals and coefficients	baches for implementation to digital design al accuracy in DSP in DSP systems, dyn	ion of control part n using hardware implementations: namic range and		

Parallel Processing CO3 Introduction to Pipelining and Parallel processing - Merits and demerits of pipelined execution Pipelined data path, pipe lined control - Pipelined implementation of RISC Instruction Sets - Classi five stage pipeline for RISC processor Hazards of various types and pipeline stalling - Data hazards and forwarding, data hazards and stalls, branch hazards, using a hardware description language t describe and model a pipe line, exceptions Advanced pipelining: extracting more performance, failacies and pitfalls Unit IV Instruction Level Parallelism - the Hardware (8hrs) COs Mapped – CO4 Approach (8hrs) COs Mapped – CO4 Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling using Tomasulo's approach Branch prediction, high performance instruction delivery - hardware based speculation. ILP Softwar Approach: Basic compiler level techniques, static branch prediction, VLIW approach, Exploiting ILF Parallelism at compile time, Cross cutting issues - Hardware verses Software. Unit V Architectures for programmable DSP devices: (8hrs) COs Mapped – CO5 Introduction to VLSI Architectures - basic architectural features DSP computational building blocks - Implementation of DSP Instruction sets Programmable and function specific architectures, bus architecture and memory - data addressing capabilities, addres architectures DSP computational building blocks - Implementation of DSP Instruction, sets Programmable and function unit, programmability and program execution - speed issues - fe		Performance enhancement with Pipelining and	(8hrs)	COs Mapped –
Pipelined data path, pipe lined control - Pipelined implementation of RISC Instruction Sets - Classi five stage pipeline for RISC processor Hazards of various types and pipeline stalling - Data hazard and forwarding, data hazards and stalls, branch hazards, using a hardware description language t describe and model a pipe line, exceptions Advanced pipelining: extracting more performance, fallacies and pitfalls Unit IV Instruction Level Parallelism - the Hardware (8hrs) COs Mapped – CO4 Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling using Tomasulo's approach Branch prediction, high performance instruction delivery - hardware based speculation. ILP Softwar Approach: Basic compiler level techniques, static branch prediction, VLIW approach, Exploiting ILF Parallelism at compile time, Cross cutting issues - Hardware verses Software. COs Mapped – Unit V Architectures for programmable DSP devices: (8hrs) COs Mapped – CO5 Introduction to VLSI Architectures - basic architectural features DSP computational building blocks - Implementation of DSP Instruction sets Programmable and function specific architectures, bus architecture and memory - data addressing capabilities, address generation unit, programmability and program execution - speed issues - features for externs interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Itext		Parallel Processing		CO3
Pipelined data path, pipe lined control - Pipelined implementation of RISC Instruction Sets - Classi five stage pipeline for RISC processor Hazards of various types and pipeline stalling - Data hazard and forwarding, data hazards and stalls, branch hazards, using a hardware description language t describe and model a pipe line, exceptions Advanced pipelining: extracting more performance, fallacies and pitfalls Unit IV Instruction Level Parallelism - the Hardware (8hrs) COs Mapped – CO4 Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling using Tomasulo's approach Branch prediction, high performance instruction delivery - hardware based speculation. ILP Softwar Approach: Basic compiler level techniques, static branch prediction, VLIW approach, Exploiting ILF Parallelism at compile time, Cross cutting issues - Hardware verses Software. COs Mapped – Unit V Architectures for programmable DSP devices: (8hrs) COs Mapped – CO5 Introduction to VLSI Architectures - basic architectural features DSP computational building blocks - Implementation of DSP Instruction sets Programmable and function specific architectures, bus architecture and memory - data addressing capabilities, address generation unit, programmability and program execution - speed issues - features for externs interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Itext				
five stage pipeline for RISC processor Hazards of various types and pipeline stalling - Data hazard and forwarding, data hazards and stalls, branch hazards, using a hardware description language t describe and model a pipe line, exceptions Advanced pipelining: extracting more performance, fallacies and pitfalls Unit IV Instruction Level Parallelism - the Hardware (Shrs) COs Mapped – CO4 Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling using Tomasulo's approach Branch prediction, high performance instruction delivery - hardware based speculation. ILP Softwar Approach: Basic compiler level techniques, static branch prediction, VLIW approach, Exploiting ILF Parallelism at compile time, Cross cutting issues - Hardware verses Software. Unit V Architectures for programmable DSP devices: (Shrs) COs Mapped – CO5 Introduction to VLSI Architectures - basic architectural features DSP computational building blocks - Implementation of DSP Instruction sets Programmable an function specific architectures, bus architecture and memory - data addressing capabilities, addres generation unit, programmability and program execution - speed issues - features for externs interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi,Wiley publication. Reference Books				
and forwarding, data hazards and stalls, branch hazards, using a hardware description language t describe and model a pipe line, exceptions Advanced pipelining: extracting more performance, fallacies and pitfalls Unit IV Instruction Level Parallelism - the Hardware Approach (8hrs) COs Mapped – CO4 Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling using Tomasulo's approach Branch prediction, high performance instruction delivery - hardware based speculation. ILP Softwar Approach: Basic compiler level techniques, static branch prediction, VLIW approach, Exploiting ILF Parallelism at compile time, Cross cutting issues - Hardware verses Software. Unit V Architectures for programmable DSP devices: (8hrs) COs Mapped – CO5 Introduction to VLSI Architectures - basic architectural features DSP computational building blocks - Implementation of DSP Instruction sets Programmable an function specific architectures, bus architecture and memory - data addressing capabilities, addres generation unit, programmability and program execution - speed issues - features for externa interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures I Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi, Wiley publication. Reference Books	-			
describe and model a pipe line, exceptions Advanced pipelining: extracting more performance, fallacies and pitfalls Unit IV Instruction Level Parallelism - the Hardware (8hrs) COs Mapped – CO4 Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling using Tomasulo's approach Branch prediction, high performance instruction delivery - hardware based speculation. ILP Softwar Approach Basic compiler level techniques, static branch prediction, VLIW approach, Exploiting ILF Parallelism at compile time, Cross cutting issues - Hardware verses Software. COs Mapped – CO5 Unit V Architectures for programmable DSP devices: (8hrs) COs Mapped – CO5 Introduction to VLSI Architectures - basic architectural features DSP computational building blocks - Implementation of DSP Instruction sets Programmable and function specific architectures, bus architecture and memory - data addressing capabilities, addres generation unit, programmability and program execution - speed issues - features for externation for processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi,Wiley publication. Reference Books	-			-
fallacies and pitfalls Instruction Level Parallelism - the Hardware (8hrs) COs Mapped - Approach CO4 Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling using Tomasulo's approach Branch prediction, high performance instruction delivery - hardware based speculation. ILP Softwar Approach: Basic compiler level techniques, static branch prediction, VLIW approach, Exploiting ILF Parallelism at compile time, Cross cutting issues - Hardware verses Software. CO5 Unit V Architectures for programmable DSP devices: (8hrs) COs Mapped - CO5 Introduction to VLSI Architectures - basic architectural features CO5 DSP computational building blocks - Implementation of DSP Instruction sets Programmable and function specific architectures, bus architecture and memory - data addressing capabilities, addres generation unit, programmability and program execution - speed issues - features for externs interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi,Wiley publication. Reference Books		-	-	
Unit IV Instruction Level Parallelism - the Hardware Approach (8hrs) COs Mapped – C04 Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling using Tomasulo's approach Branch prediction, high performance instruction delivery - hardware based speculation. ILP Softwar Approach: Basic compiler level techniques, static branch prediction, VLIW approach, Exploiting ILF Parallelism at compile time, Cross cutting issues - Hardware verses Software. Unit V Architectures for programmable DSP devices: (8hrs) COs Mapped – C05 Instruction to VLSI Architectures - basic architectural features DSP computational building blocks - Implementation of DSP Instruction sets Programmable an function specific architectures, bus architecture and memory - data addressing capabilities, address generation unit, programmability and program execution - speed issues - features for externa interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Text Books Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi,Wiley publication.			ing: extracting more p	bertormance,
Approach CO4 Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling using Tomasulo's approach Branch prediction, high performance instruction delivery - hardware based speculation. ILP Softwar Approach: Basic compiler level techniques, static branch prediction, VLIW approach, Exploiting ILF Parallelism at compile time, Cross cutting issues - Hardware verses Software. Unit V Architectures for programmable DSP devices: (8hrs) COs Mapped – CO5 Introduction to VLSI Architectures - basic architectural features DSP computational building blocks - Implementation of DSP Instruction sets Programmable an function specific architectures, bus architecture and memory - data addressing capabilities, addres generation unit, programmability and program execution - speed issues - features for externa interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi,Wiley publication. Reference Books		*	(a.)	
Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling using Tomasulo's approach Branch prediction, high performance instruction delivery - hardware based speculation. ILP Softwar Approach: Basic compiler level techniques, static branch prediction, VLIW approach, Exploiting ILF Parallelism at compile time, Cross cutting issues - Hardware verses Software. Unit V Architectures for programmable DSP devices: (8hrs) COs Mapped – CO5 Introduction to VLSI Architectures - basic architectural features DSP computational building blocks - Implementation of DSP Instruction sets Programmable an function specific architectures, bus architecture and memory - data addressing capabilities, addres generation unit, programmability and program execution - speed issues - features for externa interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi,Wiley publication. Reference Books			(8hrs)	
Branch prediction, high performance instruction delivery - hardware based speculation. ILP Softwar Approach: Basic compiler level techniques, static branch prediction, VLIW approach, Exploiting ILF Parallelism at compile time, Cross cutting issues - Hardware verses Software. Unit V Architectures for programmable DSP devices: (8hrs) COs Mapped – CO5 Introduction to VLSI Architectures - basic architectural features DSP computational building blocks - Implementation of DSP Instruction sets Programmable an function specific architectures, bus architecture and memory - data addressing capabilities, addres generation unit, programmability and program execution - speed issues - features for externs interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi, Wiley publication.				04
Branch prediction, high performance instruction delivery - hardware based speculation. ILP Softwar Approach: Basic compiler level techniques, static branch prediction, VLIW approach, Exploiting ILF Parallelism at compile time, Cross cutting issues - Hardware verses Software. Unit V Architectures for programmable DSP devices: (8hrs) COs Mapped – CO5 Introduction to VLSI Architectures - basic architectural features DSP computational building blocks - Implementation of DSP Instruction sets Programmable an function specific architectures, bus architecture and memory - data addressing capabilities, addres generation unit, programmability and program execution - speed issues - features for externs interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi, Wiley publication.				
Branch prediction, high performance instruction delivery - hardware based speculation. ILP Softwar Approach: Basic compiler level techniques, static branch prediction, VLIW approach, Exploiting ILF Parallelism at compile time, Cross cutting issues - Hardware verses Software. Unit V Architectures for programmable DSP devices: (8hrs) COs Mapped – CO5 Introduction to VLSI Architectures - basic architectural features DSP computational building blocks - Implementation of DSP Instruction sets Programmable an function specific architectures, bus architecture and memory - data addressing capabilities, addres generation unit, programmability and program execution - speed issues - features for externs interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi, Wiley publication.	Instructi	on-Level parallelism, Dynamic scheduling, Dynamic	scheduling using Toma	asulo's approach
Approach: Basic compiler level techniques, static branch prediction, VLIW approach, Exploiting ILF Parallelism at compile time, Cross cutting issues - Hardware verses Software. Unit V Architectures for programmable DSP devices: (8hrs) COs Mapped – CO5 Introduction to VLSI Architectures - basic architectural features DSP computational building blocks - Implementation of DSP Instruction sets Programmable an function specific architectures, bus architecture and memory - data addressing capabilities, address generation unit, programmability and program execution - speed issues - features for externa interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi,Wiley publication.				
Parallelism at compile time, Cross cutting issues - Hardware verses Software. Unit V Architectures for programmable DSP devices: (8hrs) COs Mapped – CO5 Introduction to VLSI Architectures - basic architectural features DSP computational building blocks - Implementation of DSP Instruction sets Programmable and function specific architectures, bus architecture and memory - data addressing capabilities, address generation unit, programmability and program execution - speed issues - features for externation of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Text Books I. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi,Wiley publication.	_		_	
Unit V Architectures for programmable DSP devices: (8hrs) COs Mapped – CO5 Introduction to VLSI Architectures - basic architectural features DSP computational building blocks - Implementation of DSP Instruction sets Programmable and function specific architectures, bus architecture and memory - data addressing capabilities, address generation unit, programmability and program execution - speed issues - features for externa interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi, Wiley publication.				cii, Exploiting ILF
Introduction to VLSI Architectures - basic architectural features DSP computational building blocks - Implementation of DSP Instruction sets Programmable an function specific architectures, bus architecture and memory - data addressing capabilities, addres generation unit, programmability and program execution - speed issues - features for externa interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi,Wiley publication. Reference Books	Paralleli	sm at compile time, Cross cutting issues - Hardware	verses Software.	
Introduction to VLSI Architectures - basic architectural features DSP computational building blocks - Implementation of DSP Instruction sets Programmable an function specific architectures, bus architecture and memory - data addressing capabilities, addres generation unit, programmability and program execution - speed issues - features for externa interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi,Wiley publication. Reference Books		1	I	1
Introduction to VLSI Architectures - basic architectural features DSP computational building blocks - Implementation of DSP Instruction sets Programmable an function specific architectures, bus architecture and memory - data addressing capabilities, addres generation unit, programmability and program execution - speed issues - features for externa interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi,Wiley publication. Reference Books	Unit V	Architectures for programmable DSP devices:	(8hrs)	
DSP computational building blocks - Implementation of DSP Instruction sets Programmable and function specific architectures, bus architecture and memory - data addressing capabilities, address generation unit, programmability and program execution - speed issues - features for externation interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi, Wiley publication. Reference Books				CO5
DSP computational building blocks - Implementation of DSP Instruction sets Programmable and function specific architectures, bus architecture and memory - data addressing capabilities, address generation unit, programmability and program execution - speed issues - features for externation interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi, Wiley publication. Reference Books	Inter due			
function specific architectures, bus architecture and memory - data addressing capabilities, address generation unit, programmability and program execution - speed issues - features for externa interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi,Wiley publication. Reference Books		tion to VI SI Architectures basic prohitectural feature		
generation unit, programmability and program execution - speed issues - features for externation interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi,Wiley publication. Reference Books				Duo ouo un oblo ou
interfacing - Design of processing elements; Conventional, residue number, cordic and distribute arithmetic architectures Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi,Wiley publication. Reference Books	DSP co	mputational building blocks - Implementation of	DSP Instruction sets	-
arithmetic architectures Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi,Wiley publication. Reference Books	DSP confunction	mputational building blocks - Implementation of specific architectures, bus architecture and memor	DSP Instruction sets y - data addressing c	apabilities, addres
Text Books 1. "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi,Wiley publication. Reference Books	DSP confunction generation	mputational building blocks - Implementation of a specific architectures, bus architecture and memory on unit, programmability and program execution	DSP Instruction sets y - data addressing c - speed issues - fea	apabilities, addres atures for externa
 "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi, Wiley publication. Reference Books 	DSP confunction generation	mputational building blocks - Implementation of a specific architectures, bus architecture and memory on unit, programmability and program execution	DSP Instruction sets y - data addressing c - speed issues - fea	apabilities, addres atures for externa
 "VLSI Digital Signal Processing Systems: Design and Implementation", Keshab K. Parhi, Wiley publication. Reference Books 	DSP confunction generation interfaci	mputational building blocks - Implementation of specific architectures, bus architecture and memor on unit, programmability and program execution ng - Design of processing elements; Conventional	DSP Instruction sets y - data addressing c - speed issues - fea	apabilities, addres atures for externa
publication. Reference Books	DSP confunction generation interfaci	mputational building blocks - Implementation of specific architectures, bus architecture and memor on unit, programmability and program execution ng - Design of processing elements; Conventional	DSP Instruction sets y - data addressing c - speed issues - fea	apabilities, addres atures for externa
	DSP confunction generation interfaci	mputational building blocks - Implementation of a specific architectures, bus architecture and memor on unit, programmability and program execution ng - Design of processing elements; Conventional ic architectures	DSP Instruction sets y - data addressing c - speed issues - fea	apabilities, addres atures for externa
1. "Digital signal processors", B. Venkataramani and M. Bhaskar, Tata McGraw-Hill publication.	DSP con function generation interfact arithmet	mputational building blocks - Implementation of a specific architectures, bus architecture and memor on unit, programmability and program execution ng - Design of processing elements; Conventional ic architectures Text Books LSI Digital Signal Processing Systems: Design and F	DSP Instruction sets y - data addressing c - speed issues - fea , residue number, cor	apabilities, addres atures for externa dic and distribute
1. Digital Signal processors, D. Feinkalaranian and M. Dhaskal, Tata Meenaa Mini puoneaton.	DSP con function generation interfact arithmet	mputational building blocks - Implementation of a specific architectures, bus architecture and memory on unit, programmability and program execution ng - Design of processing elements; Conventional ic architectures Text Books LSI Digital Signal Processing Systems: Design and Hublication.	DSP Instruction sets y - data addressing c - speed issues - fea , residue number, cor	apabilities, addres atures for externa dic and distribute
	DSP con function generation interfacion arithmet 1. "VI pu	mputational building blocks - Implementation of a specific architectures, bus architecture and memory on unit, programmability and program execution ng - Design of processing elements; Conventional ic architectures Text Books LSI Digital Signal Processing Systems: Design and Hablication. Reference Books	DSP Instruction sets y - data addressing c - speed issues - fea , residue number, corr mplementation", Kesha	apabilities, addres atures for externa dic and distribute ab K. Parhi,Wiley

	Guidelines for Continuous Assessment of Theory Course					
Sr. No.	Components for Continuous Assessment	Marks				
		Allotted				
1	Assignment:	20				
	Assignment No. 1 - Unit 1, 2 (10 Marks)					
	Assignment No. 2 - Unit 3, 4, 5 (10 Marks)					
2	Test	20				
	Test 1 (15 Marks)					
	Test 2 (15 Marks)					

K.K.Wagh Institute of Engineering Education and Research, Nashik

Department of Electronics and Telecommunication Engineering

(Autonomous from Academic Year 2022-23)

			Fech.(VLSI and Embed Pattern 2022 Semester 25110: Advanced IoT A	: II	
Teaching	Examination Scheme	:			
Theory :	03 hrs/we	eek	03	InSem Exam: 20Marks Continuous Assessment: 20Marks End Sem Exam: 60Marks	
			edge on Programming, P		bedded systems.
Course C	Jutcomes	: On completion of	the course, students wil	I be able to-	
			Course Outcomes		Bloom's Level
CO1	Illust	trate IoT technologi	es, architectures, standa	rds, and regulation.	Understanding
CO2	and c	deployment models			Understanding
CO3	Expl	ore the future of IO	T for Health care applic	ations.	Applying
CO4	Expl	ore the future of IO	OT for Health care applications		Applying
CO5	Und	erstand the fundam	undamentals of various block Chain Technique		Applying
	Illus	trate Challenge to	Implementation of Block	kchain in IoT	
			COURSE CONTENT	ГS	
Unit I	Introdu	ction to IoT		(08hrs)	COs Mapped – CO1
Home, S	mart City	, Smart Energy, H	d Taxonomy ,Standardiz lealthcare ,IoT Automoti rial Internet ,Tactile Inte	ive ,Gaming, AR and V	
Unit II	0	ion between Cloud of Things (IoT) T		(08hrs)	COs Mapped – CO2
Cloud Co	mputing,	IoT Background, Io	Computing Models, Clo T Devices and Connect Challenges, Issues, and	ivity, IoT Benefits and	
		ealthcare	-	(08hrs)	COs Mapped – CO3
Remote H	Health Mo	onitoring: Benefits	on, Technology and Med of Remote Health Monit th Monitoring Usage		

Unit IV	"IoT" Bright Future in Healthcare Industry	(08hrs)	COs Mapped –		
			CO4		
Scope of	IoT Information Accumulation, Device Integration, F	Real- Time Analytics, A	Apps and Method		
Abridgm	ent, Healthcare Industry, Benefits of IoT in Healthcar	e Industry, Smart Pills,	Smart Beds, App		
Integratio	on. Technology of Smart Bed, Smart Wearable, Remo	te Health Monitoring, l	OT- Enabled		
Applicati	ons				
Unit V	Blockchain in IoT Technologies	(08hrs)	COs Mapped –		
			CO5		
Blockchai	in: An Overview, Generations of BlockchainBlockc	chain 1.0: Bitcoin and C	Cryptocurrency,		
Blockchai	in 2.0: Smart Contracts and Ethereum , Blockchain 3.	0: Convergence toward	Decentralized		
Applicatio	ons, Blockchain 4.0: Seamless Integration with Indust	ry 4.0, IoT Architectur	e and Systemic		
Challenge	s, Challenge to Implementation of Blockchain in IoT	, Application of Block	chain in IoT		
Sector					
Text Books					
1. "Iı	ntroduction of IOT" by Sudip Misra, Anandarup Mul	kherjee, Arijit Roy, Car	nbridge university		

- press.2. "Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance" Tim Mather,
 - Subra Kumaraswamy, ShahedLatif, O'Reilly Media; 1 edition 2009
- 3. "Block Chain & Crypto Currencies" Anshul Kaushik, , Khanna Publishing House

Reference Books

- 1. "Internet of Things (A Hands-on-Approach)", Vijay Madisetti and ArshdeepBahga, 1st Edition, VPT, 2014
- 2. "Cloud Computing Bible", Barrie Sosinsky, Wiley-India, 2010
- 3. "Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin, and popular Blockchain frameworks" Imran Bashir, Packt Publishing (2017).

	Guidelines for Continuous Assessment of Theory Course					
Sr. No.	Components for Continuous Assessment	Marks				
		Allotted				
1	Assignment:	20				
	Assignment No. 1 - Unit 1, 2 (10 Marks)					
	Assignment No. 2 - Unit 3, 4, 5 (10 Marks)					

2	Test	20
	Test 1 (15 Marks)	
	Test 2 (15 Marks)	

K.K.Wagh Institute of Engineering Education and Research, Nashik

Department of Electronics and Telecommunication Engineering (Autonomous from Academic Year 2022-23)

F. Y. M. Tech.(VLSI and Embedded System) Pattern 2022 Semester: II ETC225111: Lab Practice II						
Teaching Scheme:	Credit Scheme:	Examination Scheme:				
Practical : 04 hrs/week	02	OR: 25Marks Term Work: 25Marks				

The laboratory work will be based on completion of minimum two assignments/experiments confined to the following courses of that semester

- A. Real Time Embedded Systems
- B. ML in Chip Design
- C. Elective II Embedded Computing and Networking
- D. Elective II VLSI Architectures for DSP
- E. Elective II Advanced IoT Applications
- F. VLSI for AI & Neural Network

A. Real Time Embedded Systems

List of Experiments:

Unit	Content	CO Mapped
1	Design a automotive cruise control system monitoring different parameters of vehicle	CO1,CO2
2	Design a data acquisition system using RTOS using 10 sensors. System will be touch screen based	CO1,CO2
3	Develop embedded system require for IOT application	CO1,CO2
4	Develop embedded system for signal processing application. Use open source IDE for software development	CO1,CO2
5	Test the real time embedded system using open source software	C01,C02

	Strength of CO-PO/PSO Mapping							
	РО						PSO	
	1	2	3	4	5	6	1	2
CO1	3		3	2	-	-	-	_
CO2	3		3	2	-	-	-	-

B.ML in Chip Design

CourseOutcomes:

Course Outcomes	Description After successful completion of the course students will be able to
CO1	Understand the implementation procedures for the machine learning algorithms.
CO2	Identify and apply Artificial Intelligence to solve real world problems.

List of Experiments:

Unit	Contents	CO
No.		mapped
1	Plot neuron output over the range of inputs	CO1
2	Classification of linearly separable data with a perceptron	CO2
3	AI with Python – Supervised Learning: Classification	CO2
4	Write a program to construct a Bayesian network considering medical data. Use this model to demonstrate the diagnosis of heart patients using standard Heart Disease Data Set. You can use Java/Python ML library classes/API.	CO1
5.	Implement signal processing system on system on Chip	CO2

CO-PO Mapping for Practical

C: ElectiveII Embedded Computing and Networking

Course Outcomes:

Course	Description		
Outcomes	On completion of the course, student will be able to,		
C01	Illustrate instruction set for ARM processor and TI C55xx DSP processor		
CO2	Implement various addressing modes of CPU for TI C55XX		
CO3	Implement concept of operating system used for TI C55XX		

List of Experiments:

Sr. No.	Contents	CO mapped
1	To study and simulate the instruction set for ARM 11.	CO1
2	To study and simulate the instruction set for TI C55XX	CO1, CO2
3	Implement various addressing modes for TI C55XX and compare.	CO1, CO2
4	Implement inter process communication in RTOS on TI C55XX	CO1, CO2, CO3
5	Implement task scheduling in RTOS on TI C55XX	CO1, CO2, CO3
6	Case study: Design of cell phones and digital still cameras	CO1, CO2, CO3

CO-PO Mapping

	Streng	Strength of CO-PO/PSO Mapping						
	POs	POs					PSOs	
	1	2	3	4	5	6	1	2
CO1	-	-	3	3	-	-	3	-
CO2	-	-	3	3	-	-	3	-
CO3	-	-	3	3	-	-	3	-

D: Elective II VLSI Architectures for DSP

Course Outcomes	Description
CO1	Implement different DSP function using HDL
CO2	Implement DSP function using different VLSI software

List of Experiments:

Unit	Content	СО
		Mapped
1	Implement analysis of Music using DSP function	CO1,CO2
2	Implement Face recognition using DSP faction implement in hardware	CO1,CO2
3	Develop robot which work on speech command and implement on FPGA hardware	CO1,CO2
4	Implement different function of DSP such as circular convolution, IIR and FIR filter using hardware	CO1,CO2
5.	Implement VLIW architecture using FPGA hardware	CO1,CO2

	Strength of CO-PO/PSO Mapping							
	PO						PSO	
	1	2	3	4	5	6	1	2
CO1	3		3	3	-	-	-	-
CO2	3		3	3	-	-	-	-

E.Elective II Advanced IoT Applications

Course Outcomes	Description			
CO1	Implement different types of Cloud service .			
CO2	Implantation of applications of IOT in different services, Cloud computing and Bigdata.			

List of Experiments:

Unit	Content	Bloom's Taxono my Level	CO Mapp ed
1	Compare different Cloud Computing Service and Deployment Models in terms of their working and implementation.	4	CO1
2	Bulid and test any one IoT-Based application in Healthcare Devices with the help of node MCU(do not use aurdino)	4	CO 2
3	Implement a data-Centric Framework for Development and Deployment of Internet of Things Applications in Clouds	4	CO 2
4	Implement Sustainable Water Supply system with the help of Schematic Development of Big Data Collection using Internet of Things (IoT)	4	CO 2
5.	Design and Developed IOT system for agriculture application	5	CO 2

F.VLSI for AI & Neural Network

Course Outcomes:

Course Outcomes	Description After successful completion of the course students will be able to
CO1	Apply basic principles of AI
CO2	Analyze applications of AI techniques in intelligent agents
CO3	Demonstrate in intelligent agents, expert systems, artificial neural networks
CO4	Develop applications in an 'AI language', expert system shell, or data mining

	tool.
CO5	Applying scientific method to models of machine learning.

List of Experiments:

Unit	Contents	CO mapped
No.		
1	Implement a neural network for any suitable application.	CO3,CO4
2	Implement genetic algorithms for any suitable application.	CO3,CO4
3	Design neural network to identify and control nonlinear systems using MATLAB.	CO4
4	Design and how to supervised and unsupervised artificial neural networks	CO4
5	Data fitting, clustering and pattern recognition using neural network toolbox in MATLAB.	CO5

CO-PO Mapping for Practical

K.K.Wagh Institute of Engineering Education and Research, Nashik Department of Electronics and Telecommunication Engineering (Autonomous from Academic Year 2022-23)

		Tech.(VLSI and Emb Pattern 2022 Semeste	er: II		
Teaching S	cheme:	ETC225112: Semina Credit Scheme:	ar I Examination Scheme	e:	
Practical :04hrs/week		02	Oral: 25Marks TermWork: 25Marks		
Prerequisit	te Courses, if any: Semic	onductor Theory, Math	ematics		
Course Ou	tcomes: On completion of	f the course, students w	ill be able to–		
		Course Outcomes		Bloom's Level	
CO1	Implement a minor proj	ject based on VLSI and	Embedded System.	Applying	
CO2	Effectively communica	te by delivering present	Analyzing		
CO3	Prepare a detailed semi	nar report using LATE	Applying		
		COURSE CONTEN	VTS		
	Semin		(32hrs)	COs Mapped – CO1,CO2,CO3	
the first sem The student	ill be based on a minor prester. shall submit the seminar r by the concerned guide ar	report in standard forma	at, duly certified for sati	-	
		Text Books			
NA					

Reference Books

1. Raymund F. Wood, Bibliography and the Seminar, Vol. 9, No. 1 (Summer, 2003)

2. Borden, Iain and Katerina Ruedi Ray. The Dissertation: A Guide for Architecture Students. Third Edition. 2014.

3. Turabian, Kate L. A manual for writers of term papers theses, and dissertations. 7th ed., 2007.

4. John Bowden, Writing A Report, 9th Edition: How to Prepare, Write & Present Really Effective Reports, June 2011.

(11	utonomous from Acade	mic Teat 2022-23)	
F. Y. M	. Tech.(VLSI and Embe	dded System)	
	Pattern 2022 Semeste	er: I	
ETC	C225113: Software appl	ication for	
Ţ	professional skill upgra	dation	
(LA	TEX, Power Point & a	np;Excel)	
Teaching Scheme:	Credit Scheme:	Examination Sche	me:
Practical :04hrs/week	02	Continuous Assessment: 25Marks Oral: 25Marks	
Prerequisite Courses, if any: Micro	osoft Office		
Course Outcomes: On completion of	of the course, students wi	ll be able to-	
	Course Outcomes		Bloom's Level
CO1 Create different types	of documents in Latex		Applying
CO2 Createdifferent types of	of documents in Powerpo	int	Applying
CO3 Create different types	of documents in Excel		Applying
	COURSE CONTEN	TS	
Unit I Introduction to Latex		(06hrs)	COs Mapped –
			CO1
Introduction to LaTeX, its installation			e first document using
LaTeX, organizes content into sectio			
Styling Pages: Review of different p customizing header and footer, cha columns.			
Unit II Formatting Content in La	atex	(06hrs)	COs Mapped -
			CO1
This topic concentrates on formatti	ng text (styles, size, ali	gnment), adding colo	ors to text and entire
pages, and adding bullets and nun complex mathematics.	bered items. It conclud	les by explaining th	e process of writing
Unit III Tables and Images in Lat	ex	(06hrs)	COs Mapped –
			CO1

The topic starts by creating basic tables, adding simple and dashed borders, merging rows and columns, and handling situations where a table exceeds the size of a page. The sessions then continue to add an image, explore different properties like rotate, scale,etc

Unit IV PowerPoint	· · · · ·	COs Mapped – CO2
Basics of powerpoint, Create Presentations, Insert and modify	ables and charts. Insert	clipart images

and shapes to slides, Work with Graphics and Media, Insert and edit animations and slide transition

Unit V	Microsoft Excel	(06hrs)	COs Mapped –
			CO3
Create, oj	pen and view a workbook, Work with cell reference	ces, Learn to use fund	ctions and
formulas.	Create and edit charts and graphics, Filter and sort tal	ole data,Import and exp	oort data
	Text Books		
1. A.	Diller, LaTeX Line by Line, published by Wiley.		
	Reference Books		
	. Goossens, F. Mittelbach, and A. Samarin, The LaTe esley, ISBN 0-201-54199-8	X Companion, publishe	ed by Addison-
2. N.	Walsh, Making TeX Work, published by O'Reilly &	Associates, ISBN 1-56	592-051-1

	Guidelines for Continuous Assessment of Theory Course				
Sr. No. Components for Continuous Assessment		Marks Allotted			
1	 Assignment: Create a Latex Report Containing Chapter, Sections, Subsections, Figures (5 Marks) Create a Latex Documents which uses mathematical Equations and Tables (5 Marks) Create a Research Paper document in Latex (5 Marks) Create a Seminar Report in Microsoft Powerpoint (5 Marks) Create an Excel Document which performs following tasks: Create Sheets, Create Tables, Insert Tables & Figures, Use of equations, Use Filters, import and export documents. (5 Marks) 	25			