

# K.K. Wagh Institute of Engineering Education and Research, Nashik

# Curriculum F.Y. B. Tech

# **Electronics and Telecommunication Engineering**

w.e.f.: AY 2023-2024

|          | F.Y. B.Tech Electronics and Telecommunication Engineering wef AY 2023-24 |                                                       |    |                    |    |                                    |                                    |     |     |    |     |    |         |   |    |  |
|----------|--------------------------------------------------------------------------|-------------------------------------------------------|----|--------------------|----|------------------------------------|------------------------------------|-----|-----|----|-----|----|---------|---|----|--|
|          | SEM-I                                                                    |                                                       |    |                    |    |                                    |                                    |     |     |    |     |    |         |   |    |  |
| Course   | Couse                                                                    | Title of Course                                       |    | Teaching<br>Scheme |    |                                    | <b>Evaluation Scheme and Marks</b> |     |     |    |     |    | Credits |   |    |  |
| Code     | Туре                                                                     | The of Course                                         | ТН | TU                 | PR | INSEM ENDSEM CCE TUT /TW /OR TOTAL |                                    |     |     | тн | TU  | PR | TOTAL   |   |    |  |
| 2300101A | BSC                                                                      | Linear Algebra                                        | 3  | 1                  | 0  | 20                                 | 60                                 | 20  | 25  | 0  | 125 | 3  | 1       | 0 | 4  |  |
| 2300103A | BSC                                                                      | Applied Physics                                       | 3  | 0                  | 2  | 20                                 | 60                                 | 20  | 50  | 0  | 150 | 3  | 0       | 1 | 4  |  |
| 2300107A | ESC                                                                      | Fundamentals of<br>Electronics<br>Engineering         | 3  | 0                  | 2  | 20                                 | 60                                 | 20  | 50  | 0  | 150 | 3  | 0       | 1 | 4  |  |
| 2300108A | ESC                                                                      | Programming in C                                      | 1  | 0                  | 2  | 20                                 | 30                                 | 0   | 50  | 0  | 100 | 1  | 0       | 1 | 2  |  |
| 2300112A | AEC                                                                      | Communication<br>Skills                               | 1  | 0                  | 2  | 0                                  | 0                                  | 25  | 50  | 0  | 75  | 1  | 0       | 1 | 2  |  |
| 2300111A | VSEC                                                                     | 3D Printing and<br>Additive<br>Manufacturing<br>(CAD) | 1  | 0                  | 2  | 0                                  | 0                                  | 25  | 25  | 0  | 50  | 1  | 0       | 1 | 2  |  |
| 2300115A | CC                                                                       | Liberal Learning,<br>Sports, Yoga, Art                | 0  | 2                  | 0  | 0                                  | 0                                  | 0   | 50  |    | 50  | 0  | 2       | 0 | 2  |  |
|          | То                                                                       | tal                                                   | 12 | 3                  | 10 | 80                                 | 210                                | 110 | 300 | 0  | 700 | 12 | 3       | 5 | 20 |  |

|          |        | F.Y. B.Tech Electro        | onics              | and | Tele | commu | nication Er                        | nginee | ring w | ef A¥ | 2023-2 | 4       |   |   |    |
|----------|--------|----------------------------|--------------------|-----|------|-------|------------------------------------|--------|--------|-------|--------|---------|---|---|----|
|          | SEM-II |                            |                    |     |      |       |                                    |        |        |       |        |         |   |   |    |
| Course   | Couse  | Title of Course            | Teaching<br>Scheme |     |      |       | <b>Evaluation Scheme and Marks</b> |        |        |       |        | Credits |   |   |    |
| Code     | Туре   | Title of Course            |                    |     |      |       |                                    | тн     | TU     | PR    | TOTAL  |         |   |   |    |
| 2300102A | BSC    | Differential Calculus      | 3                  | 1   | 0    | 20    | 60                                 | 20     | 25     | 0     | 125    | 3       | 1 | 0 | 4  |
| 2300104A | BSC    | Applied Chemistry          | 3                  | 0   | 2    | 20    | 60                                 | 20     | 50     | 0     | 150    | 3       | 0 | 1 | 4  |
| 2300109A | ESC    | Programming in C++         | 3                  | 0   | 2    | 20    | 60                                 | 20     | 50     | 0     | 150    | 3       | 0 | 1 | 4  |
| 2300110A | ESC    | Engineering Drawing        | 1                  | 0   | 2    | 20    | 30                                 | 0      | 50     | 0     | 100    | 1       | 0 | 1 | 2  |
| 2300118E | PCC    | Electrical Networks        | 2                  | 0   | 0    | 20    | 60                                 | 20     | 0      | 0     | 100    | 2       | 0 | 0 | 2  |
| 2300116A | IKS    | Indian Knowledge<br>System | 0                  | 2   | 0    | 0     | 0                                  | 0      | 50     | 0     | 50     | 0       | 2 | 0 | 2  |
| 2300117E | VSEC   | PCB Making                 | 1                  | 0   | 2    | 0     | 0                                  | 25     | 25     | 0     | 50     | 1       | 0 | 1 | 2  |
| 2300115B | CC     | Engineering<br>Exploration | 0                  | 2   | 0    | 0     | 0                                  | 0      | 75     | 0     | 75     | 0       | 2 | 0 | 2  |
|          | Total  |                            |                    | 5   | 8    | 100   | 270                                | 105    | 325    | 0     | 800    | 13      | 5 | 4 | 22 |

|          | Electronics and Telecommunication Engineering Exit Courses (To award Certificate) |                                                                     |                    |    |    |                                    |        |     |            |           |       |         |    |    |       |
|----------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------|----|----|------------------------------------|--------|-----|------------|-----------|-------|---------|----|----|-------|
| Course   | Couse                                                                             | Title of Course                                                     | Teaching<br>Scheme |    |    | <b>Evaluation Scheme and Marks</b> |        |     |            |           |       | Credits |    |    |       |
| Code     | Туре                                                                              | The of Course                                                       | тн                 | TU | PR | INSEM                              | ENDSEM | CCE | TUT<br>/TW | PR<br>/OR | TOTAL | ТН      | TU | PR | TOTAL |
| 2300119A | EXIT                                                                              | Internship*                                                         | 0                  | 0  | 0  | 0                                  | 0      | 0   | 100        | 0         | 100   | 0       | 2  | 0  | 2     |
| 2300128A | EXIT                                                                              | Digital Electronics<br>(Exit Course-1)                              | 2                  | 0  | 2  | 20                                 | 30     | 0   | 50         | 0         | 100   | 2       | 0  | 1  | 3     |
| 2300129A | EXIT                                                                              | Electronic<br>Maintenance and<br>Troubleshooting<br>(Exit Course-2) | 2                  | 0  | 2  | 20                                 | 30     | 0   | 50         | 0         | 100   | 2       | 0  | 1  | 3     |
| Total    |                                                                                   |                                                                     | 4                  | 0  | 4  | 40                                 | 60     | 0   | 200        | 0         | 300   | 4       | 2  | 2  | 8     |

\*Internship in industry for 2-weeks →To get certificate student should get following credits

| Internship    | $\rightarrow$ 2 credits |
|---------------|-------------------------|
| Exit course-1 | $\rightarrow$ 3 credits |
| Exit course-2 | $\rightarrow$ 3 credits |
| Total credits | $\rightarrow$ 8 credits |

# Semester-I



| Teaching                                         | g Scheme:                                                                                                                                           | 2300101A: Linear Alg<br>Credit Scheme:                                                | Examination Sche                                                                                                               | ma·                        |  |  |  |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|
| Theory :                                         | 03hrs/week<br>:01hr/week                                                                                                                            | 03<br>01                                                                              | Continuous Comprehensive<br>Evaluation: 20Marks<br>InSem Exam: 20Marks<br>EndSem Exam: 60Marks<br>Tutorial / Termwork: 25Marks |                            |  |  |  |
| Prerequi                                         | site Courses: -                                                                                                                                     | ·                                                                                     |                                                                                                                                |                            |  |  |  |
| To introd<br>To introd<br>To introd<br>To introd | uce concepts of Eigen valu-<br>uce concepts of Partial Diffuce concepts of Jacobians,<br>uce fundamental concepts of<br>uce computational tools for | ferentiation.<br>Maxima and Minima, er<br>of probability.<br>c solving mathematical p | problems.                                                                                                                      | ons.                       |  |  |  |
| Course (                                         | <b>Dutcomes:</b> On completion of                                                                                                                   |                                                                                       | ill be able to-                                                                                                                |                            |  |  |  |
|                                                  |                                                                                                                                                     | Course Outcomes                                                                       |                                                                                                                                | Bloom's Level              |  |  |  |
| CO1                                              | Interpret the concepts of form, transformations, E                                                                                                  |                                                                                       |                                                                                                                                | 2-Understanding            |  |  |  |
| CO2                                              | Solve problems on linear                                                                                                                            | algebra, partial derivati                                                             | ves and probability.                                                                                                           | 3- Apply                   |  |  |  |
| CO3                                              | Apply concepts of linear to engineering problems.                                                                                                   | algebra, differential cal                                                             | culus and probability                                                                                                          | 3- Apply                   |  |  |  |
| CO4                                              | Use computational tools                                                                                                                             | for solving mathematica                                                               | l problems.                                                                                                                    | 3- Apply                   |  |  |  |
| CO5                                              | Analyze the nature of qua<br>function, error and appro                                                                                              |                                                                                       | alues of the                                                                                                                   | 4 -Analyze                 |  |  |  |
|                                                  |                                                                                                                                                     | COURSE CONTEN                                                                         | TS                                                                                                                             |                            |  |  |  |
| Unit I                                           | Matrices and Linear S                                                                                                                               | System of Equations                                                                   | (07hrs+2hrsTutor<br>l)                                                                                                         | ia COs Mapped<br>CO1, CO2, |  |  |  |

| Unit II | Eigen Values and Eigen Vectors | (08hrs+<br>2hrsTutorial) | COs Mapped -<br>CO1, CO2,<br>CO3, CO5 |
|---------|--------------------------------|--------------------------|---------------------------------------|
|---------|--------------------------------|--------------------------|---------------------------------------|

Eigen values & Eigen vectors, diagonalization, quadratic forms and reduction of quadratic forms to canonical forms, applications of Eigen values and Eigenvectors.

| Unit | Partial Differentiation | (07hrs+       | COs Mapped |
|------|-------------------------|---------------|------------|
| III  |                         | 2hrsTutorial) | -CO2, CO3  |

Introduction to functions of two or more variables, Partial Differentiation, Euler's Theorem on Homogeneous Functions, Partial differentiation of Composite and Implicit functions, Total derivatives.

| Unit | Application of Partial Differentiation | (07hrs+       | COs Mapped - |
|------|----------------------------------------|---------------|--------------|
| IV   |                                        | 2hrsTutorial) | CO1, CO2,    |
|      |                                        |               | CO3, CO5     |

Jacobians, Functional Dependence & Independence, Errors and Approximation, Maxima and Minima of Functions of two variables, Lagrange's method of undetermined multipliers.

| Unit V | Introduction to Probability and Counting | (07hrs+<br>2hrsTutorial) | COs Mapped -<br>CO1, CO2,<br>CO3 |
|--------|------------------------------------------|--------------------------|----------------------------------|
|--------|------------------------------------------|--------------------------|----------------------------------|

Interpreting probabilities, Relative frequency and classical definition of probability, sample spaces and Events, mutually exclusive events, Permutations and Combinations, Axioms of probability, Addition rule, conditional probability, multiplication rule, Independent Events, Bayes' Theorem.

# TextBooks

1. B.V. Ramana, "Higher Engineering Mathematics", Tata McGraw-Hill.

2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publication, Delhi.

# **Reference Books**

1. Erwin Kreyszig ,"Advanced Engineering Mathematics" ,Wiley Eastern Ltd. 2. P. N. Wartikar and J. N. Wartikar, "Applied Mathematics" (Volumes I and II), Pune Vidyarthi

Griha Prakashan, Pune.

|     |    |   | St | rength | of CO | D-PO | Mappi | ng |   |    |    |    |
|-----|----|---|----|--------|-------|------|-------|----|---|----|----|----|
|     | PO |   |    |        |       |      |       |    |   |    |    |    |
|     | 1  | 2 | 3  | 4      | 5     | 6    | 7     | 8  | 9 | 10 | 11 | 12 |
| CO1 | 3  | 1 | -  | -      | -     | -    | -     | -  | - | -  | -  | 2  |
| CO2 | 3  | 1 | 1  | -      | -     | -    | -     | -  | - | -  | -  | 2  |
| CO3 | 3  | 3 | 2  | 2      | 2     | -    | -     | -  | - | -  | -  | 2  |
| CO4 | 1  | - | -  | -      | 3     | -    | -     | -  | - | -  | -  | 2  |
| CO5 | 3  | 3 | 2  | 2      | 2     | -    | -     | -  | - | -  | -  | 2  |

|         | Guidelines for Continuous Comprehensive Evaluation of Theory Course                                                                                  |                  |  |  |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|--|
| Sr. No. | Components for Continuous Comprehensive Evaluation                                                                                                   | Marks<br>Alloted |  |  |  |  |  |  |
| 1       | Assignments<br>(Total 3 Assignment, Unit I and II 20 marks, Unit III and IV 20 marks<br>and Unit V 10 marks &50 marks will be converted to 10 Marks) | 10               |  |  |  |  |  |  |
| 2       | Tests on each unit using LearniCo<br>(Each test for 15 M and total will be converted out of 10 M)                                                    | 10               |  |  |  |  |  |  |

|         | List of Tutorial Assignments                                                                                   |                        |
|---------|----------------------------------------------------------------------------------------------------------------|------------------------|
| Sr. No. | Title                                                                                                          | CO Mapped              |
| 1       | Examples on rank of a matrix, system of linear Equations                                                       | CO1, CO2               |
| 2       | Examples on linear dependence and Independence of vectors, application to system of linear equations.          | CO1, CO2,<br>CO3       |
| 3       | Examples on Eigen values & Eigen Vectors.                                                                      | CO1, CO2,<br>CO3       |
| 4       | Examples quadratic forms to canonical forms.                                                                   | CO1, CO2,<br>CO3,CO5   |
| 5       | Solve problems on matrices using Matlab.                                                                       | CO1, CO2,<br>CO4       |
| 6       | Solve system of equations using Matlab.                                                                        | CO1, CO2,<br>CO4       |
| 7       | Examples on partial differentiation, Euler's Theorem on homogeneous functions                                  | CO2, CO3               |
| 8       | Examples on partial differentiation of composite and implicit functions, total derivatives.                    | CO2, CO3               |
| 9       | Examples on Jacobians, functional dependence & independence, errors and approximation                          | CO1, CO2,<br>CO3 , CO5 |
| 10      | Examples on maxima and minima of functions of two variables,<br>Lagrange's method of undetermined multipliers. | CO1, CO2,<br>CO3, CO5  |
| 11      | Examples on fundamental concepts of probability.                                                               | CO1, CO2               |
| 12      | Examples on conditional probability, Bayes' Theorem.                                                           | CO1, CO2,<br>CO3       |

|         | <b>Guidelines for Tutorial / Termwork Assessment</b>    |    |  |  |  |  |
|---------|---------------------------------------------------------|----|--|--|--|--|
| Sr. No. | Sr. No. Components for Tutorial / Termwork Assessment   |    |  |  |  |  |
| 1       | Assignment on computational software                    | 5  |  |  |  |  |
| 2       | Tutorial (Each tutorial carries 15 marks)               | 15 |  |  |  |  |
| 3       | Attendance (Above 95 % : 05 Marks, below 75% : 0 Marks) | 5  |  |  |  |  |



|                                                                    |                                                                                                                                                                        | F. Y. B. Tech.<br>Pattern 2023<br>2300103A: Applied Ph                     | veice                                                                                |                           |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------|
|                                                                    |                                                                                                                                                                        | r, IT, E&TC, AI&DS                                                         |                                                                                      | <b>R&amp;A</b> )          |
| Teachin                                                            | g Scheme:                                                                                                                                                              | Credit Scheme:                                                             | Examination Sch                                                                      | ieme:                     |
|                                                                    | :03 hrs/week<br>l : 02 hrs/week                                                                                                                                        | 03<br>01                                                                   | Continuous Com<br>Evaluation: 20M<br>InSem Exam: 20<br>EndSem Exam:<br>Termwork: 50M | larks<br>Marks<br>60Marks |
| Prerequ                                                            | isite Courses, if any: -                                                                                                                                               |                                                                            |                                                                                      |                           |
| fields.<br>To enabl<br>fields.<br>To study<br>To study<br>conserva | properties of semiconductor<br>le students to gain the know<br>basic concepts of Quantum<br>y the fundamentals and physic<br>tion.<br><b>Outcomes:</b> On completion o | ledge of wave optics a<br>Mechanics for quantum<br>ysical processes that g | nd their application<br>computing.<br>govern energy usag                             | s in various technical    |
|                                                                    |                                                                                                                                                                        | Course Outcomes                                                            |                                                                                      | Bloom's Level             |
| CO1                                                                | Describe basics of electro<br>wave mechanics and envi                                                                                                                  | magnetics, advanced m                                                      | aterials, wave optics                                                                |                           |
| CO2                                                                | Classify advanced materia                                                                                                                                              | als, refracting crystals a                                                 | nd solar cell                                                                        | 2-Understand              |
| CO3                                                                | Explain properties of supe<br>waves                                                                                                                                    | erconductors, nano-mate                                                    | erials and matter                                                                    | 2-Understand              |
| <b>CO4</b>                                                         | Calculate characteristics of devices, conductivity, effi                                                                                                               | 6                                                                          | 1                                                                                    | 3-Apply                   |
| CO5                                                                | Use concepts of electromagnetic effect, semiconductors, wave optics                                                                                                    |                                                                            |                                                                                      | 3-Apply                   |
|                                                                    |                                                                                                                                                                        | COURSE CONTEN                                                              | TS                                                                                   |                           |
| Unit I                                                             | Electromagnetism & Elec                                                                                                                                                | ctromagnetic Waves                                                         | (08hrs)                                                                              | COs Mapped -<br>CO1, CO2  |

Introduction: Magnetic effect of an electric current, cross and dot conventions, right hand thumb rule, nature of magnetic field of long straight conductor, solenoid and toroid. Concept of mmf, flux, flux density, reluctance, permeability and field strength, their units and relationships.

Simple series magnetic circuit, Introduction to parallel magnetic circuit, comparison of electric and magnetic circuit, force on current carrying conductor placed in magnetic field.

Faradays laws of electromagnetic induction, Fleming right hand rule, statically and dynamically induced e.m.f., self and mutual inductance, coefficient of couplings. Energy stored in magnetic field; Fleming left hand rule.

# **Electromagnetic Waves**

Introduction, Electromagnetic Waves, Electromagnetic Wave Equations, Maxwell's Wave Equations for Free Space

| Unit II | Semiconductors, Superconductivity, Nano- | (06hrs) | COs Mapped -   |
|---------|------------------------------------------|---------|----------------|
|         | Material                                 |         | CO1, CO2, CO4, |
|         |                                          |         | CO5            |

#### Semiconductors:

Types of semiconductor, Conductivity of conductors and semiconductors, temperature dependence of conductivity, Fermi Dirac distribution function, Position of Fermi level in intrinsic and extrinsic semiconductors, variation with respect to temperature and doping concentration, Hall effect: Derivation for Hall voltage, Hall coefficient, applications of Hall effect.

# Superconductivity:

Definition, Properties, type of superconductor, Josephson effect and applications

#### Nano-Materials:

Introduction, quantum confinement effect, surface to volume ratio, properties: Optical, electrical & Mechanical.

| Unit Wave Optics (08hrs) COs Mapped - | 1.100110011 |             |         |                |
|---------------------------------------|-------------|-------------|---------|----------------|
| III CO1, CO2, CO4, CO5                |             | Wave Optics | (08hrs) | CO1, CO2, CO4, |

**Polarization** – Introduction of polarization, law of Malus, double refraction, Huygens theory, LCD. **Diffraction** – Introduction of diffraction, types of diffraction, diffraction grating, conditions for principal maxima and minima, maximum orders of diffraction, Rayleigh's criterion,

**Interference** – Introduction, thin film interference, optical flatness testing, antireflection coating, Rayleigh interferometer and Radio interferometer.

**Laser:** Basic terms and types of lasers, application (IT, Medical & Industry), laser interferometer and Hologram Interferometer.

**Optical Fibre** – Introduction and basic terms, Fibre optic communication with block diagram.

| Unit | Quantum Mechanics & Quantum Computing | (07hrs) | COs Mapped -   |
|------|---------------------------------------|---------|----------------|
| IV   |                                       |         | CO1, CO2, CO3, |
|      |                                       |         | CO5            |

Basics of Quantum theory, postulates of quantum mechanics, wave nature of particles, wave function, Schrodinger's time dependent equation, Stern-Gerlach experiment, electron spin, superposition of states, Entanglement Bits and Qubits, Implementing a quantum computer : Ion trap, Linear optics, NMR and superconductors.

| Unit V | <b>Energy and Environment</b> | (07hrs) | COs Mapped -<br>CO1, CO2, CO4 |
|--------|-------------------------------|---------|-------------------------------|
|--------|-------------------------------|---------|-------------------------------|

#### **Energy and its Usage:**

Overview of World energy scenario, climate change, Engineering for energy conservation, units and scales of energy.

# **Solar Energy:**

Introduction to solar energy, fundamentals of solar radiation and its measurement aspects, basic physics of solar cell, carrier transport, generation & recombination in solar cell, semiconductor junctions: metalsemiconductor junction & p-n junction, essential characteristics of solar photovoltaic devices, First generation solar cells, Second generations of Solar cells, Third generations of solar cells-Quantum Dot solar cell, multi junction solar cells

# Fluid and Wind Power:

Fluid dynamics and power in the wind, available resources, Wind turbine dynamics, wind farms

**Text Books** 

1. V K Mehta and Rohit Mehta ,"Basic Electrical Engineering", S Chand Publications.

- 2. M.N. Avadhanulu and P.G. Kshirsagar ,"Engineering Physics ", S. Chand Publications
- 3. Robert L. Jaffe and Washington Tayler, "The Physics of Energy", Cambridge University Press

# **Reference Books**

- 1. H.D.Young and R.A.Freedman, "University Physics", Pearson Publication
- Resnick and Halliday, "Principles of Physics", John Wiley and Sons
   Jenkins and White , "Optics", Tata McGraw Hill
- 4. Noson S. Yanofsky and Mirco A. Mannucci, "Quantum computing for computer scientists".

| Strength of CO-PO Mapping |   |   |   |   |   |   |   |   |   |    |    |    |
|---------------------------|---|---|---|---|---|---|---|---|---|----|----|----|
|                           |   |   |   |   |   | P | 0 |   |   |    |    |    |
|                           | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| CO1                       | 3 | - | - | - | - | - | 2 | 1 | 1 | -  | -  | 1  |
| CO2                       | 3 | 3 | - | - | 2 | - | 2 | 1 | 1 | -  | -  | 1  |
| CO3                       | 3 | - | - | - | - | - | - | 1 | 1 | -  | -  | 1  |
| CO4                       | 3 | 3 | - | - | - | - | 2 | 1 | 1 | -  | -  | 1  |
| CO5                       | 3 | 3 | 2 | - | 2 | 2 | 2 | 1 | 1 | 1  | _  | 1  |
| Average                   | 3 | 3 | 2 | - | 2 | 2 | 2 | 1 | 1 | 1  | _  | 1  |

|         | <b>Guidelines for Continuous Comprehensive Evaluation of Theory Course</b> |    |  |  |  |  |
|---------|----------------------------------------------------------------------------|----|--|--|--|--|
| Sr. No. | Sr. No. Components for Continuous Comprehensive Evaluation                 |    |  |  |  |  |
| 1       | Three Assignments on unit-1, Unit-2, Unit-3 & 4                            | 05 |  |  |  |  |
| 2       | Group Presentation on Unit-5                                               | 10 |  |  |  |  |
| 3       | LearniCo Test on Each Unit                                                 | 05 |  |  |  |  |
|         | Total                                                                      | 20 |  |  |  |  |

|         | List of Laboratory Experiments / Assignments                                                                                                 |           |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| Sr. No. | Laboratory Experiments / Assignments                                                                                                         | CO Mapped |  |  |  |
| 1       | Experiment based on Newton's rings (determination of wavelength of monochromatic light, determine radius of curvature of plano-convex lens). | CO1, CO5  |  |  |  |
| 2       | To determine position of diffraction minima by studying diffraction at a single slit.                                                        | CO4       |  |  |  |
| 3       | To determine unknown wavelength by using plane diffraction grating.                                                                          | CO4       |  |  |  |
| 4       | To verify Law of Malus.                                                                                                                      | CO4, CO5  |  |  |  |
| 5       | Experiment based on Double Refraction (Determination of refractive indices / Identification of types of crystal).                            | CO1, CO5  |  |  |  |
| 6       | To determine band gap of given semiconductor.                                                                                                | CO4       |  |  |  |
| 7       | To study IV characteristics of Solar Cell and determine parameters (fill factor and efficiency).                                             | CO4       |  |  |  |
| 8       | To determine Hall coefficient and charge carrier density.                                                                                    | CO4, CO5  |  |  |  |
| 9       | Experiment based on Laser (Determination of thickness of wire / Number of lines on grating surface).                                         | CO4       |  |  |  |
| 10      | Determination of refractive index using Brewster's law.                                                                                      | CO4       |  |  |  |
| 11      | To determine magnetic force on a current carrying conductor.                                                                                 | CO4, CO5  |  |  |  |
| 12      | To study magnetic induction due to current carrying conductor                                                                                | CO4, CO5  |  |  |  |
| 13      | To study the quantum confinement effect in synthesis of silver nano-<br>particles.                                                           | CO3, CO5  |  |  |  |

#### **Guidelines for Laboratory Conduction**

1. Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.

2. Apparatus and equipments required for the allotted experiment will be provided by the lab assistants using SOP.

3. Students will perform the allotted experiment in a group (two students in each group) under the supervision of faculty and lab assistant.

4. After performing the experiment students will check their readings, calculations from the teacher.5. After checking they have to write the conclusion of the final result.

#### Guidelines for Student's Lab Journal

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

#### **Guidelines for Termwork Assessment**

- 1. Each experiment from lab journal is assessed for thirty marks based on three rubrics.
- 2. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.



# F. Y. B. Tech. Pattern 2023 Semester: I 2300107A: Fundamentals of Electronics Engineering (Branch: Electrical, E&TC, R&A, Comp, AIDS, CSD, IT)

| <b>Teaching Scheme:</b> | Credit Scheme: | Examination Scheme:        |
|-------------------------|----------------|----------------------------|
| Theory :03hrs/week      | 03             | Continuous Comprehensive   |
| Practical : 02hrs/week  | 01             | <b>Evaluation: 20Marks</b> |
|                         |                | InSem Exam: 20Marks        |
|                         |                | EndSem Exam: 60Marks       |
|                         |                | <b>TermWork: 50Marks</b>   |

Prerequisite Courses, if any: Semiconductor Theory, Mathematics

# **Course Objectives:**

- 12. To study basic electronic components like PN junction diode, Zener diode, LED, Photodiode, BJT, E-MOSFET and OpAmp along with their applications.
- 13. To understand different number systems, logic gates, Boolean algebra and basic digital circuits.
- 14. To study the basics of electronic communication system and mobile communication system.

Course Outcomes: On completion of the course, students will be able to-

|     | Course Outcomes                                                     | Bloom's Level |
|-----|---------------------------------------------------------------------|---------------|
| CO1 | Describe the working of semiconductor diodes, transistors and       | 2- Understand |
|     | OpAmp.                                                              |               |
| CO2 | Explain the basics of number systems, logic gates, Boolean algebra, | 2- Understand |
|     | electronic communication system, AM, FM, cellular concepts and      |               |
|     | GSM system.                                                         |               |
| CO3 | Apply the knowledge of semiconductor diodes, transistors and        | 3-Apply       |
|     | OpAmp in realization of basic analog circuits.                      |               |
| CO4 | Apply the knowledge of number systems, logic gates and Boolean      | 3-Apply       |
|     | algebra in realization of basic digital circuits.                   |               |
| CO5 | Analyze the basic analog and digital application circuits.          | 4-Analyze     |
|     | COURSE CONTENTS                                                     | 1             |

| Unit I | Semiconductor Diodes | (08hrs) | COs Mapped<br>CO1, CO3, CO5 |
|--------|----------------------|---------|-----------------------------|

PN Junction Diode: Construction, Working and VI Characteristics

Rectifiers: Working and Parameters of Half Wave Rectifier and Full Wave Rectifiers Working of Bridge Rectifier with Capacitor Filter

Zener Diode: Working, VI Characteristics, Breakdown Mechanisms, Zener Diode as Voltage Regulator LED and Photodiode: Working, Characteristics and Applications

| Unit II Transistors | (08hrs) | COs Mapped -<br>CO1, CO3, CO5 |
|---------------------|---------|-------------------------------|
|---------------------|---------|-------------------------------|

Transistors: Introduction and Types

BJT: Construction, Types and Regions of Operations, CB and CE configurations with their characteristics and current relationships, BJT as Switch, DC Load Line, Voltage Divider Bias Circuit, Single Stage CE Amplifier

Enhancement MOSFET: Types, Construction, Operation and Characteristics

| Unit III | Linear Integrated Circuits | (08hrs) | COs Mapped -  |
|----------|----------------------------|---------|---------------|
|          |                            |         | CO1, CO3, CO5 |

Introduction to OpAmp, Ideal Differential Amplifier, OpAmp Parameters, Introduction to Open Loop and Closed Loop OpAmp Configurations, Applications of OpAmp: Comparator, Inverting Amplifier, Non-Inverting Amplifier, Voltage Follower and Summing Amplifier.

| Unit | Digital Electronics | ( <b>08hrs</b> ) | COs Mapped -  |
|------|---------------------|------------------|---------------|
| IV   |                     |                  | CO2, CO4, CO5 |

Binary, Octal, Decimal, Hexadecimal, their conversion, Binary Arithmetic, Logic Gates, Boolean Laws, De Morgan's Theorem, Half Adder, Full Adder, Flip Flops: SR, JK, D and T

| Unit V         Electronic Communication Systems | (08hrs) | COs Mapped -<br>CO2 |
|-------------------------------------------------|---------|---------------------|
|-------------------------------------------------|---------|---------------------|

Block Diagram of Communication System, Communication Media: Wired and Wireless, Modes of Transmission, Electromagnetic Spectrum, Modulation and It's Need, AM and FM: Definition, Modulation Index and Bandwidth, Mobile Communication System: Cellular Concept and Block Diagram of GSM System

#### **Text Books**

1. Thomas. L. Floyd, "Electronics Devices", 9th Edition, Pearson

2. R. P. Jain, "Modern Digital Electronics", 4th Edition, Tata McGraw Hill

3. George Kennedy, "Electronic Communication Systems", 5th Edition, Tata McGraw Hill

**Reference Books** 

1. Paul Horowitz, "The Art of Electronics", 3<sup>rd</sup>Edition, Cambridge University Press

2. Theodore S. Rappaport, "Wireless Communications: Principles and Practice", 2<sup>nd</sup>Edition,Pearson

|     | Strength of CO-PO Mapping |    |   |   |   |   |   |   |   |    |    |    |
|-----|---------------------------|----|---|---|---|---|---|---|---|----|----|----|
|     |                           | РО |   |   |   |   |   |   |   |    |    |    |
|     | 1                         | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| CO1 | 3                         | -  | - | - | 2 | - | - | - | - | -  | -  | -  |
| CO2 | 3                         | -  | - | - | 2 | - | - | - | - | -  | -  | -  |
| CO3 | 3                         | 2  | - | - | 2 | - | - | - | - | -  | -  | -  |
| CO4 | 3                         | 2  | - | - | 2 | - | - | - | - | -  | -  | -  |
| CO5 | -                         | 2  | - | - | - | - | - | - | - | -  | -  | -  |

|         | Guidelines for Continuous Comprehensive Evaluation of Theory Course |                |  |  |  |  |  |  |  |
|---------|---------------------------------------------------------------------|----------------|--|--|--|--|--|--|--|
| Sr. No. | Components for Continuous Comprehensive Evaluation                  | Marks Allotted |  |  |  |  |  |  |  |
| 1       | Assignment:                                                         | 10             |  |  |  |  |  |  |  |
|         | Assignment No. 1 - Unit 1, 2 (10 Marks)                             |                |  |  |  |  |  |  |  |
|         | Assignment No. 2 - Unit 3, 4, 5 (10 Marks)                          |                |  |  |  |  |  |  |  |
| 2       | Quiz (Using Learnico):                                              | 10             |  |  |  |  |  |  |  |
|         | Unit No. 1 (10 Questions - 10 Marks)                                |                |  |  |  |  |  |  |  |
|         | Unit No. 2 (10 Questions - 10 Marks)                                |                |  |  |  |  |  |  |  |
|         | Unit No. 3 (10 Questions - 10 Marks)                                |                |  |  |  |  |  |  |  |

| Unit No. 4 (10 Questions - 10 Marks) |  |
|--------------------------------------|--|
| Unit No. 5 (10 Questions - 10 Marks) |  |

|                                                           | List of Laboratory Experiments / Assignments                                                                                                                                                                                                                                                                                                               |                  |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Sr. No.                                                   | Laboratory Experiments / Assignments                                                                                                                                                                                                                                                                                                                       | CO Mapped        |
| 1                                                         | Build and demonstrate appropriate AC to DC converter for Mobile charger.<br>How to rectify the fault, if the output of your circuit reduces to half of the required value?                                                                                                                                                                                 | CO3, CO5         |
| 2                                                         | Build and demonstrate a circuit to superimpose analog signal with DC signal.<br>Hint: Television system.                                                                                                                                                                                                                                                   | CO3, CO5         |
| 3                                                         | Build and demonstrate basic charging circuit for battery of an electric vehicle.                                                                                                                                                                                                                                                                           | CO3, CO5         |
| 4                                                         | Build and demonstrate a simple circuit to control the flashing speed of LEDs used in decorative lighting system.                                                                                                                                                                                                                                           | CO3, CO5         |
| 5                                                         | Build and demonstrate simple circuit that will convert sine waveform into square waveform.                                                                                                                                                                                                                                                                 | CO3, CO5         |
| 6                                                         | Build and demonstrate a simple circuit that will turn off a water pump<br>automatically when the water tank is full.                                                                                                                                                                                                                                       | CO3, CO5         |
| 7                                                         | Build and demonstrate the simple PUC system which will show green<br>light indication if all CO <sub>2</sub> , SO <sub>2</sub> , Carbon monoxide levels are less than<br>threshold value otherwise it should show red light indication.<br>Hint: MQ series sensors along with comparators cane be used                                                     | CO4, CO5         |
| 8                                                         | Suggest a simple electronic system for a hearing-impaired person. (Implementation is not expected)                                                                                                                                                                                                                                                         | CO3, CO4,<br>CO5 |
| 9                                                         | Suggest a simple system to transmit your voice signal from a recording<br>room in Nashik to a broadcasting station in Mumbai. (Implementation<br>is not expected)                                                                                                                                                                                          | CO3, CO4,<br>CO5 |
|                                                           | Guidelines for Laboratory Conduction                                                                                                                                                                                                                                                                                                                       |                  |
| <ol> <li>Avoid</li> <li>Double</li> <li>Observ</li> </ol> | ments should be performed in a group of two students only.<br>contacting circuits with wet hands or wet materials.<br>e check circuits for proper connections and polarity prior to applying the p<br>we polarity when connecting polarized components or test equipment.<br>sure test instruments are set for proper function and range prior to taking a |                  |
|                                                           | <b>Guidelines for Student's Lab Journal</b>                                                                                                                                                                                                                                                                                                                |                  |
| Title, Ob                                                 | lab journal should contain following related things -<br>jectives, Hardware/ Software requirement, Theory, Circuit Diagram, Obse<br>alculations, Results, Conclusion and Assignment questions                                                                                                                                                              | rvation table,   |
|                                                           | Guidelines for Termwork Assessment                                                                                                                                                                                                                                                                                                                         |                  |
| <ol> <li>R2: U</li> <li>R3: P</li> <li>Total</li> </ol>   | Timely completion of experiment (10 Marks)<br>Understanding of experiment (10 Marks)<br>resentation / clarity of journal writing (10 Marks)<br>30 marks for each experiment and average marks of all experiments will<br>marks of term work.                                                                                                               | l be converted   |



K. K. Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

|                     |                                                                                                                      | F. Y. B. Tech. Pattern<br>300108A: Programmin       |                                       |                          |  |  |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------|--------------------------|--|--|--|--|--|
| Teachi              | ng Scheme:                                                                                                           | Credit Scheme:                                      | Examination                           | Scheme:                  |  |  |  |  |  |
|                     | : 01hrs/week<br>al : 02hrs/week                                                                                      | 01<br>01                                            | InSem Exam<br>EndSem Exa<br>Termwork: | kam: 30Marks             |  |  |  |  |  |
| Prereq              | uisite Courses, if any: -                                                                                            |                                                     |                                       |                          |  |  |  |  |  |
| To get a<br>To unde | <b>Objectives:</b><br>acquainted with the fundame<br>erstand data types, control st<br>concept of arrays, string ope | ructures and functions ir                           | и 'C'                                 |                          |  |  |  |  |  |
|                     | y the concept of structures i                                                                                        | -                                                   |                                       |                          |  |  |  |  |  |
|                     | the programming skills usi <b>Outcomes:</b> On completion                                                            |                                                     |                                       |                          |  |  |  |  |  |
|                     | _                                                                                                                    | Course Outcomes                                     |                                       | Bloom's Level            |  |  |  |  |  |
| C01                 | Illustrate algorithm, f                                                                                              | Illustrate algorithm, flowchart for a given problem |                                       |                          |  |  |  |  |  |
| CO2                 | Apply fundamentals of problem                                                                                        |                                                     | 3-Apply                               |                          |  |  |  |  |  |
| CO3                 | 1                                                                                                                    | given problem using co constructs                   | nditional and                         | 3-Apply                  |  |  |  |  |  |
| CO4                 | Use arrays and functi                                                                                                | ons in developing progra                            | ams                                   | 3-Apply                  |  |  |  |  |  |
| CO5                 | Develop program usi                                                                                                  | ng structure                                        | 3-Apply                               |                          |  |  |  |  |  |
|                     |                                                                                                                      | COURSE CONTEN                                       | ГS                                    |                          |  |  |  |  |  |
| Unit<br>I           | Introduction to Program                                                                                              | nming Languages                                     | 02 hrs                                | COs Mapped –<br>CO1      |  |  |  |  |  |
| program             | <b>m planning tools</b> - Algorithm<br>nming,<br>o <b>f Program Errors:</b> Syntax                                   | -                                                   |                                       | n to top-down structured |  |  |  |  |  |
| Unit<br>II          | Fundamentals of 'C' Pr                                                                                               |                                                     | 03 hrs                                | COs Mapped –<br>CO2      |  |  |  |  |  |
|                     | ction to 'C' Programming,<br>ors (Arithmetic, relational, lo<br>ions.                                                | • •                                                 |                                       |                          |  |  |  |  |  |
| Unit<br>III         | Conditional and Iterativ<br>Constructs                                                                               | 04 hrs                                              | COs Mapped –<br>CO3                   |                          |  |  |  |  |  |
| Iterativ            | ional algorithmic construct<br>re algorithm constructs: Co<br>le' statements, nested loops,                          | onstruction of loops, Est                           | ablishing initial                     |                          |  |  |  |  |  |
| Unit<br>IV          | Arrays and Functions                                                                                                 |                                                     | 04 hrs                                | COs Mapped –<br>CO4      |  |  |  |  |  |
| Arrays              | Concept, One- dimensiona                                                                                             | l, multidimensional array                           | y, character array                    | vs (Strings).            |  |  |  |  |  |

| Function                                                                                           | n types: Library functions (math, string), user d | lefined function | s: Function definition, |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------|-------------------------|--|--|--|--|--|
| function declaration, arguments, scope rules and lifetime of variables, function calls and return. |                                                   |                  |                         |  |  |  |  |  |
|                                                                                                    |                                                   |                  |                         |  |  |  |  |  |

| Unit                                                             | Structure | 02 hrs | COs Mapped – |  |  |  |  |  |
|------------------------------------------------------------------|-----------|--------|--------------|--|--|--|--|--|
| $\mathbf{V}$                                                     |           |        | CO5          |  |  |  |  |  |
| Defining a structure accessing members, structure initialization |           |        |              |  |  |  |  |  |

Defining a structure, accessing members, structure initialization.

# **Text Books**

1. Yashavant Kanetkar, "Let Us C" - Seventh Edition, BPB Publications, 2007

2. E. Balagurusamy, "Programming in ANSI C", Tata McGraw Hill, 2002

# **Reference Books**

1.Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Pearson Education, 1988

2.Computer Science: A Structured Programming Approach Using C, B. A. Forouzan and R.F. Gilberg, Third Edition, Cengage Learning.

|          | Strength of CO-PO Mapping |    |   |   |   |   |   |   |   |    |    |    |
|----------|---------------------------|----|---|---|---|---|---|---|---|----|----|----|
| Course   |                           | PO |   |   |   |   |   |   |   |    |    |    |
| Outcomes | 1                         | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| CO1      | 3                         | 3  | 3 | - | - | - | - | - | - | -  | -  | 3  |
| CO2      | 3                         | 3  | 3 | - | - | - | - | - | - | -  | -  | 3  |
| CO3      | 3                         | 3  | 3 | - | - | - | - | - | - | -  | -  | 3  |
| CO4      | 3                         | 3  | 3 | - | - | - | - | - | - | -  | -  | 3  |
| CO5      | 3                         | 3  | 3 | - | - | - | - | - | - | -  | -  | 3  |

|            | List of Laboratory Experiments / Assignments                                                                                                                                                                                                                                                                                                                                                   |                     |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|
| Sr.<br>No. | Laboratory Experiments / Assignments                                                                                                                                                                                                                                                                                                                                                           | CO<br>Mapped        |  |
| 1          | In a departmental store, a customer is offered an x% discount on the printed price of each commodity. The customer needs to pay y% sales tax on the discounted amount.<br>Draw a flowchart, write an algorithm / a pseudo-code and write a C program to calculate the amount to be paid by the customer for a commodity using above conditions.                                                | CO1,CO2             |  |
| 2          | A type of a triangle (equilateral, isosceles, right angle triangle etc) is<br>decided using the length of its three sides.<br>Draw a flowchart, write an algorithm /write a pseudo-code and write a<br>C program to accept the length of three sides of a triangle and display<br>the type of triangle. Also Calculate its area and perimeter.                                                 | CO1,CO2,<br>CO3     |  |
| 3          | After conducting a class test for a course, a teacher wants to record the marks obtained by all the students in the class and find the Minimum and Maximum score obtained. The teacher is also interested in knowing the number of students who passed in this test Draw a flowchart, write an algorithm/ a pseudo-code and write a C program to record the marks and perform above functions. | CO1,CO2,<br>CO3,CO4 |  |

| 4                                         | Draw a flowchart/write an algorithm / a pseudo-code and write a menu<br>driven C program to perform following string operations using library<br>and user defined function:<br>i. Find length of a string<br>ii. Copy a string<br>iii. Concatenate the string                                                                                                                                                                                                                                        | CO1,CO2,<br>CO3,CO4         |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|                                           | iv. Compare two strings                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| 5                                         | Draw a flowchart/write an algorithm / a pseudo-code and write a C<br>program using functions to perform the following operations:<br>i. Addition of Two Matrices<br>ii.Multiplication of Two Matrices<br>iii.Transpose of a given matrix                                                                                                                                                                                                                                                             | CO1,CO2,<br>CO3,CO4         |
| 6                                         | Draw a flowchart, write an algorithm / a pseudo-code and write a C program using a function to test whether the given number is a prime number and also to find smallest divisor, GCD, LCM of the given number                                                                                                                                                                                                                                                                                       | CO1,CO2,<br>CO3,CO4         |
| 7                                         | <ul> <li>A company desires to maintain a database of its customer by recording information about customers such as name, mobile, gender, city etc.</li> <li>The sales department personnel would like to get <ol> <li>Customers with all the details,</li> <li>Customers and their mobile numbers,</li> <li>Customers from a given city</li> </ol> </li> <li>Draw a flow-chart, write an algorithm / a pseudo-code and develop a menu driven application to provide above functionalities</li> </ul> | CO1,CO2,<br>CO3,CO4,<br>CO5 |
| Usa codi                                  | Guidelines for Laboratory Conduction<br>ing standards such as variable naming conventions, use of constants, prop                                                                                                                                                                                                                                                                                                                                                                                    | or indeptation              |
| commen<br>For each<br>test cases          | ts and documentation<br>assignment, students should write number of lines of code, various errors e<br>s used to test the program<br>should incorporate functionalities mentioned in boldface in the assignment                                                                                                                                                                                                                                                                                      | ncountered and              |
|                                           | on to above eight assignments, students may develop an application in consu                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
|                                           | <b>Guidelines for Student's Lab Journal</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
| of Certit<br>statemen                     | bratory assignments are to be submitted by students in the form of a journal. I<br>ficate, table of contents, and handwritten write-up of each assignment (<br>at, theory concepts in brief, algorithm, flowchart, test cases and conclusions).<br>apple outputs shall be submitted in soft form.                                                                                                                                                                                                    | Title, problem              |
|                                           | Guidelines for Term work Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |
| Assessm<br>R1- Tim<br>R2- Und<br>and worl | bus assessment of laboratory work shall be based on the overall performance<br>then to f each laboratory assignment shall be based on rubrics that include<br>ely completion (10) – Full marks if submitted in time, 5 marks otherwise,<br>lerstanding of assignment (10) Full marks for accurate flowchart, algorithm<br>king code                                                                                                                                                                  | n / pseudo-code             |
|                                           | Coding standards, proper documentation, neatness of writeup $(10) - 5$ ms and documentation and 5 marks for neatness of write up.                                                                                                                                                                                                                                                                                                                                                                    | arks for coding             |



# K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

|                                                                               |                                                                                                             | (Autonomous from A                                                               | cademic Year 2022-23)                                                       |                 |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------|
|                                                                               |                                                                                                             | F. Y. B. Tech.<br>Pattern 2023                                                   |                                                                             |                 |
|                                                                               |                                                                                                             | 0112A: Communicati                                                               |                                                                             |                 |
| <b>Teaching Set</b>                                                           | cheme:                                                                                                      | Credit Scheme:                                                                   | Examination Scheme:                                                         | :               |
| Theory: 01hr/week<br>Practical: 02hrs/week                                    |                                                                                                             | 01<br>01                                                                         | Continuous Compre<br>Evaluation: 25Mark<br>Termwork: 50Mark                 | S               |
| Prerequisit                                                                   | e Courses, if any:                                                                                          |                                                                                  |                                                                             |                 |
| professional<br>2. To facilita<br>3. To develo<br>4. To expose<br>activities. | ight the need to improve                                                                                    | t of students by enhanci<br>lls of the students throu<br>nal and behavioural asp | ing soft skills.<br>Igh individual and group<br>ects and assist in building | activities.     |
|                                                                               | comes: On completion o.                                                                                     |                                                                                  | III be able to-                                                             | Discourse Local |
|                                                                               |                                                                                                             | Course Outcomes                                                                  |                                                                             | Bloom's Level   |
| CO1                                                                           | Develop effective communication skills including Listening, Reading, <b>3-Apply</b><br>Writing and Speaking |                                                                                  |                                                                             | 3-Apply         |
| CO2                                                                           | Practice professional et                                                                                    | tiquette and present one                                                         | eself confidently.                                                          | 3-Apply         |
| CO3                                                                           |                                                                                                             | heterogeneous teams th<br>nal relationships, confli                              | nrough the knowledge of act management and                                  | 3-Apply         |
| CO4                                                                           |                                                                                                             | rforming SWOC Analy aspirations.                                                 | sis to introspect about                                                     | 4-Evaluate      |
| CO5                                                                           | Constructively particip<br>and deliver Presentatio                                                          | ate in group discussion<br>ns.                                                   | , meetings and prepare                                                      | 4-Evaluate      |
|                                                                               |                                                                                                             | <b>Text Books</b>                                                                |                                                                             |                 |
| Personal<br>2. Simon Sw                                                       | Singh Chauhan, Sangeet<br>ity", Wiley India, ISBN:<br>veeney, "English for Busi<br>521754507                | 13:9788126556397                                                                 | 0 11                                                                        |                 |
|                                                                               |                                                                                                             | <b>Reference Books</b>                                                           | 5                                                                           |                 |
| <ol> <li>Sanjay</li> <li>10:9780199</li> <li>Business</li> </ol>              | Communication & Soft S                                                                                      | ta, "Communication Skills, McGraw Hill Edu                                       | Skills", Oxford Univers                                                     | ity Press, ISBN |
| 4. Atkinsoi<br>10:0155050                                                     | n and Hilgard, "Introdu<br>0699, 2003.                                                                      | iction to respendiology,                                                         | , 14th Edition, Geoffre                                                     | y Lonus, ISBN-  |

5. Kenneth G. Mcgee, "Heads Up: How to Anticipate Business Surprises & Seize Opportunities First", Harvard Business School Press, Boston, Massachusetts, 2004, ISBN 10:1591392993

6. Krishnaswami, N. and Sriraman T., "Creative English for Communication," Macmillan

|     |   |   | St | trength | n of CO | D-PO | Mappi | ng |   |    |    |    |
|-----|---|---|----|---------|---------|------|-------|----|---|----|----|----|
|     |   |   |    |         |         | P    | С     |    |   |    |    |    |
|     | 1 | 2 | 3  | 4       | 5       | 6    | 7     | 8  | 9 | 10 | 11 | 12 |
| CO1 | - | - | -  | -       | -       | -    | -     | -  | 3 | 3  | -  | -  |
| CO2 | - | - | -  | -       | -       | -    | -     | -  | 3 | 3  | -  | -  |
| CO3 | - | - | -  | -       | -       | -    | -     | -  | 3 | 3  | -  | -  |
| CO4 | - | - | -  | -       | -       | -    | -     | -  | 3 | 3  | -  | -  |
| CO5 | - | - | -  | -       | -       | -    | -     | -  | 3 | 3  | -  | -  |

| List of Laboratory Experiments / Class Assignments |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |  |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| Sr. No.                                            | Laboratory Experiments / Class Assignments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COs<br>Mapped |  |
| 1                                                  | <b>English Language Basics – Class Assignments</b><br>Fundamentals of English grammar, Vocabulary Building, Developing basic<br>writing skills and Identifying Common Errors in Writing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO1           |  |
| 2                                                  | <ul> <li>Listening and Reading Skills</li> <li>a. Listening Worksheets using Language Lab Software</li> <li>Each student will be given specifically designed worksheets that contain blanks / matching / MCQs that are designed to an audio (chosen by the faculty). Students have to listen to the audio (only once) and complete the worksheet as the audio plays. This will help reiterate active listening as well as deriving information (listening to information between the lines)</li> <li>b. Reading Comprehension Worksheets to be distributed/displayed to students. – Class Assignments</li> <li>Teacher will choose reading passages from non-technical domains, design worksheets with questions for students to answer. This will enhance student's reading skills by learning how to skim and scan for information.</li> </ul> | CO1           |  |
| 3                                                  | <ul> <li>Writing Skills <ul> <li>a. Letter / Email Writing – Lab Experiment</li> </ul> </li> <li>After explaining to the students the highlights of effective writing, students can be asked to write (using digital platforms / paper-based) letter to an organization with the following subject matter, <ul> <li>i. Requesting opportunity to present his/her product.</li> <li>ii. Complaining about a faulty product / service.</li> <li>iii. Apologizing on behalf of one's team for the error that occurred.</li> <li>iv. Providing explanation for a false accusation by a client.</li> </ul> </li> <li>b. Abstract Writing – Class Assignment <ul> <li>Teacher will choose a newspaper article / short stories and ask students to write an abstract.</li> </ul> </li> </ul>                                                            | CO1           |  |
| 4                                                  | <ul> <li>Speaking Skills / Oral Communication – Part A</li> <li>a. One minute Self Introduction – Class Assignment</li> <li>Explain how to introduce oneself in a professional manner and presenting oneself positively Name, Academic Profile, Achievements, Career Aspirations, Personal Information (hobbies, family, social).</li> <li>b. Presentations – Lab Experiment</li> <li>Every student will have to choose a topic of his/her choice and make a 5-minute presentation using audio-video aids / PPT. Every student will make two presentations on – one technical and other non-technical topic. Focus and evaluation of each presentation should be the depth of knowledge about the topic, originality of perspective on the topic, well-researched or not, verbal and non-</li> </ul>                                             | CO5,<br>CO2   |  |

|   |                                                                                      | 1    |
|---|--------------------------------------------------------------------------------------|------|
|   | verbal skills and ability to answer questions effectively. Plagiarism should be      |      |
|   | discredit and students should be instructed about it.                                |      |
| 5 | Speaking Skills / Oral Communication – Part B                                        | CO1, |
|   | a. Group Discussion – Lab Experiment / Class Assignment                              | CO5, |
|   | The class will be divided into groups of 5-6 students for a discussion lasting 15    | CO2, |
|   | minutes. Topics should be provided by teachers. After each group finishes its        | CO3  |
|   | discussion, the teacher will give critical feedback including areas of improvement.  |      |
|   | The teacher should act as a moderator / observer only                                |      |
| 6 | Extempore                                                                            | CO1, |
|   | Various topics will be laid out in front of the audience and each student is to pick | CO2  |
|   | one topic and speak about the topic for 5 minutes followed by Q&A from audience.     |      |
|   | Teacher will evaluate each student based on thinking ability, content,               |      |
|   | communication skills, logical and cohesive presentation of topic, perspective of     |      |
|   | student, ability to handle questions and respond positively                          |      |
| 7 | SWOC Analysis                                                                        | CO4  |
|   | <b>a.</b> Focus on introspection and become aware of one's Strengths, Weakness,      |      |
|   | Opportunities and Challenges. Students can write down their SWOC in a matrix         |      |
|   | and the teacher can discuss the gist personally.                                     |      |
|   | b. Resume Writing                                                                    |      |
|   | The teacher should conduct a brief session outlining the importance of a CV /        |      |
|   | Resume and students can write / type out their own resumes                           |      |
|   | i. Share various professional formats.                                               |      |
|   | ii. Focus on highlighting individual strengths.                                      |      |
|   | iii. Develop personalized professional goals / statement at the beginning of the     |      |
|   | resume.                                                                              |      |
|   | Guidelines for Laboratory Conduction                                                 |      |
|   |                                                                                      |      |

The teacher may design specific assignments that can highlight the learning outcomes of each unit. Each activity conducted in the lab should begin with a brief introduction of the topic, purpose of the activity from a professional point of view and end with the learning outcomes as feedback from students. Most of the lab sessions can be designed to be inclusive; allowing students to learn skills experientially; which will benefit them in the professional environment. Every student must be given sufficient opportunity to participate in each activity and constructive feedback from the instructor / facilitator at the end of the activity should learn towards encouraging students to work on improving their skills. Activities should be designed to cater to enhancement of multiple skills – e.g. Team Building Activity can highlight 'open communication', 'group discussion', 'respecting perspectives', 'leadership skills', 'focus on goals' which can help students improve their inherent interpersonal skills.

At least one session should be dedicated to an interactive session that will be delivered by an expert from the industry; giving the students an exposure to professional expectations.

# **Guidelines for Student's Lab Journal**

Each student should have a Lab Workbook (sample workbook attached) which outlines each lab activity conducted. The student must respond by writing out their learning outcomes and elaborating the activities performed in the lab., group discussion, group exercises and interpersonal skills and similar other activities/assignments.

# **Guidelines for Term work Assessment**

Continuous assessment of laboratory work is to be done based on overall performance and lab assignments and performance of student. Each lab assignment assessment will be assigned grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include- timely completion, performance, punctuality, neatness, enthusiasm, participation and contribution in various activities-SWOC analysis, presentations, team activity, event management



|                                                                        | 2300111A Wo                                                                                                                                                                                        | Patterr                                                                                                                                  | B. Tech. (E&TC)<br>n 2023 Semester: I<br>nting and Additive Manufacturing ( | CAD)                        |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------|
| Teachi                                                                 | ng Scheme:                                                                                                                                                                                         | Credit<br>Scheme:                                                                                                                        | Examination Scheme:                                                         |                             |
|                                                                        | v :01hrs/week<br>cal : 02 hrs/week                                                                                                                                                                 | 01<br>01                                                                                                                                 | Continuous Comprehensive Eval<br>TW: 25 Marks                               | uation: 25 Marks            |
| Prereq                                                                 | uisite Courses, if any:                                                                                                                                                                            | -Fundamentals of                                                                                                                         | of Electronics Engineering                                                  |                             |
| Compa                                                                  | nion course, if any: La                                                                                                                                                                            | ab work in PCB                                                                                                                           | Making                                                                      |                             |
| <ol> <li>2.</li> <li>3.</li> <li>4.</li> <li>5.</li> <li>6.</li> </ol> | To draw orthographic<br>line type and scale<br>To draw isometric pro-<br>projection from orthog<br>To perform CAD appl<br>To create and plot asse<br>Tolerance & Annotatio<br>Study Additive Manuf | Projections givin<br>jection from orth<br>raphic views.<br>ication in 2D into<br>embly and detail<br>on in 3D Modelli<br>acturing (AM) T | views of simple geometrical solid with                                      | raw oblique<br>n Dimension, |
|                                                                        |                                                                                                                                                                                                    | Course                                                                                                                                   | Outcomes                                                                    | Bloom's Level               |
| CO1                                                                    | Construct different Geometrical figures using drawing Instruments                                                                                                                                  |                                                                                                                                          |                                                                             | 2-Understand                |
| CO2                                                                    | draw orthographic Projections giving proper dimensioning with title block<br>using appropriate line type and scale                                                                                 |                                                                                                                                          |                                                                             | 2-Understand                |
| CO3                                                                    | oblique projection fro                                                                                                                                                                             | m orthographic v                                                                                                                         |                                                                             | w 3-Apply                   |
| CO4                                                                    | perform CAD applica                                                                                                                                                                                | tion in 2D interfa                                                                                                                       | ace                                                                         | 3-Apply                     |
| CO5                                                                    | Dimension, Tolerance                                                                                                                                                                               | & Annotation in                                                                                                                          | <u> </u>                                                                    | 3-Apply                     |
| CO6                                                                    | Explain Additive Mar<br>Additive Manufacturi                                                                                                                                                       | ng                                                                                                                                       | ) Technology and emerging trends in                                         | 2-Understand                |
|                                                                        |                                                                                                                                                                                                    | COU                                                                                                                                      | RSE CONTENTS                                                                |                             |
| Unit<br>I                                                              | Construction of diff<br>Geometrical figures<br>drawing Instrumen                                                                                                                                   | susing                                                                                                                                   | (06 hrs)                                                                    | COs Mapped -<br>CO1         |
| • • • • • • • • • • • • • • • • • • • •                                | Draw straight and para<br>bi-sector.<br>Construct regular poly<br>Layout a A3 drawing s<br>Label a drawing views<br>Construct ellipse, para<br>Construct involutes, cy                             | gons (up to 8 sid<br>heet with margin<br>showing the typ<br>bola & hyperbol                                                              | n and name plate.<br>bes of line are used<br>a                              | igle bi-sector and line     |
| Unit<br>II                                                             | Draw orthographic                                                                                                                                                                                  |                                                                                                                                          | (06 hrs)                                                                    | COs Mapped -<br>CO2         |

| 0<br>• C<br>p<br>• D<br>• D                                                                                                                                                                                                                                                                                                  | Generate views in orthographic projecti<br>f axes.<br>Generate side view of laminar objects in<br>lane.<br>Draw orthographic projection of points,<br>Draw orthographic projection of solids<br>and 3rd angle method.                                                                                                                                                                                                                                                                                                                                                                                                                                            | n different inclin<br>, lines and plain<br>viz. prism, cone                                                                                                                                                         | nation on VP and laminar figures.                                                                                                                    | HP by auxiliary vertical                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| III                                                                                                                                                                                                                                                                                                                          | Draw isolitetre projection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                     | 50 113)                                                                                                                                              | CO3 CO3                                                                                             |
| <ul> <li>Co</li> <li>Dr</li> <li>Dr</li> </ul>                                                                                                                                                                                                                                                                               | onstruct an Isometric scale to a given le<br>aw the isometric projection of regular<br>aw the isometric views for the given so<br>aw the orthographic views of hanger, b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | solids.<br>olids with hollo                                                                                                                                                                                         |                                                                                                                                                      | 5.                                                                                                  |
| Unit<br>IV                                                                                                                                                                                                                                                                                                                   | CAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (                                                                                                                                                                                                                   | 06 hrs)                                                                                                                                              | COs Mapped -<br>CO3, CO4                                                                            |
| <ul> <li>Ed</li> <li>Cc</li> <li>Dr</li> </ul>                                                                                                                                                                                                                                                                               | ompt. Create simple object in 2D draw<br>hit 2D objects using modify commands<br>onstruct orthographic sectional views o<br>aw isometric view of machine blocks.<br>range drawing in multiple viewports w                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f brackets with                                                                                                                                                                                                     |                                                                                                                                                      | erent layers.                                                                                       |
| Unit V                                                                                                                                                                                                                                                                                                                       | 3D Modelling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (                                                                                                                                                                                                                   | 06 hrs)                                                                                                                                              | COs Mapped –<br>CO3, CO4, CO5                                                                       |
| <ul> <li>Cr</li> <li>Sk</li> <li>Cr</li> <li>Cr</li> <li>Cr</li> <li>Pro</li> <li>Cc</li> <li>Cr</li> <li>and</li> <li>Pro</li> <li>det</li> <li>Cr</li> <li>Cr</li> <li>and</li> <li>Cr</li> <li>and</li> <li>Cr</li> <li>Cr</li> <li>Cr</li> <li>Cr</li> <li>Cr</li> <li>Cr</li> <li>Cr</li> <li>Cr</li> <li>Cr</li> </ul> | eate geometrical figures and patterns u<br>eate 3D solid figures by Sketching feat<br>etch an angle plate and a block – Creat<br>eate geometric dimensioning & tolerar<br>eate 3D solid and edit solid.<br>eate a new assembly, Insert componen<br>rform components configuration in an<br>edict aesthetic design, assembly costing<br>onstruct multibody, save as a new part a<br>eate a 3D model putting: Driving dime<br>d Annotations.<br>epare drawings & detailing: Named via<br>tail views.<br>eate a 3D transition figure.<br>eate 3D model by annotating Holes and<br>eate simulation, plot various results, peopute data translation facilitate to exp | tures & applied<br>te / Modify cons<br>nce (GD&T) with<br>its into an assem<br>assembly.<br>g, design library<br>and case study.<br>ensions, Bill of r<br>ews, standard 3v<br>d Threads, center<br>erform design op | features.<br>straints.<br>h DimXpert man,<br>bly, Add mates (c<br>& toolbox as per<br>naterials, Driven<br>views, auxiliary vi<br>erlines, symbols a | legree of freedom) and<br>different standards.<br>(Reference) Dimensions<br>iews, section views and |
| Unit VI                                                                                                                                                                                                                                                                                                                      | Additive Manufacturing (Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .M)                                                                                                                                                                                                                 | (06 hrs)                                                                                                                                             | COs Mapped –                                                                                        |
| <ul> <li>D</li> <li>Io</li> <li>E</li> </ul>                                                                                                                                                                                                                                                                                 | Technology and emerging tro<br>explain the underlying principles of Ad<br>Demonstrate various machines used in A<br>dentify the Extrusion AM technology –<br>Ensure Digital Light Processing Techno<br>Claborate the emerging trend in AM.                                                                                                                                                                                                                                                                                                                                                                                                                       | lditive Manufact<br>AM.<br>- Fused Filamer                                                                                                                                                                          | -                                                                                                                                                    | CO3, CO4, CO5                                                                                       |

# Semester-II



# K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

| Taaahin                                           |                                                                                                                                                            | 00102A: Differential C<br>Credit Scheme:                                                                                                              | Examination Sche                                                                                                               |                                  |  |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| Teaching                                          | g Scheme:                                                                                                                                                  | Cicuit Scheme.                                                                                                                                        | Examination Scheme.                                                                                                            |                                  |  |
|                                                   | 03hrs/week<br>: 01hr/week                                                                                                                                  | 03<br>01                                                                                                                                              | Continuous Comprehensive<br>Evaluation: 20Marks<br>InSem Exam: 20Marks<br>EndSem Exam: 60Marks<br>Tutorial / TermWork: 25Marks |                                  |  |
| Prerequi                                          | site Courses: -                                                                                                                                            |                                                                                                                                                       |                                                                                                                                |                                  |  |
| electrical<br>To introd<br>To introd<br>To introd | l various physical systems, s<br>circuits, Rectilinear motion<br>uce interpolating polynomia<br>uce concept of double and t<br>uce computational tools for | , Heat transfer.<br>als, numerical differentian<br>riple integration and the<br>solving mathematical p                                                | ation and integration.<br>ir applications.<br>roblems.                                                                         | of cooling, Simple               |  |
| Course (                                          | <b>Dutcomes:</b> On completion of                                                                                                                          | of the course, students w                                                                                                                             | ill be able to-                                                                                                                |                                  |  |
|                                                   |                                                                                                                                                            | <b>Course Outcomes</b>                                                                                                                                |                                                                                                                                | Bloom's Level                    |  |
|                                                   | Explain types of different                                                                                                                                 | ial equations finite diff                                                                                                                             | erences and multiple                                                                                                           | 2- Understanding                 |  |
| <b>CO1</b>                                        | integrals.                                                                                                                                                 | ini equations, mile and                                                                                                                               |                                                                                                                                | 8                                |  |
| CO1<br>CO2                                        | Solve problems on different                                                                                                                                | -                                                                                                                                                     | tiple integrals.                                                                                                               | 3- Apply                         |  |
|                                                   | e                                                                                                                                                          | ential equations and mul                                                                                                                              | 1 0                                                                                                                            |                                  |  |
| CO2                                               | Solve problems on differed<br>Apply concept of numeric                                                                                                     | ential equations and mul<br>cal methods, differential<br>roblems.                                                                                     | and multivariate                                                                                                               | 3- Apply                         |  |
| CO2<br>CO3                                        | Solve problems on different<br>Apply concept of numeric<br>calculus to engineering pro-                                                                    | ential equations and mul<br>cal methods, differential<br>roblems.<br>for solving mathematica<br>ifferential equations, nu<br>ion and multiple integra | l and multivariate<br>l problems.<br>merical<br>ls.                                                                            | 3- Apply<br>3- Apply             |  |
| CO2<br>CO3<br>CO4                                 | Solve problems on differed<br>Apply concept of numeric<br>calculus to engineering pr<br>Use computational tools f<br>Analyze the solution of d             | ential equations and mul<br>cal methods, differential<br>roblems.<br>for solving mathematica<br>ifferential equations, nu                             | l and multivariate<br>l problems.<br>merical<br>ls.                                                                            | 3- Apply<br>3- Apply<br>3- Apply |  |

Formation of differential equations Exact DE, equations reducible to exact form, Linear DE and Differential equation reducible to linear form.

**CO3** 

| Unit II | Applications of Differential Equations | 7hrs+<br>2hrsTutorial | COs Mapped -<br>CO1, CO2, |
|---------|----------------------------------------|-----------------------|---------------------------|
|         |                                        |                       | CO3, CO5                  |

Application of DE to Orthogonal trajectories, Newton's Law of Cooling, Kirchhoff's Laws of Electrical Circuits, Motion under Gravity, Rectilinear Motion, Heat flow.

| Unit | Finite differences and Interpolation | 7hrs+        | COs Mapped   |
|------|--------------------------------------|--------------|--------------|
| III  |                                      | 2hrsTutorial | – CO1, CO3 , |

|  | CO5 |
|--|-----|
|  |     |

Finite differences, differences of polynomials, relations between the operators, Newton's interpolation formula, Stirling's formula, Lagrange's Interpolation formula.

| Unit | Numerical Differentiation and Integration | 7hrs+2hrsTutorial | COs Mapped - |
|------|-------------------------------------------|-------------------|--------------|
| IV   |                                           |                   | CO1, CO3,    |
|      |                                           |                   | CO5          |

**Numerical Differentiation**: Euler's method, Euler's Modified Method, Runge- Kutta fourth order, Predictor- Corrector Method.

**Numerical Integration:** Trapezoidal rule, Simpson's 1/3<sup>rd</sup> and 3/8<sup>th</sup> rule.

| Unit V | Multiple Integrals and their Applications | 7hrs+2hrsTutorial | COs Mapped -<br>CO1, CO2, |
|--------|-------------------------------------------|-------------------|---------------------------|
|        |                                           |                   | CO3,CO5                   |

Double and Triple integrations, applications to area, volume, mean and root mean square values and Center of Gravity.

**TextBooks** 

1.M.K. Jain, R.K.Jain, Iyengar, "Numerical Methods for scientific and engineering computation" (New age International)

2. B. S. Grewal ,"Higher Engineering Mathematics" Khanna Publication, Delhi.

**Reference Books** 

1. Erwin Kreyszig,"Advanced Engineering Mathematics", Wiley Eastern Ltd.

2. P. N. Wartikar and J. N. Wartikar," Applied Mathematics" (Volume I and II), Pune Vidyarthi Griha Prakashan, Pune.

|      | Strength of CO-PO Mapping |    |   |   |   |   |   |   |   |    |    |    |
|------|---------------------------|----|---|---|---|---|---|---|---|----|----|----|
|      |                           | РО |   |   |   |   |   |   |   |    |    |    |
|      | 1                         | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| CO 1 | 3                         | 1  | - | - | - | - | - | - | - | -  | -  | 2  |
| CO 2 | 3                         | 1  | 1 | - | - | - | - | - | - | -  | -  | 2  |
| CO 3 | 3                         | 3  | 2 | 2 | 2 | - | - | - | - | -  | -  | 2  |
| CO 4 | 1                         | -  | - | - | 3 | - | - | - | - | -  | -  | 2  |
| CO5  | 3                         | 3  | 2 | 2 | 2 | - | - | - | - | -  | -  | 2  |

|         | <b>Guidelines for Continuous Comprehensive Evaluation of Theory Course</b>                                                                           |    |  |  |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| Sr. No. | Sr. No. Components for Continuous Comprehensive Evaluation                                                                                           |    |  |  |  |  |  |  |
| 1       | Assignments<br>(Total 3 Assignment, Unit I and II 20 marks, Unit III and IV 20 marks<br>and Unit V 10 marks &50 marks will be converted to 10 Marks) | 10 |  |  |  |  |  |  |
| 2       | Tests on each unit using LearniCo<br>(Each test for 15 M and total will be converted out of 10 M)                                                    | 10 |  |  |  |  |  |  |

|         | List of Tutorial Assignments                                                                         |                       |  |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|
| Sr. No. | Title                                                                                                | CO<br>Mapped          |  |  |  |  |  |
| 1       | Examples on formation of differential equations exact DE.                                            | CO1, CO2              |  |  |  |  |  |
| 2       | Examples on linear DE and reducible to linear differential equations.                                | CO1, CO2              |  |  |  |  |  |
| 3       | Examples on application of DE to Orthogonal trajectories, Newton's Law of cooling.                   | CO1, CO2,<br>CO3,CO5  |  |  |  |  |  |
| 4       | Examples on Electrical Circuits, motion under gravity, Rectilinear<br>Motion.                        | CO1, CO2,<br>CO3,CO5  |  |  |  |  |  |
| 5       | Solving differential equation using Matlab.                                                          | CO1, CO2,<br>CO4      |  |  |  |  |  |
| 6       | Examples on finite differences, differences of polynomials, relations between the operators.         | CO1, CO3              |  |  |  |  |  |
| 7       | Examples on Newton's interpolation formula, Stirling's formula,<br>Lagrange's Interpolation formula. | CO1, CO3 ,<br>CO5     |  |  |  |  |  |
| 8       | Solve ordinary differential equations using Numerical Methods.                                       | CO1, CO3 ,<br>CO5     |  |  |  |  |  |
| 9       | Solve definite integration using Numerical Methods.                                                  | CO1, CO3 ,<br>CO5     |  |  |  |  |  |
| 10      | Solving differential equation and definite integrals using Matlab.                                   | CO1, CO2,<br>CO4      |  |  |  |  |  |
| 11      | Examples on double and triple integrations.                                                          | CO1, CO2,<br>CO3      |  |  |  |  |  |
| 12      | Examples on applications of double and triple integration.                                           | CO1, CO2,<br>CO3, CO5 |  |  |  |  |  |

|         | <b>Guidelines for Tutorial / Termwork Assessment</b>    |    |  |  |  |  |  |  |  |
|---------|---------------------------------------------------------|----|--|--|--|--|--|--|--|
| Sr. No. | Sr. No. Components for Tutorial / Termwork Assessment   |    |  |  |  |  |  |  |  |
| 1       | Assignment on computational software                    | 5  |  |  |  |  |  |  |  |
| 2       | Tutorial (Each tutorial carries 15 marks)               | 15 |  |  |  |  |  |  |  |
| 3       | Attendance (Above 95 % : 05 Marks, below 75% : 0 Marks) | 5  |  |  |  |  |  |  |  |



|                                                                      | 23                                                                                                                                                                                                           | F. Y. B. Tech.<br>Pattern 2023<br>300104A: Applied Che                                                         | emistry                                                                                                             |                   |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------|--|--|
| Teachin                                                              | g Scheme:                                                                                                                                                                                                    | Credit Scheme:                                                                                                 | Examination Scheme                                                                                                  | •                 |  |  |
| Practica                                                             | : 03hrs/week<br>l : 02hrs/week                                                                                                                                                                               | 03<br>01                                                                                                       | Continuous Comprehensive<br>Evaluation: 20Marks<br>InSem Exam: 20Marks<br>EndSem Exam: 60Marks<br>TermWork: 50Marks |                   |  |  |
| Prerequ                                                              | isite Courses, if any: -                                                                                                                                                                                     |                                                                                                                |                                                                                                                     |                   |  |  |
| To acqui<br>understa<br>To under<br>To study<br>To under<br>To under | <b>Objectives:</b><br>re the knowledge of electro-<br>nding of materials.<br>rstand structure, properties a<br>r conventional and alternative<br>rstand technology involved i<br>rstand corrosion mechanisms | nd applications of speci<br>e fuels with respect to the<br>n analysis and improving<br>s and preventive method | ality polymers, nano mate<br>heir properties and applica<br>ng quality of water as com<br>ds for corrosion control. | erial and alloys. |  |  |
| Course                                                               | Outcomes: On completion of                                                                                                                                                                                   | of the course, students w                                                                                      | vill be able to-                                                                                                    |                   |  |  |
|                                                                      |                                                                                                                                                                                                              | Bloom's<br>Level                                                                                               |                                                                                                                     |                   |  |  |
| CO1                                                                  | Describe different technic fuel, polymer, alloys.                                                                                                                                                            | -                                                                                                              | -                                                                                                                   | 1-Knowledge       |  |  |
| CO2                                                                  | Select appropriate techno properties of material.                                                                                                                                                            | logy involved in determ                                                                                        | nination of purity and                                                                                              | 2- Understand     |  |  |
| CO3                                                                  | Illustrate causes and prev corrosion                                                                                                                                                                         | entive measures of ill e                                                                                       | ffect of hard water and                                                                                             | 3-Apply           |  |  |
| <b>CO4</b>                                                           | Analyse the fluids, fuels a methods.                                                                                                                                                                         | and selection of appropr                                                                                       | riate purification                                                                                                  | 3-Apply           |  |  |
| CO5                                                                  | Compare composition of corrosion control                                                                                                                                                                     | nd mitigation for                                                                                              | 4-Analyze                                                                                                           |                   |  |  |
|                                                                      |                                                                                                                                                                                                              | COURSE CONTEN                                                                                                  | ITS                                                                                                                 |                   |  |  |
| Unit I Cells, Batteries and Elect<br>Techniques                      |                                                                                                                                                                                                              | ro analytical                                                                                                  | (8hrs)                                                                                                              | CO1,CO4           |  |  |

Introduction: Dry cell, alkaline battery, Ni-Cd battery,  $H_2O_2$  fuel cells, Lithium ion battery. Reference electrode (calomel electrode), ion selective electrode (combined glass electrode).

Conductometry: Introduction, conductometric titrations of acid versus base with titration curves (SA-SB).

pH metry: Introduction, standardization of pH meter, pH metric titration of strong acid versus strong base with titration curve.

UV-Visible Spectroscopy: Introduction, interaction of electromagnetic radiation with matter, statement of Beer's law and Lambert's law, different electronic transitions, terms involved in UV-visible Spectroscopy.

| Unit II | Fuels | (8hrs) | CO1, CO4, |
|---------|-------|--------|-----------|
|         |       |        | CO5       |

Introduction, classification, Calorific value (CV): Gross calorific value (GCV) and Net calorific value (NCV), Determination of Calorific value: Bomb calorimeter, Solid fuel: Coal: Analysis of Coal-Proximate and Ultimate analysis, Liquid fuel: Petroleum: Refining of petroleum, CNG, Hydrogen gas as a fuel. Alternative fuels: Power alcohol, biodiesel and Rocket propellants, Knocking in engines, octane number and cetane number.

| Unit | Introduction to Engineering Materials | (8hrs) | CO1, CO2 |
|------|---------------------------------------|--------|----------|
| III  |                                       |        |          |

Solid: crystalline and amorphous solids, Polymorphism, unit cell, crystal system-cubic, APF. Metallurgy-Ores and Minerals, Alloys- classification. Composition, woods metal, brass, Bronze, Tialloys. Preparation of alloys by fusion and powder method. Introduction of polymer: Terms- Speciality polymers: Introduction, structure, properties and applications of the polymers:

1. Bio-degradable polymers: Poly (hydroxybutyrate-hydroxyvalanate),

2. Conducting and doped conducting Polymer: Polyacetylene

3.Polymer Composite,

Nanomaterials: Introduction, definition, classification of nanomaterials based on dimensions, properties and general applications.

| Unit<br>IV | Analytical Aspects of Fluids | (8hrs) | CO1, CO2,<br>CO3, CO4, |
|------------|------------------------------|--------|------------------------|
|            |                              |        | CO5                    |

Properties of Fluids-Surface Tension, Capillary action, Viscosity, Vapour Pressure, Types of Fluid Liquid Fluid- Water and Oil

**Water:** hardness of water: Types, Determination of hardness by EDTA method, Chloride content in water by Mohr's method, Ill effects of hard water in boiler, External Treatment of water i) Zeolite method ii) Demineralization method. Purification of water: Reverse osmosis.

Oil: Aniline point, Flash Point, Fire point.

Gaseous fluids: Gas Sensors, Types of Gas sensors

| Unit V | Corrosion Science | (8hrs) | CO3, CO5 |
|--------|-------------------|--------|----------|
|        |                   |        |          |

Introduction, Types of corrosion – Dry and Wet corrosion, mechanism, nature of oxide films and Pilling-Bedworth's rule, hydrogen evolution and oxygen absorption, Factors influencing rate of corrosion. Methods of corrosion control: cathodic protection, Metallic coatings and its types, Galvanizing and Tinning, Electroplating, Powder coating.

#### **Text Books**

1. O .G. Palanna, "Engineering Chemistry", Tata Magraw Hill Education Pvt. Ltd.

2. Dr. S. S. Dara, Dr. S. S. Umare, "Textbook of Engineering Chemistry", S. Chand & Company Ltd.

# **Reference Books**

1. Wiley Editorial, "Engineering Chemistry", Wiley India Pvt.Ltd

2. Shriver and Atkins, "Inorganic Chemistry", 5ed, Oxford University Press,

3. S. M. Khopkar, "Basic Concept of Analytical Chemistry", 2ed, New Age-International Publisher

|     | Strength of CO-PO Mapping |   |   |   |   |   |   |   |   |    |    |    |
|-----|---------------------------|---|---|---|---|---|---|---|---|----|----|----|
|     | PO                        |   |   |   |   |   |   |   |   |    |    |    |
|     | 1                         | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| CO1 | 3                         | 1 |   |   |   |   |   |   |   |    |    | 2  |
| CO2 | 3                         | 1 |   |   |   | 2 |   |   |   |    |    | 2  |
| CO3 | 3                         | 1 |   |   |   | 1 | 1 |   |   |    |    | 2  |
| CO4 | 3                         | 1 | 1 |   |   | 1 | 2 |   |   |    |    | 2  |
| CO5 | 3                         | 1 | 1 |   |   | 1 | 2 |   |   |    |    | 2  |

| Guidelines for Continuous Comprehensive Evaluation of Theory Course |                                                    |                |  |
|---------------------------------------------------------------------|----------------------------------------------------|----------------|--|
| Sr. No.                                                             | Components for Continuous Comprehensive Evaluation | Marks Allotted |  |
| 1                                                                   | Assignment on Unit 1 & 2                           | 05             |  |
| 2                                                                   | Group presentations on Unit 3/4/5                  | 10             |  |
| 3                                                                   | LearnCo test on each unit                          | 05             |  |

| List of Laboratory Experiments / Assignments |                                                                                                              |                                              |  |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|
| Sr. No.                                      | Laboratory Experiments / Assignments                                                                         | CO<br>Mapped                                 |  |  |
| 1                                            | Daniel Cell                                                                                                  | CO1                                          |  |  |
| 2                                            | To determine strength of strong acid using conductometer.                                                    | CO2                                          |  |  |
| 3                                            | To determine maximum wavelength of absorption and find unknown concentration of given sample by colorimeter. | CO4                                          |  |  |
| 4                                            | Determine the calorific value of given solid fuel by using Bomb calorimeter.                                 | CO2                                          |  |  |
| 5                                            | Proximate analysis of coal.                                                                                  | CO5                                          |  |  |
| 6                                            | To determine hardness of water by EDTA method                                                                | CO4                                          |  |  |
| 7                                            | Estimation of chloride content by Mohr's method                                                              | CO4                                          |  |  |
| 8                                            | Estimation of Cu from given brass alloy                                                                      | CO4                                          |  |  |
| 9                                            | ECE - To coat copper and zinc on iron plate using electroplating.                                            | CO1                                          |  |  |
| 10                                           | Preparation of nanomaterials.                                                                                | CO1                                          |  |  |
| 11                                           | Preparation of biodiesel from oil.                                                                           | CO1                                          |  |  |
| 12                                           | To determine alkalinity of water                                                                             | CO5                                          |  |  |
|                                              | Guidelines for Laboratory Conduction                                                                         | <u>      I                              </u> |  |  |

1. Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.

2. Apparatus, chemicals, solutions and equipments required for given experiment will be provided by the lab assistants using SOP.

3. Students will perform the same experiment in a group (two students in each group) under the supervision of faculty and lab assistant. After performing the experiment students will check their readings, calculations from respective teacher.

# **Guidelines for Student's Lab Journal**

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

# **Guidelines for Term work Assessment**

Each experiment from lab journal is assessed for thirty marks based on three rubrics. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.



| F. Y. B. Tech. Pattern 2023<br>2300109A: Programming in C++                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               |                                    |                                                                                                                     |                          |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|
| Teaching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Teaching Scheme:     Credit     Examination Sch me:       Scheme:     Scheme: |                                    |                                                                                                                     |                          |  |  |
| Theory : 03hrs/week<br>Practical : 02hrs/week                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               | 3 1                                | Continuous Comprehensive<br>Evaluation: 20Marks<br>InSem Exam: 20Marks<br>EndSem Exam: 60Marks<br>TermWork: 50Marks |                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | isite Courses, if any: Compu                                                  |                                    |                                                                                                                     | ng                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dutcomes: On completion of                                                    | Course<br>Outcomes                 | will be able to-                                                                                                    | Bloom's Level            |  |  |
| CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | various computing roble                                                       | d Programming cor<br>ems using C++ | -                                                                                                                   | 2-Understand             |  |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                    | ility of a class                                                                                                    | 3-Apply                  |  |  |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                    |                                                                                                                     | 3-Apply                  |  |  |
| CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>CO4</b> Use template and e ception handling in a given problem             |                                    | ven problem                                                                                                         | 3-Apply                  |  |  |
| <b>CO5</b> Use files for developing a program                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               | a program                          |                                                                                                                     | 3-Apply                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               | COURSE<br>CONTENTS                 |                                                                                                                     |                          |  |  |
| Unit I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fundamentals of Object O<br>Programming                                       |                                    | (7hrs)                                                                                                              | COs Mapped –<br>CO1      |  |  |
| Introduction and Need of object-oriented programming (OOP), Fundamentals: objects, classes, characteristics of OOP, Benefits of OOP, C++ as object oriented programming la guage.<br><b>Abstraction mechanism</b> : Classes, objects, access specifiers (private, public, protected), constructors, destructors, member data, membe functions, Static members: variable and functions, inline function, friend function.<br>Self Study : C++ as extension of C - Comments, Global scoping operator |                                                                               |                                    |                                                                                                                     |                          |  |  |
| Unit II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Inheritance A                                                                 |                                    | (8hrs)                                                                                                              | COs Mapped –<br>CO1, CO2 |  |  |
| <b>Inheritance</b> : Class hierarchy, d rived classes, types of inheritance, constructor and destructor execution in inheritance, base initialization using derived class constructors, A biguity in Multiple Inheritance,, Virtual Base Class, bstract class, Friend Class, Nested Class Self Study : Class hierarchy with "IS - A" and "Has-a" relationships                                                                                                                                     |                                                                               |                                    |                                                                                                                     |                          |  |  |
| Unit<br>III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Polymorphism                                                                  |                                    | (7hrs)                                                                                                              | COs Mapped –<br>CO1, CO3 |  |  |

Introduction to Pointers: Introduction (Basic Concepts)

**Polymorphism**: Binding, Static binding, Dynamic binding, Static polymorphism: Function Overloading, Operator Overloading-Overloading Unary, Binary Operators.

**Dynamic (Run Time) Polymorphism**- Pointers to Base class, virtual function and its significance inC++, pure virtual function, abstract base class

| Unit | Generic Programming and Exception | (7hrs) | COs Mapped |
|------|-----------------------------------|--------|------------|
| IV   | handling                          |        | -CO1,CO4   |

**Templates**- The Power of Templates, Function template, overloading Function templates, and classtemplate, Generic Functions.

**Exception handling:** Fundamentals of error handling, try, catch, throw, Simple exception handlingexamples.

Self study : STL vector, list

| Unit V File handling | (7hrs) | COs Mapped |
|----------------------|--------|------------|
|                      |        | CO1, CO5   |

Data hierarchy, Stream and files, Stream Classes, Disk File I/O with Streams, File Pointers, File I/O with Member Functions.

Self Study : Formatted I/O, command line arguments

# **Text Books**

1.Deitel,"C++ How to Program", 4th Edition, Pearson Education, ISBN:81-297-0276-2 2.Robert Lafore, "Object-Oriented Programming in C++", 4<sup>th</sup> edition, Sams Publishing, ISBN:0672323087

3.E.Balagurusamy, "Object-Oriented Programming with C++", 7<sup>th</sup> edition, McGraw-Hill Publication, ISBN 10: 9352607996

Reference

**Books** 1. Herbert Schildt, "C++-The complete reference", 8<sup>th</sup> edition, McGraw Hill Professional, 2011, ISBN:978-00-72226805

2. Bjarne Stroustrup, "The C++ Programming Language", 4<sup>th</sup> edition, Addison-Wesley ISBN 978-

0321563842. May 2013

| List of Laboratory Assignments |                                                                          |        |  |  |
|--------------------------------|--------------------------------------------------------------------------|--------|--|--|
| Sr.                            | Laboratory                                                               | COs    |  |  |
| No.                            | Assignments                                                              | Mapped |  |  |
| 1                              | Write a C++ Program to display Names, employee_id, salary of 3           | CO1    |  |  |
|                                | employees.Declare the class of employee. Create an Array of class        |        |  |  |
|                                | objects. Read and                                                        |        |  |  |
|                                | display the contents of the array.                                       |        |  |  |
| 2                              | Write a C++ Program to Create class DM which stores the value of         | CO1    |  |  |
|                                | distances n meters and centimeters. Read values for the class objects    |        |  |  |
|                                | and add one object of DM with another object and find greater distance   |        |  |  |
|                                | from two objects. Use a friend function to carry out the addition        |        |  |  |
|                                | operation. The display should be in the format of meters and centimeters |        |  |  |

| 3       Write a C++ program to develop a program in C++ to create a database of a student's information system containing the following information: Name, Roll number, Class, Division, Date of Birth and Telephone number. Construct the database with suitable member functions. Make use of constructor, default constructor, copy constructor, destructor, count number.       CO1         4       Write a C++ program to create a base class Person (name and phone number). Derive Academic Performance (Degree, percentage) class from Person class. Display Biodata of the person.       CO1, CO2         5       Write a C++ program to implement a class Complex which represents the Complex Number data type. Implement the following       CO1, CO3         1.       Constructor (including a default constructor which creates the complex number 10-0i).       CO1, CO3         6       Write a C++ program to implement a class Complex numbers.       CO1, CO3         6       Write a C++ program to make operations for a publishing company which does marketing for book and audio cassette versions. Create a class publication that stores the title (a string) and price (type float) of publications.From this class derive two classes: book which adds a page count (type int) and tape which adds a playing time in minutes (type float).       CO1, CO3         7       Write a C++ program to Create a class template to represent generic vectors. Include following functions: To create a vector, To modify the value of given vector, Multiply vector by ascalar value, Display vector       CO1, CO4         8       Write a C++ program to Create a class of employees (data members name, DOB, mobile). Write a function to                                                                                                                                                                                                                                                                     |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 4       Write a C++ program to create a base class Person (name and phone number).<br>Derive Academic Performance (Degree, percentage) class from Person class. Display Biodata of the person.       CO1, CO2         5       Write a C++ program to implement a class Complex which represents the Complex Number data type. Implement the following       CO1, CO3         1       Constructor (including a default constructor which creates the complex Number data type. Implement the following       CO3         2       Overload operator+ to add two complex numbers.       CO4, CO3         6       Write a C++ program to make operations for a publishing company which does marketing for book and audio cassette versions. Create a class publication that stores the title (a string) and price (type float) of publications. From this class derive two classes: book which adds a page count (type int) and tape which adds a playing time in minutes (type float).       Write a program that instantiates the book and tape class, allows users to enter data and displays the data members. If an exception is caught, replace all the data member values with zero values. Use virtual functions:       CO1, CO4         7       Write a C++ program to Create a class to employees (data members name, DOB, mobile). Write a function to accept the data. e.g in DOB day value should be in between 1 to 31, month value should be in between 1 to 12 etc. Store and retrieve a data from the file.       CO4, CO4, CO4         Guidelines for Laboratory         Guidelines for Student's Lab Journal         Coto, so open source software is to be encouraged. <td< th=""><th>3</th><th>of astudent's information system containing the following information:<br/>Name, Roll number, Class, Division, Date of Birth and Telephone<br/>number. Construct the database with suitable member functions. Make<br/>use of constructor, default constructor, copy constructor, destructor,</th><th>CO1</th></td<> | 3                     | of astudent's information system containing the following information:<br>Name, Roll number, Class, Division, Date of Birth and Telephone<br>number. Construct the database with suitable member functions. Make<br>use of constructor, default constructor, copy constructor, destructor,                                                                                                                                                                                                                                                                                                                     | CO1          |
| humber).       CO2         Derive Academic Performance (Degree, percentage) class from Person class.Display Biodata of the person.       CO3         5       Write a C++ program to implement a class Complex which represents the complex number 0+0i).       CO3         1       CO4 operator* to add two complex numbers.       CO4         3       Overload operator* to add two complex numbers.       CO3         6       Write a C++ program to make operations for a publishing company which does marketing for book and audio cassette versions. Create a class publication that stores the title (a string) and price (type float) of publications. From this class derive two classes: book which adds a page count (type int) and tape which adds a playing time in minutes (type float).       CO3         7       Write a C++ program to Create a class template to represent generic vectors. Include following functions: To create a vector, To modify the value of given vector, Multiply vector by ascalar value, Display vector       CO4         7       Write a C++ program to Create a class of employees (data members to enter data and display the value of given vector, Multiply vector by ascalar value, Display vector       CO4         8       Write a C++ program to Zeeption handling while accepting the data. e.g in DOB day value should be in between 1 to 3.1, month value should be in between 1 to 3.4, month value should be in between 1 to 3.4, month value should be in between 1 to 3.4, month value should be in between 1 to 3.4, month value should be in between 1 to 3.4, month value should be in between 1 to 3.4, month value should be in between 1 to 3.4, month value should b                                                                                                                                                                                                                                                                                              |                       | of students                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| 5       Write a C++ program to implement a class Complex which represents the Complex Number data type. Implement the following       CO1,         1.       Constructor (including a default constructor which creates the complex number 0+0i).       CO3         2.       Overload operator+ to add two complex numbers.       CO1,         3.       Overload operator+ to multiply two complex numbers.       CO1,         6       Write a C++ program to make operations for a publishing company which does marketing for book and audio cassette versions. Create a class publication that stores the title (a string) and price (type float) of publications. From this class derive two classes: book which adds a page count (type int) and tape which adds a playing time in minutes (type float).       CO1,         Write a program that instantiates the book and tape class, allows users to enter data and displays the data members. If an exception is caught, replace all the data member values with zero values. Use virtual functions:       CO1,         7       Write a C++ program to Create a class template to represent generic vectors. Include following functions:       CO1,         70       Write a C++ program to Create a class of employees (data members name, DOB, mobile). Write a function to accept the data and display the information. Use exception handling while accepting the data. e.g in DOB day value should be in between 1 to 31, month value should be in between 1 to 12 etc. Store and retrieve a data from the file.       CO1,         Guidelines for Laboratory Conduction                                                                                                                                                                                                                                                                                                                                                                                                 | 4                     | number).<br>Derive Academic Performance (Degree, percentage) class from Person                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| theComplex Number data type. Implement the following       CO3         1. Constructor (including a default constructor which creates the complexnumber 0+0i).       CO3         2. Overload operator+ to add two complex numbers.       CO4         3. Overload operator* to multiply two complex numbers.       CO3         6       Write a C++ program to make operations for a publishing company which does marketing for book and audio cassette versions. Create a class publications.From this class derive two classes: book which adds a page count (type int) and tape which adds a playing time in minutes (type float).       CO1,         7       Write a program that instantiates the book and tape class, allows users to enter data and displays the data members. If an exception is caught, replace all the data member values with zero values. Use virtual functions.       CO1,         7       Write a C++ program to Create a class template to represent generic vectors.Include following functions:       CO4         8       Write a C++ program to Create a class of employees (data members name, DOB, mobile). Write a function to accept the data and display the information. Use exception handling while accepting the data. e.gin DOB day value should be in between 1 to 31, month value should be in between 1 to 31, month value should be in between 1 to 21 etc. Store and retrieve a data from the file.       CO4         Guidelines for Laboratory Conduction         DOB day value should be in between 1 to 31, month value should be in between 1 to 12 etc. Store and retrieve a data from the file.         Guidelines for                                                                                                                                                                                                                                                                                                                                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~ ~ .        |
| 6       Write a C++ program to make operations for a publishing company which does marketing for book and audio cassette versions. Create a class publication that stores the title (a string) and price (type float) of publications.From this class derive two classes: book which adds a page count (type int) and tape which adds a playing time in minutes (type float).       CO1,         Write a program that instantiates the book and tape class, allows users to enter data and displays the data members. If an exception is caught, replace all the data member values with zero values. Use virtual functions       CO1,         7       Write a C++ program to Create a class template to represent generic vectors. Include following functions:       CO1,         8       Write a C++ program to Create a class of employees (data members name, DOB, mobile). Write a function to accept the data and display the information. Use exception handling while accepting the data. e.g in DOB day value should be in between 1 to 31, month value should be in between 1 to 12 etc. Store and retrieve a data from the file.       CO4,         Guidelines for Laboratory Conduction         Jest of coding standards and Hungarian notation, proper indentation and comments. Use of open source software is to be encouraged.         Operating System recommended: - Linux or its derivative Program to a sjonrmal. Journa consists of Certificate, table of contents, and handwritten write-up of each assignment (Title problem statement, theory Concepts in brief, algorithm, flowchart, test cases and conclusions). Program codes with sample outputs shall be submitted in soft form.                                                                                                                                                                                                                                                                                                                       | 5                     | <ul> <li>theComplex Number data type. Implement the following</li> <li>1. Constructor (including a default constructor which creates the complexnumber 0+0i).</li> <li>2. Overload operator+ to add two complex numbers.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                            | ,            |
| vectors. Include following functions:       CO4         To create a vector, To modify the value of given vector, Multiply vector       CO4         8       Write a C++ program to Create a class of employees (data members name, DOB, mobile). Write a function to accept the data and display the information. Use exception handling while accepting the data. e.g in DOB day value should be in between 1 to 31, month value should be in between 1 to 12 etc. Store and retrieve a data from the file.       CO4, CO5         Guidelines for Laboratory Conduction         Use of coding standards and Hungarian notation, proper indentation and comments. Use of open source software is to be encouraged.         Operating System recommended: - Dipen Source line g++       Guidelines for Student's Lab Journal         The laboratory assignments are to be submitted by students in the form of a journal. Journa consists of Certificate, table of contents, and handwritten write-up of each assignment (Title problem statement, theory Concepts in brief, algorithm, flowchart, test cases and conclusions). Program codes with sample outputs shall be submitted in soft form.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                     | Write a C++ program to make operations for a publishing company<br>which does marketing for book and audio cassette versions. Create a<br>class publication that stores the title (a string) and price (type float) of<br>publications.From this class derive two classes: book which adds a page<br>count (type int) and tape which adds a playing time in minutes (type<br>float).<br>Write a program that instantiates the book and tape class, allows users<br>to enter data and displays the data members. If an exception is caught,<br>replace all the data member values with zero values. Use virtual | /            |
| 8       Write a C++ program to Create a class of employees (data members name, DOB, mobile). Write a function to accept the data and display the information. Use exception handling while accepting the data. e.g in DOB day value should be in between 1 to 31, month value should be in between 1 to 12 etc. Store and retrieve a data from the file.       CO4,         Guidelines for Laboratory Conduction         Use of coding standards and Hungarian notation, proper indentation and comments. Use of open source software is to be encouraged.         Operating System recommended: - Linux or its derivative       Programming tools recommended: - Open Source line g++         Guidelines for Student's Lab Journal         The laboratory assignments are to be submitted by students in the form of a journal. Journa consists of Certificate, table of contents, and handwritten write-up of each assignment (Title problem statement, theory Concepts in brief, algorithm, flowchart, test cases and conclusions). Program codes with sample outputs shall be submitted in soft form.         Guidelines for Term work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                     | Write a C++ program to Create a class template to represent generic vectors.Include following functions:<br>To create a vector, To modify the value of given vector, Multiply vector                                                                                                                                                                                                                                                                                                                                                                                                                           | ,            |
| Guidelines for Laboratory<br>Conduction         Use of coding standards and Hungarian notation, proper indentation and<br>comments.Use of open source software is to be encouraged.         Operating System recommended:- Linux or its derivative         Programming tools recommended: - Open Source line g++         Guidelines for Student's Lab Journal         The laboratory assignments are to be submitted by students in the form of a journal. Journa<br>consists of Certificate, table of contents, and handwritten write-up of each assignment (Title<br>problem statement, theory Concepts in brief, algorithm, flowchart, test cases and<br>conclusions). Program codes with sample outputs shall be submitted in soft form.         Guidelines for Term work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                     | Write a C++ program to Create a class of employees (data members<br>name, DOB, mobile). Write a function to accept the data and display<br>the information. Use exception handling while accepting the data. e.g in<br>DOB day value should be in between 1 to 31, month value should be in                                                                                                                                                                                                                                                                                                                    | CO4,         |
| Conduction         Use of coding standards and Hungarian notation, proper indentation and comments. Use of open source software is to be encouraged.         Operating System recommended:- Linux or its derivative         Programming tools recommended: - Open Source line g++         Guidelines for Student's Lab Journal         The laboratory assignments are to be submitted by students in the form of a journal. Journa consists of Certificate, table of contents, and handwritten write-up of each assignment (Title problem statement, theory Concepts in brief, algorithm, flowchart, test cases and conclusions). Program codes with sample outputs shall be submitted in soft form.         Guidelines for Term work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Comments.Use of open source software is to be encouraged.<br>Operating System recommended: - Linux or its derivative<br>Programming tools recommended: - Open Source line g++<br>Guidelines for Student's Lab Journal<br>The laboratory assignments are to be submitted by students in the form of a journal. Journa<br>consists of Certificate, table of contents, and handwritten write-up of each assignment (Title<br>problem statement, theory Concepts in brief, algorithm, flowchart, test cases and<br>conclusions). Program codes with sample outputs shall be submitted in soft form.<br>Guidelines for Term work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Guidelines for Student's Lab Journal<br>The laboratory assignments are to be submitted by students in the form of a journal. Journa<br>consists of Certificate, table of contents, and handwritten write-up of each assignment (Title<br>problem statement, theory Concepts in brief, algorithm, flowchart, test cases and<br>conclusions). Program codes with sample outputs shall be submitted in soft form.<br>Guidelines for Term work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | comment<br>Operating  | oding standards and Hungarian notation, proper indentation and<br>s.Use of open source software is to be encouraged.<br>g System recommended:- Linux or its derivative                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| consists of Certificate, table of contents, and handwritten write-up of each assignment (Title<br>problem statement, theory Concepts in brief, algorithm, flowchart, test cases and<br>conclusions). Program codes with sample outputs shall be submitted in soft form.<br>Guidelines for Term work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       | Guidelines for Student's Lab Journal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| Guidelines for Term work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | consists o<br>problem | of Certificate, table of contents, and handwritten write-up of each assignment statement, theory Concepts in brief, algorithm, flowchart, test                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nent (Title, |
| Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |

# Assessment

Continuous assessment of laboratory work shall be based on overall performance of a student. Assessment of each laboratory assignment shall be based on rubrics that include R1- timely completion (10), R2- understanding of assignment (10) and R3- presentation/clarity of journal writing (10).



# K.K.Wagh Institute of Engineering Education and Research, Nashik. (Autonomous from Academic Year 2022-23)

|                                                                                    |                                                                                                                                  | F. Y. B. Tech.              |                      |        |                                           |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|--------|-------------------------------------------|
| Pattern 2023                                                                       |                                                                                                                                  |                             |                      |        |                                           |
| Taashir                                                                            |                                                                                                                                  | 00110A: Engineering Dr      |                      |        |                                           |
|                                                                                    | ing Scheme:         Credit Scheme:         Examination Scheme:           011         1         5         5         20M         1 |                             |                      |        |                                           |
| Theory:01hr/week01In-Sem Exam: 20MarksPractical: 02hrs/week01End-Sem Exam: 30Marks |                                                                                                                                  |                             |                      |        |                                           |
| Practical: 02hrs/week 01 End-Sem Exam: 30M<br>Term Work: 50 Mark                   |                                                                                                                                  |                             |                      |        |                                           |
| Prereau                                                                            | isite Courses: -                                                                                                                 |                             |                      | viai . | K)                                        |
| -                                                                                  | Objectives:                                                                                                                      |                             |                      |        |                                           |
|                                                                                    | in the fundamental concepts                                                                                                      | of engineering drawing      | and its standards.   |        |                                           |
| -                                                                                  | ove visualization skills of ph                                                                                                   |                             |                      |        |                                           |
| -                                                                                  | op interpretation and drawin                                                                                                     |                             | omputerized graphic  | cal te | echniques.                                |
|                                                                                    | <b>Dutcomes:</b> On completion of                                                                                                |                             |                      |        | •                                         |
| COs                                                                                |                                                                                                                                  | Course Outcomes             |                      |        | <b>Bloom's Level</b>                      |
| CO1                                                                                | Explain the need of en                                                                                                           | gineering drawing and its   | s standards.         |        | 2-Understand                              |
| CO2                                                                                |                                                                                                                                  | lrawing by visualization.   |                      |        | 2-Understand                              |
| CO3                                                                                | Draw projections of 2                                                                                                            | D and 3D objects.           |                      |        | 3-Apply                                   |
| CO4                                                                                | Apply manual and cor problems.                                                                                                   | nputerized graphical tool   | s to solve practical |        | 3-Apply                                   |
|                                                                                    |                                                                                                                                  | COURSE CONTENT              | S                    |        |                                           |
| Unit I                                                                             | Projections of a l                                                                                                               | Point and Line              | (03hrs)              |        | )s Mapped –<br>)2, CO4                    |
| Projectio                                                                          | ns of a point, projections of                                                                                                    | a line located in first qua | drant only.          |        |                                           |
| Unit II                                                                            | Projections                                                                                                                      | of Plane                    | ( <b>02hrs</b> )     |        | <b>Ds Mapped –</b><br><b>D2, CO3, CO4</b> |
| Types of                                                                           | planes, projections of plane                                                                                                     | inclined to both the refer  | rence planes         |        |                                           |
| Unit<br>III                                                                        | Orthographic                                                                                                                     | Projections                 | (03hrs)              |        | Ds Mapped -<br>D1, CO2, CO3,<br>D4        |
| basic rul                                                                          | of projections, types of proj<br>es of orthographic projection<br>nd machine elements/parts.                                     | on, orthographic and sect   | tional orthographic  | proj   | ection of simple                          |
| Unit<br>IV                                                                         | Isometric Pi                                                                                                                     | rojections                  | (02hrs)              |        | Ds Mapped –<br>D2, CO3, CO4               |
|                                                                                    | tion to isometric projection a phic views. Applications of                                                                       |                             |                      | c vie  | ew from given                             |
| Unit V                                                                             | Development of Lateral<br>Introduction to Comp                                                                                   |                             | (03hrs)              |        | )s Mapped -<br>)1, CO2, CO3,<br>)4        |
| developn                                                                           | f solids, projection of solid<br>nent and radial line develop<br>on and pyramid. Introductio                                     | oment. Development of s     | simple solids like c | one,   | cylinder, prism,                          |

#### TextBooks

1. Bhatt, N. D. and Panchal, V. M., (2016), "Engineering Drawing", Charotar Publication, Anand, India 2.Jolhe, D. A., (2015), "Engineering Drawing with introduction to AutoCAD", Tata McGraw Hill, New Delhi

#### **Reference Books**

1. Bhatt, N. D., "Machine Drawing", Charotar Publishing house, Anand, India.

|   | Strength of CO-PO Mapping |   |    |   |   |   |   |   |   |   |    |    |    |
|---|---------------------------|---|----|---|---|---|---|---|---|---|----|----|----|
|   |                           |   | РО |   |   |   |   |   |   |   |    |    |    |
|   |                           | 1 | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|   | CO1                       | 2 |    |   |   |   |   |   |   |   |    |    | 1  |
|   | CO2                       | 2 |    |   |   |   |   |   |   |   | 1  |    | 1  |
|   | CO3                       | 2 |    |   |   | 2 |   |   |   |   | 1  |    | 1  |
|   | CO4                       | 2 |    |   |   | 2 |   |   |   |   | 1  |    | 1  |
| A | Average                   | 2 |    |   |   | 2 |   |   |   |   | 1  |    | 1  |

|                    | List of Laboratory Assignments                                                               |                       |
|--------------------|----------------------------------------------------------------------------------------------|-----------------------|
| Sr. No.            | Laboratory Assignments                                                                       | CO Mapped             |
| 1                  | Projection of lines and Projection of Planes (One problem each)                              | CO2, CO3, CO4         |
| 2                  | Orthographic Projection of given objects including sectional view. (Two Problems)            | CO1, CO2,<br>CO3, CO4 |
| 3                  | Isometric view / projection for the given set of two-dimensional<br>views.<br>(Two Problems) | CO2, CO3, CO4         |
| 4                  | Development of Lateral Surfaces of solids. (Two Problems)                                    | CO1, CO2,<br>CO3, CO4 |
| 5                  | Orthographic Projection of given object using any drafting software (One Problem)            | CO1, CO2,<br>CO3, CO4 |
| 6                  | Isometric view / projection of given object using any drafting software (One Problem)        | CO2, CO3, CO4         |
|                    | <b>Guidelines for Laboratory Conduction</b>                                                  |                       |
| Students           | will solve six laboratory assignments on A2 size drawing sheet.                              |                       |
|                    | Guidelines for Tutorial Conduction                                                           |                       |
| Students           | will solve four tutorial assignments by using any drafting software.                         |                       |
| Drawing            | limits for all drawings to be made in drafting software should be set                        | t to A2 Size.         |
| At the en faculty. | d of semester students shall submit all soft copies of all assignments                       | s to a concerned      |

**Guidelines for Termwork and Tutorial Assessment** 

Each laboratory and tutorial assignments will be assessed for 30 Marks according to following rubrics:

R1- Timely completion of assignments (10 Marks)

R2- Understanding of assignment (10 Marks)

R3 – Presentation/Clarity of journal writing (10 Marks)

For all six drawing sheets total marks of 180 will be converted into 25 Marks.

For all four tutorial assignments total marks of 120 will be converted into 25 marks.



| F Y B Tech (E&TC Branch)<br>Pattern 2023 Semester: I<br>2300118E: Electrical Networks                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                         |                          |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------|--------------------------|--|--|--|--|
| Teachi                                                                                                                                                                                                                                                                                                   | ng Scheme:                                                                                                                                                                                                                                                                                                                                                  | Credit Scheme:                                                                                      | <b>Examination Sche</b> | me:                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                          | y :02 hrs/week                                                                                                                                                                                                                                                                                                                                              | 02Continuous Comprehensive<br>Evaluation: 20 Marks<br>InSem Exam: 20 Marks<br>EndSem Exam: 60 Marks |                         |                          |  |  |  |  |
| Prerequisite Courses, if any: -Physics and Mathematics                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                         |                          |  |  |  |  |
| Compa                                                                                                                                                                                                                                                                                                    | Companion course, if any: Lab work in Electronic Maintenance and Troubleshooting                                                                                                                                                                                                                                                                            |                                                                                                     |                         |                          |  |  |  |  |
| 1. Netw<br>2. RL,<br>3. Two                                                                                                                                                                                                                                                                              | e <b>Objectives:</b> To make the<br>vork Theorem.<br>RC and RLC circuits<br>port networks<br>e <b>Outcomes:</b> On complete                                                                                                                                                                                                                                 |                                                                                                     | nts will be able to-    |                          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                          | Course Outcomes                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                         | Bloom's<br>Level         |  |  |  |  |
| CO<br>1                                                                                                                                                                                                                                                                                                  | Apply Thevenin's and Norton's theorems to analyze and design for maximum power transfer.                                                                                                                                                                                                                                                                    |                                                                                                     |                         | 2-Understand             |  |  |  |  |
| CO<br>2                                                                                                                                                                                                                                                                                                  | Evaluate the performance application of Laplace t                                                                                                                                                                                                                                                                                                           | 2-Understand                                                                                        |                         |                          |  |  |  |  |
| CO<br>3                                                                                                                                                                                                                                                                                                  | Analyze the given network parameters                                                                                                                                                                                                                                                                                                                        |                                                                                                     | port network            | 3-Apply                  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                             | COURSE CONTI                                                                                        | ENTS                    |                          |  |  |  |  |
| Unit<br>I                                                                                                                                                                                                                                                                                                | DC Circuits                                                                                                                                                                                                                                                                                                                                                 |                                                                                                     | (07 hrs)                | COs Mapped -<br>CO1      |  |  |  |  |
| equation circuits.                                                                                                                                                                                                                                                                                       | Types of Networks – Sources transformation – Star – Delta transformation – formation of matrix equation and analysis of circuits using mesh current and Nodal voltage method for DC and AC circuits. Superposition, and Thevenin's theorem, Norton's theorem, reciprocity. Sinusoidal steady state analysis: phasors, complex power, maximum power transfer |                                                                                                     |                         |                          |  |  |  |  |
| Unit<br>II                                                                                                                                                                                                                                                                                               | AC Circuits                                                                                                                                                                                                                                                                                                                                                 | COs Mapped -<br>CO1                                                                                 |                         |                          |  |  |  |  |
| Representation of sinusoidal waveforms, peak and RMS values, Phasor representations, real power, reactive power, apparent power, power factor, analysis of single-phase AC circuits consisting of pure R, L, C, series R-L, R-C, R-L-C combinations, parallel AC circuit, series, and parallel resonance |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                         |                          |  |  |  |  |
| Unit<br>III                                                                                                                                                                                                                                                                                              | Laplace Transform     (08 hrs)                                                                                                                                                                                                                                                                                                                              |                                                                                                     |                         | COs Mapped -<br>CO1, CO2 |  |  |  |  |
| analysis                                                                                                                                                                                                                                                                                                 | Laplace transforms and properties: Partial fraction, singularity functions, waveform synthesis, analysis of RC, RL, and RLC networks with and without initial conditions with Laplace transforms evaluation of initial conditions                                                                                                                           |                                                                                                     |                         |                          |  |  |  |  |
| Unit<br>IV                                                                                                                                                                                                                                                                                               | Linear 2-port networ                                                                                                                                                                                                                                                                                                                                        | k parameters                                                                                        | (08hrs)                 | COs mapped -             |  |  |  |  |

Two Port networks: Two port parameters, short circuit admittance parameter, open circuit impedance parameters, Transmission parameters, Image parameters and Hybrid parameters. Ideal two port devices, ideal transformer.

### **Text Books**

1. B.L. Theraja, A. K. Theraja, "A Textbook of Electrical Technology" - Volume I: Basic Electrical Engineering: Part 1 and 2. S Chand Publication.

2. D Roy Chaudhuri: Networks and Systems, New Age Publishers.

#### **Reference Books**

- 1. D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 2. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
- 3. H. Cotton, "Electrical Technology", 7th Edition, CBS Publications and distributors.



|                        |                                                                                | F. Y. B. Tech. (<br>Pattern 2023 Ser<br>2300117E: PCB | mester: II                                                |                     |  |  |
|------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|---------------------|--|--|
| Teach                  | ing Scheme:                                                                    | Credit Scheme:                                        | Examination Scheme                                        | :                   |  |  |
|                        | y :01hrs/week<br>cal : 02 hrs/week                                             | 01<br>01                                              | Continuous Comprel<br>Evaluation: 25 Mark<br>TW: 25 Marks |                     |  |  |
| Prerec                 | quisite Courses, if an                                                         | y: -Fundamentals of Elec                              | ctronics Engineering                                      |                     |  |  |
| Comp                   | anion course, if any:                                                          | Lab work in PCB Makir                                 | g                                                         |                     |  |  |
| 8.<br>9.<br>10.<br>11. | To study PCB design<br>To design PCB layou<br>To fabricate PCB                 | bes of electronic components tools.                   |                                                           |                     |  |  |
|                        | Course Outcomes Bloom's<br>Level                                               |                                                       |                                                           |                     |  |  |
| CO<br>1                | Understand PCB designing basics 2-Understand                                   |                                                       |                                                           |                     |  |  |
| CO<br>2                | Study different types of electronic components       2-Understand              |                                                       |                                                           |                     |  |  |
| CO<br>3                | Study different PCB                                                            | design tools                                          |                                                           | 3-Apply             |  |  |
| CO<br>4                | Apply software used                                                            | l in PCB Design                                       |                                                           | 3-Apply             |  |  |
| CO<br>5                | Fabricate PCB                                                                  |                                                       |                                                           | 3-Apply             |  |  |
|                        |                                                                                | COURSE CON                                            | TENTS                                                     |                     |  |  |
| Unit<br>I              | Introduction to concepts                                                       | PCB designing                                         | (06 hrs)                                                  | COs Mapped -<br>CO1 |  |  |
| Introdu                | uction & Brief History                                                         |                                                       |                                                           |                     |  |  |
|                        | What is PCB<br>Difference between PV<br>Types of PCBs: Single<br>PCB Materials | VB and PCB<br>Sided (Single Layer), Mul               | ti-Layer (Double Layer)                                   |                     |  |  |
| Intro                  | duction to Electro                                                             | nic design Automatio                                  | on (EDA)                                                  |                     |  |  |

| <ul><li>La</li><li>H</li><li>D</li></ul>                                                          | rief History of EDA                                                                                                                                                                                                                                                                                                                                               |                       |                         |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------|--|--|--|--|--|
| □ H<br>□ D                                                                                        |                                                                                                                                                                                                                                                                                                                                                                   |                       |                         |  |  |  |  |  |
| D                                                                                                 | atest Trends in Market                                                                                                                                                                                                                                                                                                                                            |                       |                         |  |  |  |  |  |
|                                                                                                   | ow it helps and Why it requires ifferent EDA tools                                                                                                                                                                                                                                                                                                                |                       |                         |  |  |  |  |  |
| Introduction to SPICE and PSPICE Environment                                                      |                                                                                                                                                                                                                                                                                                                                                                   |                       |                         |  |  |  |  |  |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                   |                       |                         |  |  |  |  |  |
| In                                                                                                | troduction and Working of PROTEUS                                                                                                                                                                                                                                                                                                                                 |                       |                         |  |  |  |  |  |
| Unit                                                                                              | Component introduction and their                                                                                                                                                                                                                                                                                                                                  | (07 hrs)              | COs Mapped -            |  |  |  |  |  |
| II                                                                                                | categories                                                                                                                                                                                                                                                                                                                                                        | (07 ms)               | CO2                     |  |  |  |  |  |
|                                                                                                   | component                                                                                                                                                                                                                                                                                                                                                         |                       |                         |  |  |  |  |  |
| Active con                                                                                        | mponent: Diode, Transistor, MOSFET, LCD, SCR.                                                                                                                                                                                                                                                                                                                     | Integrated Circuits ( | (ICs)                   |  |  |  |  |  |
|                                                                                                   | omponent: Resistor, Capacitor, Inductor, Transforme                                                                                                                                                                                                                                                                                                               |                       |                         |  |  |  |  |  |
|                                                                                                   | ent Package Types: Through Hole Packages: Axial                                                                                                                                                                                                                                                                                                                   | lead, Radial lead, Si | ingle inline package    |  |  |  |  |  |
|                                                                                                   | ansistor outline (TO), Pin Grid Array (PGA)                                                                                                                                                                                                                                                                                                                       |                       |                         |  |  |  |  |  |
| •                                                                                                 | Hole Package: Metal Electrode Face(MELE), Leadle                                                                                                                                                                                                                                                                                                                  | · ·                   |                         |  |  |  |  |  |
| •                                                                                                 | circuits (SOIC), Quad Flat Pack (QPF), and Thin Q                                                                                                                                                                                                                                                                                                                 | QFP (TQFP), Ball Gi   | nd Array (BGA), Plastic |  |  |  |  |  |
| Leaded Ci                                                                                         | hip Carrier (PLCC)                                                                                                                                                                                                                                                                                                                                                |                       |                         |  |  |  |  |  |
| Unit                                                                                              | Introduction to Development Tools                                                                                                                                                                                                                                                                                                                                 | (08 hrs)              | COs Mapped –            |  |  |  |  |  |
| III                                                                                               | introduction to Development 10015                                                                                                                                                                                                                                                                                                                                 | (00 1113)             | CO3                     |  |  |  |  |  |
|                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                   |                       | 005                     |  |  |  |  |  |
|                                                                                                   | troduction to PCB Design using OrCAD tool                                                                                                                                                                                                                                                                                                                         |                       |                         |  |  |  |  |  |
| □ In                                                                                              | troduction to PCB Design using PROTEUS tool                                                                                                                                                                                                                                                                                                                       |                       |                         |  |  |  |  |  |
| Unit                                                                                              | Detailed description and practical of PCB                                                                                                                                                                                                                                                                                                                         | (07 hrs)              | COs Mapped -            |  |  |  |  |  |
| IV                                                                                                | designing                                                                                                                                                                                                                                                                                                                                                         | (07 1115)             | CO3, CO4                |  |  |  |  |  |
|                                                                                                   | ning Flow Chart                                                                                                                                                                                                                                                                                                                                                   |                       |                         |  |  |  |  |  |
| 0                                                                                                 | nematic Entry                                                                                                                                                                                                                                                                                                                                                     |                       |                         |  |  |  |  |  |
| • Net                                                                                             | tListing                                                                                                                                                                                                                                                                                                                                                          |                       |                         |  |  |  |  |  |
| • PC                                                                                              | B Layout Designing                                                                                                                                                                                                                                                                                                                                                |                       |                         |  |  |  |  |  |
| • Pro                                                                                             | ototype Designing                                                                                                                                                                                                                                                                                                                                                 |                       |                         |  |  |  |  |  |
|                                                                                                   | • Design Rule Check (DRC)                                                                                                                                                                                                                                                                                                                                         |                       |                         |  |  |  |  |  |
|                                                                                                   | • Design for Manufacturing (DFM)                                                                                                                                                                                                                                                                                                                                  |                       |                         |  |  |  |  |  |
| ● PC                                                                                              | B Making                                                                                                                                                                                                                                                                                                                                                          |                       |                         |  |  |  |  |  |
| • 10                                                                                              | • Printing                                                                                                                                                                                                                                                                                                                                                        |                       |                         |  |  |  |  |  |
| • 10.                                                                                             |                                                                                                                                                                                                                                                                                                                                                                   |                       |                         |  |  |  |  |  |
| • 10                                                                                              | • Etching                                                                                                                                                                                                                                                                                                                                                         |                       |                         |  |  |  |  |  |
|                                                                                                   | • Drilling                                                                                                                                                                                                                                                                                                                                                        |                       |                         |  |  |  |  |  |
| • Ass                                                                                             | • Drilling<br>sembly of component                                                                                                                                                                                                                                                                                                                                 |                       |                         |  |  |  |  |  |
| • Ass<br>Descriptio                                                                               | • Drilling<br>sembly of component<br>n of PCB Layers                                                                                                                                                                                                                                                                                                              |                       |                         |  |  |  |  |  |
| • Ass<br>Descriptio                                                                               | <ul> <li>Drilling</li> <li>sembly of component</li> <li>n of PCB Layers</li> <li>ectrical Layers</li> </ul>                                                                                                                                                                                                                                                       |                       |                         |  |  |  |  |  |
| • Ass<br>Descriptio                                                                               | <ul> <li>Drilling</li> <li>sembly of component</li> <li>n of PCB Layers</li> <li>ectrical Layers</li> <li>Top layer</li> </ul>                                                                                                                                                                                                                                    |                       |                         |  |  |  |  |  |
| • Ass<br>Descriptio                                                                               | <ul> <li>Drilling</li> <li>sembly of component</li> <li>on of PCB Layers</li> <li>ectrical Layers</li> <li>Top layer</li> <li>Mid layer</li> </ul>                                                                                                                                                                                                                |                       |                         |  |  |  |  |  |
| <ul><li>Ass</li><li>Descriptio</li><li>Ele</li></ul>                                              | <ul> <li>Drilling</li> <li>sembly of component</li> <li>n of PCB Layers</li> <li>ectrical Layers</li> <li>Top layer</li> <li>Mid layer</li> <li>Bottom layer</li> </ul>                                                                                                                                                                                           |                       |                         |  |  |  |  |  |
| <ul><li>Ass</li><li>Descriptio</li><li>Ele</li></ul>                                              | <ul> <li>Drilling</li> <li>sembly of component</li> <li>on of PCB Layers</li> <li>ectrical Layers</li> <li>Top layer</li> <li>Mid layer</li> </ul>                                                                                                                                                                                                                |                       |                         |  |  |  |  |  |
| <ul><li>Ass</li><li>Descriptio</li><li>Ele</li></ul>                                              | <ul> <li>Drilling</li> <li>sembly of component</li> <li>n of PCB Layers</li> <li>ectrical Layers</li> <li>Top layer</li> <li>Mid layer</li> <li>Bottom layer</li> <li>echanical layers</li> </ul>                                                                                                                                                                 |                       |                         |  |  |  |  |  |
| <ul> <li>Ass</li> <li>Descriptio</li> <li>Ele</li> <li>Me</li> </ul>                              | <ul> <li>Drilling</li> <li>sembly of component</li> <li>n of PCB Layers</li> <li>ectrical Layers</li> <li>Top layer</li> <li>Mid layer</li> <li>Bottom layer</li> <li>echanical layers</li> <li>Board outlines and cutouts</li> <li>Drill details</li> </ul>                                                                                                      |                       |                         |  |  |  |  |  |
| <ul> <li>Ass</li> <li>Descriptio</li> <li>Ele</li> <li>Me</li> </ul>                              | <ul> <li>Drilling</li> <li>sembly of component</li> <li>n of PCB Layers</li> <li>ectrical Layers</li> <li>Top layer</li> <li>Mid layer</li> <li>Bottom layer</li> <li>echanical layers</li> <li>Board outlines and cutouts</li> <li>Drill details</li> <li>ocumentation layers</li> </ul>                                                                         |                       |                         |  |  |  |  |  |
| <ul> <li>Ass</li> <li>Descriptio</li> <li>Ele</li> <li>Me</li> </ul>                              | <ul> <li>Drilling</li> <li>sembly of component</li> <li>n of PCB Layers</li> <li>ectrical Layers</li> <li>Top layer</li> <li>Mid layer</li> <li>Bottom layer</li> <li>echanical layers</li> <li>Board outlines and cutouts</li> <li>Drill details</li> <li>cumentation layers</li> <li>Component outlines</li> </ul>                                              |                       |                         |  |  |  |  |  |
| <ul> <li>Ass</li> <li>Descriptio</li> <li>Ele</li> <li>Me</li> </ul>                              | <ul> <li>Drilling</li> <li>sembly of component</li> <li>n of PCB Layers</li> <li>ectrical Layers</li> <li>Top layer</li> <li>Mid layer</li> <li>Bottom layer</li> <li>echanical layers</li> <li>Board outlines and cutouts</li> <li>Drill details</li> <li>cumentation layers</li> <li>Component outlines</li> </ul>                                              |                       |                         |  |  |  |  |  |
| <ul> <li>Ass</li> <li>Descriptio</li> <li>Ele</li> <li>Me</li> <li>Do</li> </ul>                  | <ul> <li>Drilling</li> <li>sembly of component</li> <li>n of PCB Layers</li> <li>ectrical Layers</li> <li>Top layer</li> <li>Mid layer</li> <li>Bottom layer</li> <li>echanical layers</li> <li>Board outlines and cutouts</li> <li>Drill details</li> <li>cumentation layers</li> <li>Component outlines</li> <li>Reference designation</li> <li>Text</li> </ul> |                       |                         |  |  |  |  |  |
| <ul> <li>Ass</li> <li>Descriptio</li> <li>Ele</li> <li>Me</li> <li>Do</li> <li>Keyword</li> </ul> | <ul> <li>Drilling</li> <li>sembly of component</li> <li>n of PCB Layers</li> <li>ectrical Layers</li> <li>Top layer</li> <li>Mid layer</li> <li>Bottom layer</li> <li>echanical layers</li> <li>Board outlines and cutouts</li> <li>Drill details</li> <li>cumentation layers</li> <li>Component outlines</li> <li>Reference designation</li> </ul>               |                       |                         |  |  |  |  |  |

- Pad stacks
- Vias
- Tracks
- Color of Layers
- PCB Track size calculation formula

PCB Material

- Standard FR-4 Epoxy Glass
- Multifunctional FR-4
- Tetra Function FR-4
- NelcoN400-6
- GETEK
- BT Epoxy Glass
- Cyanate Aster
- Plyimide Glass
- Teflon

#### Rules for Track

- Track Length
- Track Angle
- Rack Joints
- Track size

## Study of IPC Standards

- □ IPC Standard For Schematic Design
- □ IPC Standard For PCB Designing
- □ IPC Standard For PCB Materials
- □ IPC Standard For Documentation and PCB Fabrication

COs Mapped –

CO3, CO4, CO5

(06 hrs)

#### Unit V PCB Fabrication

#### Starting the PCB designing

- □ Understanding the schematic Entry
- Creating Library & Components
- Drawing a Schematic
- □ Flat Design / hierarchical Design
- □ Setting up Environment for PCB
- Design a Board

## Auto routing

- □ Introduction to Auto routing
- Setting up Rules
- Defining Constraints
- Auto router Setup

# **PCB Designing Practice**

- Designing of Basic and Analog Electronic Circuits
- □ PCB Designing of Power Supplies
- December 2012 PCB Designing of Different Sensor modules
- Designing of Electronics Projects
- Designing of Embedded Projects

## **Post Designing & PCB Fabrication Process**

- Printing the Design
- Etching
- Drilling
- □ Interconnecting and Packaging electronic Circuits (IPC) Standards
- Gerber Generation
- □ Soldering and De-soldering
- Component Mounting
- PCB and Hardware Testing

# **Project work**

- □ Making the schematic of Academic and Industrial projects
- □ PCB Designing of these projects
- Soldering and De-soldering of components as per Design
- **Testing and Troubleshooting Methods**

### **Text Books**

- 1. Walter C Bosshart "Printed Circuit Boards: Design and Technology" Tata McGraw-hill
- 2. R S Khandpur, "Printed Circuit Boards: Design, Fabrication, Assembly & Testing", Tata McGrawhill

#### **Reference Books**

- 1. Charles A. Harper, "Handbook of Electronics Packaging", McGraw-hill
- 2. Printed Circuit Boards: Design Techniques For EMC Compliance Montrose Mark I IEEE Press Series of Electronics Technology



# K.K.Wagh Institute of Engineering Education and Research, Nashik (Autonomous from Academic Year 2022-23)

| F. Y. B. Tech.<br>Pattern 2023 Semester: II<br>2300115B: Engineering Explorations |                                                                                                                         |                                         |                         |                    |  |  |  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------|--------------------|--|--|--|
| Teaching Scheme:Credit Scheme:Examination Scheme:                                 |                                                                                                                         |                                         |                         |                    |  |  |  |
| Tutorial : 02                                                                     | k: 75Marks                                                                                                              |                                         |                         |                    |  |  |  |
| Prerequisite                                                                      | e Courses, if any:                                                                                                      |                                         |                         |                    |  |  |  |
| <ol> <li>To engage</li> <li>To prove professional</li> </ol>                      | eate independent learning<br>ge students in rich experie<br>vide opportunity to get<br>lism.<br>tcomes: On completion o | ential learning.<br>involved in a group |                         | m skills and learn |  |  |  |
|                                                                                   |                                                                                                                         | Course Outcomes                         |                         | Bloom's Level      |  |  |  |
| CO1                                                                               | Apply principles from                                                                                                   | several disciplines.                    |                         | 3-Apply            |  |  |  |
| CO2                                                                               | Demonstrate long-term                                                                                                   | n retention of knowledg                 | ge and skills acquired. | 3-Apply            |  |  |  |
| CO3                                                                               | Function effectively as                                                                                                 | s a team to accomplish                  | a desired goal.         | 3-Apply            |  |  |  |
| CO4                                                                               | CO4Explore an Engineering Product and prepare its Mind map4-Analysis                                                    |                                         |                         |                    |  |  |  |
| CO5Enhance their learning ability to solve practical problems.5-Synthesis         |                                                                                                                         |                                         |                         |                    |  |  |  |
|                                                                                   |                                                                                                                         | <b>Reference Books</b>                  | 5                       | •                  |  |  |  |
|                                                                                   | ased Learning, Edutopia, N<br>BL? Buck Institute for Edu                                                                |                                         |                         |                    |  |  |  |

|     | Strength of CO-PO Mapping |    |   |   |   |   |   |   |   |    |    |    |
|-----|---------------------------|----|---|---|---|---|---|---|---|----|----|----|
|     |                           | PO |   |   |   |   |   |   |   |    |    |    |
|     | 1                         | 2  | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| CO1 | 2                         | 2  | - | 1 | - | 2 | 2 | 1 | - | -  | -  | -  |
| CO2 | -                         | -  | - | - | - | - | - | - | - | 2  | 2  | 2  |
| CO3 | -                         | -  | - | - | - | - | - | - | 3 | -  | -  | -  |
| CO4 | 2                         | 2  | - | 2 | - | 2 | 2 | 1 | 3 | 3  | -  | -  |
| CO5 | 2                         | 2  | 2 | 2 | 2 | 2 | 2 | 1 | 3 | 3  | 2  | 2  |

#### Preamble

Experiential learning involves a number of steps that offer student a hands-on, collaborative and reflective learning experience which helps them to "fully learn new skills and knowledge". During each step of the experience, students will engage with the content, the instructor, each other as well as self–reflect and apply what they have learned in another situation.

Students undergo the Experiential Learning through following phases of Engineering Exploration, Engineering Design and Product Realization. Students will undertake mini projects to acquaint with knowledge in the various domains of Engineering.

The course introduces students to analyzing, designing, developing, testing, report writing and project presentations that demonstrate understanding. Students will be asked to observe,

document, raise questions and draw conclusions. Teachers rely on a variety of resources to enrich students' studies that may include meeting experts and hands-on experimentation.

# **Guidelines for Course Conduction**

- There should be a group of 4-5 students.
- Groups will be monitored by the Course teacher.
- Following two assignments will be completed by all groups

   A) Exploration of an Engineering product like Electronic Voting Machine, Car, Mobile handset, Elevator / Escalator, Operation Table, Solar water heater. The exploration will be based on working principle, specifications, material used, manufacturing process, technology used, operations (observable and controllable), ergonomics, extent of automation, safety features, environmental issues, maintenance and costing.
   B) Teachers will identify 12-15 mini project ideas.
- Every group will undertake a mini project in consultation with the Course teacher.
- Project ideas will be common to all first year divisions but the implementation might be different.
- The students will plan, manage and complete the associated tasks.

### **Guidelines for Course Completion**

Students will present/submit the Mind Map of the Engineering product chosen for exploration. Students will exhibit/demonstrate the completed project at the end of the semester along with a brief report in a recommended format as term work submission.

#### **Guidelines for Term work Assessment**

The Course teacher is committed to assess and evaluate the students' performance. Progress of work done will be monitored on weekly basis.

During process of monitoring and continuous assessment, the individual and team performance is to be measured.

- Individual assessment for each student should be based on understanding individual capacity, role and involvement in the Engineering Product Exploration/project.
- Group assessment should be based on roles defined, distribution of work, intra-team communication and togetherness.
- Documentation and Demonstration.

It is recommended that all activities are to be recorded regularly and proper documents are to be maintained by both students as well as the course teacher.

Continuous Assessment Sheet (CAS) is to be maintained by the Course teacher.

- A) Recommended parameters for assessment of Engineering Product Exploration: (25marks) Working principle, specifications, material used, manufacturing process, technology used, operations (observable and controllable), ergonomics, extent of automation, safety features, environmental issues, maintenance and costing.
- B) Recommended parameters for assessment of Project: (25marks)
  - Outcomes of Mini Project / Problem Solving Skills / Solution provided / Final product (50%) (Individual assessment and team assessment)
  - Documentation (Gathering requirements, design & modeling, implementation/execution, use of technology and final report, other documents) (25%)
  - Demonstration (Presentation, User Interface, Usability, Participation in Exhibition/Contest etc) (15%)
  - Awareness / Consideration of Environmental / Social / Ethical / Safety / Legal aspects (10%)

# Exit Courses



|                    | S                                                                                                                                                                                                                                       | F Y B Tech (E&TC) Ex                  | xit course-1                                  |                                  |  |  |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------|----------------------------------|--|--|--|--|
|                    |                                                                                                                                                                                                                                         | Pattern 2023                          | 6                                             |                                  |  |  |  |  |
| Taashir            | a Cahamaa                                                                                                                                                                                                                               | 2300128A: Digital (<br>Credit Scheme: |                                               |                                  |  |  |  |  |
|                    | ng Scheme:                                                                                                                                                                                                                              |                                       | Examination Schem                             |                                  |  |  |  |  |
| •                  | :02 hrs/week<br>al : 02 hrs/week                                                                                                                                                                                                        | 02<br>01                              | InSem Exam: 20 Marks<br>EndSem Exam: 30 Marks |                                  |  |  |  |  |
| Tractic            | ai . 02 111 5/ week                                                                                                                                                                                                                     | 01                                    | TW: 50 Marks                                  | viai KS                          |  |  |  |  |
|                    |                                                                                                                                                                                                                                         |                                       | ·                                             |                                  |  |  |  |  |
|                    | uisite Courses, if any: -                                                                                                                                                                                                               |                                       |                                               |                                  |  |  |  |  |
| Compa              | nion course, if any: La                                                                                                                                                                                                                 | b work in Digital circuit             | S                                             |                                  |  |  |  |  |
| 1. To an circuits. | <b>Objectives:</b> To make the alyze logic processes an optimized of logic design                                                                                                                                                       | nd implement logical op               | -                                             | -                                |  |  |  |  |
| circuits.          |                                                                                                                                                                                                                                         |                                       |                                               | -                                |  |  |  |  |
| Course             | Outcomes: On comple                                                                                                                                                                                                                     | tion of the course, stude             | nts will be able to-                          |                                  |  |  |  |  |
|                    | Course Outcomes Bloom's Level                                                                                                                                                                                                           |                                       |                                               |                                  |  |  |  |  |
| CO1                | Design and implement                                                                                                                                                                                                                    | 3-Apply                               |                                               |                                  |  |  |  |  |
| CO2                | Design and implement                                                                                                                                                                                                                    | nt sequential circuits                |                                               | 3-Apply                          |  |  |  |  |
|                    |                                                                                                                                                                                                                                         | COURSE CONTI                          | ENTS                                          |                                  |  |  |  |  |
| Unit<br>I          | Combinational Logic                                                                                                                                                                                                                     | Circuits                              | (05 hrs)                                      | COs Mapped -<br>CO1, CO2, CO3    |  |  |  |  |
| terms, N           | d representation of logic<br>Ainimization of logic func-<br>for using adder                                                                                                                                                             |                                       |                                               |                                  |  |  |  |  |
| Unit<br>II         | Combinational Logic                                                                                                                                                                                                                     | Design                                | (05 hrs)                                      | COs Mapped -<br>CO1, CO2, CO3    |  |  |  |  |
| Compar             | Codes and code converters-BCD, Gray, XS-3, 7 Segment ,ALU design (using 7487) ,Digital<br>Comparator, Parity checker, parity generator Multiplexer and Demultiplexer Quine McCluskey<br>method (only for advanced learners)             |                                       |                                               |                                  |  |  |  |  |
| Unit<br>III        | Sequential Logic Circ                                                                                                                                                                                                                   |                                       | (05 hrs)                                      | COs Mapped -<br>CO1, CO2         |  |  |  |  |
| preset a           | Flip flops-1 Bit Memory Cell, Clocked SR, JK, MS J-K flip flop, D and T flip-flops. Use of preset and clear terminals, Excitation Table for flip flops. Conversion of flip flops. Application of Flip flops: Registers, Shift registers |                                       |                                               |                                  |  |  |  |  |
| Unit<br>IV         | Sequential Logic Des                                                                                                                                                                                                                    | -                                     | (05 hrs)                                      | COs Mapped -<br>CO1, CO2,<br>CO5 |  |  |  |  |
| up/down            | part1: Counters (ring co<br>counters Counter part 3<br>.ock out, Clock Skew, C                                                                                                                                                          | : Synchronous counters,               | Modulo counter Issues                         |                                  |  |  |  |  |

#### **Text Books**

R.P. Jain, "Modern Digital Electronics", Tata McGraw Hill Publication, 3 rd Edition
 M. Morris Mano, "Digital Logic and Computer Design", Prentice Hall of India, 4 th Edition3.

## **Reference Books**

1. Anand Kumar, "Fundamentals of Digital Circuits", Prentice Hall of India, 1st Edition 2. L.E. Wakarly, "Digital Design, Principles and Practices," Pageson, 3rd Edition

2. J. F. Wakerly, "Digital Design- Principles and Practices," Pearson, 3rd Edition.

#### Lab Assignments:

- 1. Design and verification of the truth tables of Half and Full adder circuits
- 2. Verification of the truth table of the Multiplexer 74150 and De-Multiplexer 74154
- 3. Test different types of flip-flops (SR, JK, T, D)
- 4. Verify the counter using 7490 and 7493
- 5. Design of 4-bit shift register (shift right)



|                                                                  |                                                                                                                                                                                                          | F Y B Tech E&TC Ex                                                                                           | it course-2                                                                        |                                                              |  |  |  |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|
|                                                                  |                                                                                                                                                                                                          | Pattern 2023                                                                                                 | 3                                                                                  |                                                              |  |  |  |
| Taaahir                                                          | 2300129A: Ing Scheme:                                                                                                                                                                                    | Electronic Maintenanc<br>Credit Scheme:                                                                      | e and Troubleshooting Examination Schen                                            |                                                              |  |  |  |
|                                                                  |                                                                                                                                                                                                          |                                                                                                              |                                                                                    |                                                              |  |  |  |
| •                                                                | :02 hrs/week<br>al : 02 hrs/week                                                                                                                                                                         | 02<br>01                                                                                                     | InSem Exam: 20 Ma<br>EndSem Exam: 30 M<br>TW: 50 Marks                             |                                                              |  |  |  |
| Prerequ                                                          | uisite Courses, if any: -                                                                                                                                                                                | Fundamentals of Electr                                                                                       | onics Engineering                                                                  |                                                              |  |  |  |
| Compa                                                            | nion course, if any: La                                                                                                                                                                                  | b work in Electronic Ma                                                                                      | aintenance and Troubles                                                            | shooting                                                     |  |  |  |
| 1. Know<br>2. Tools<br>3. Electr                                 | <b>Objectives:</b> To make the<br>veldge about Protective<br>and equipment<br>ronics troubleshooting<br><b>Outcomes:</b> On complete                                                                     | devices.                                                                                                     | ents will be able to-                                                              |                                                              |  |  |  |
|                                                                  |                                                                                                                                                                                                          | Bloom's<br>Level                                                                                             |                                                                                    |                                                              |  |  |  |
| CO1                                                              | Acquiring knowledge                                                                                                                                                                                      | 2-Understand                                                                                                 |                                                                                    |                                                              |  |  |  |
| CO2                                                              | Acquiring skills on too                                                                                                                                                                                  | 2-Understand                                                                                                 |                                                                                    |                                                              |  |  |  |
| CO3                                                              | Do electronic troubles                                                                                                                                                                                   | hooting                                                                                                      |                                                                                    | 3-Apply                                                      |  |  |  |
|                                                                  | ·                                                                                                                                                                                                        | COURSE CONT                                                                                                  | ENTS                                                                               |                                                              |  |  |  |
| Unit<br>I                                                        | Acquiring knowledge devices                                                                                                                                                                              | about Protective                                                                                             | (05 hrs)                                                                           | COs Mapped -<br>CO1                                          |  |  |  |
|                                                                  | es and its rating. Unders                                                                                                                                                                                |                                                                                                              | system protection and t                                                            | heir working. MCB                                            |  |  |  |
| Unit<br>II                                                       | pes, protection against I<br>Acquiring skills on too                                                                                                                                                     |                                                                                                              | (05 hrs)                                                                           | COs Mapped -<br>CO1                                          |  |  |  |
| Screw Dr<br>Liquid sc                                            | Screw Driver Set Tweezers, Different Types of Tweezers, Nose Pliers, Wire Cutter Hot air gun<br>Liquid solder paste, Magnifying Lamp and Measuring Tools Brush, CRO, Nipper, Multimeter<br>Operation etc |                                                                                                              |                                                                                    |                                                              |  |  |  |
| Unit<br>III                                                      | Electronics Troublesho                                                                                                                                                                                   | COs Mapped -<br>CO1, CO2                                                                                     |                                                                                    |                                                              |  |  |  |
| troublesh<br>fault find<br>compone<br>De-solde<br><b>Text Bo</b> | ubleshooting method, G<br>looting Component testi<br>ling, Troubleshooting th<br>ant Soldering Iron, Solder<br>ring pump, Temperature<br><b>boks</b><br>Electronics - Repair & N                         | ng methods, Testing of<br>rough circuit diagram, H<br>ering wire, Soldering Flu<br>e controlled soldering st | components in circuits<br>Removal and Replacem<br>ux, Soldering method, 2<br>ation | , Logical steps of<br>ent of faulty<br>Zero defect soldering |  |  |  |
|                                                                  | l Instructional Media Inst                                                                                                                                                                               |                                                                                                              | ppiy, invertor & UPS –                                                             | NIIVII FUDIISIICA DY                                         |  |  |  |

#### **Reference Books**

- 4. Switching Power Supply Design, 3rd Ed. by Abraham Pressman (Author),
- 5. Uninterruptible Power Supplies Alexander King, William Knight McGraw Hill Professional

#### Lab Assignments:

- 1. To find cause of battery failure, diagnosis and testing, visual inspection, Heavy load test
- 2. Do installation of UPS and Inverter
- 3. Troubleshoot UPS and Inverter
- 4. Do installation of Stabilizer and CCTV
- 5. Troubleshoot Stabilizer and CCTV