

K.K. Wagh Institute of Engineering Education and Research, Nashik (An Autonomous Institute from AY 2022-23)

Curriculum F.Y. B.Tech Electrical Engineering w.e.f.: AY 2023-2024

	F.Y. B.Tech Electrical Engineering wef AY 202324															
	SEM-I															
Course	Couse	Title of Course		eachir chem	0		Evaluation	Scheme	e and M	Iarks			Credits			
Code	Туре	The of Course	TH	TU	PR	INSEM	ENDSEM	CCE	TUT /TW	PR /OR	TOTAL	тн	TU	PR	TOTAL	
2300101A	BSC	Linear Algebra	3	1	0	20	60	20	25	0	125	3	1	0	4	
2300103A	BSC	Applied Physics	3	0	2	20	60	20	50	0	150	3	0	1	4	
2300105A	ESC	Fundamentals of Electrical Engineering	3	0	2	20	60	20	50	0	150	3	0	1	4	
2300110A	ESC	Engineering Drawing	1	0	2	20	30	0	50	0	100	1	0	1	2	
2300112A	AEC	Communication Skills	1	0	2	0	0	25	50	0	75	1	0	1	2	
2300117D	VSEC	Electrical Wiring System	1	0	2	0	0	25	25	0	50	1	0	1	2	
2300115A	СС	Liberal Learning, Sports, Yoga, Art	0	2	0	0	0	0	50		50	0	2	0	2	
	Total				10	80	210	110	300	0	700	12	3	5	20	

	SEM-II														
Course	Couse			eachii chem	0	Evaluation Scheme and Marks					Credits				
Code	Туре	Title of Course	ТН	TU	PR	INSEM	ENDSEM	CCE	TUT /TW	PR /OR	TOTAL	тн	TU	PR	TOTAL
2300102A	BSC	Differential Calculus	3	1	0	20	60	20	25	0	125	3	1	0	4
2300104A	BSC	Applied Chemistry	3	0	2	20	60	20	50	0	150	3	0	1	4
2300107A	ESC	Fundamentals of Electronics Engineering	3	0	2	20	60	20	50	0	150	3	0	1	4
2300108A	ESC	Programming in C	1	0	2	20	30	0	50	0	100	1	0	1	2
2300118D	РСС	Power Generation Technologies	2	0	0	20	60	20	0	0	100	2	0	0	2
2300116A	IKS	Indian Knowledge System	0	2	0	0	0	0	50	0	50	0	2	0	2
2300111A	VSEC	Workshop Practices	1	0	2	0	0	25	25	0	50	1	0	1	2
2300136A	СС	Engineering Exploration	0	2	0	0	0	0	75	0	75	0	2	0	2
	Total			5	8	100	270	105	325	0	800	13	5	4	22

	Department Specific Exit Courses (To award Certificate)														
Course C	Couse	use		Teaching Scheme			Evaluation Scheme and Marks					Credits			
Code	Туре	Title of Course	тн	TU	PR	INSEM	ENDSEM	CCE	TUT /TW	PR /OR	TOTAL	ТН	TU /TW	PR	TOTAL
2300119A	EXIT	Internship*	0	0	0	0	0	0	100	0	100	0	2	0	2
2300126A	EXIT	Electrical Load Calculations and Design	2	0	2	20	30	0	50	0	100	2	1	0	3
2300127A	EXIT	Maintenance of Electrical Appliances	2	0	2	20	30	0	50	0	100	2	1	0	3
	Total			0	4	40	60	0	200	0	300	4	4	0	8

*Internship in the industry for 2 weeks

 \rightarrow To get a certificate student should get the following credits

Internship

 $\rightarrow 2$ credits

Exit course-1 (Option A or Option B) \rightarrow 3 credits

Exit course-2 (Option A or Option B). \rightarrow 3 credits

Total credits

 \rightarrow 8 credits

		F. Y. B. Tech. Pattern 2023 2300101A: Linear Alg	ebra		
Teaching	g Scheme:	Credit Scheme:	Examination Sche	me:	
	03hrs/week :01hr/week	03 01	Continuous Comp Evaluation: 20Ma InSem Exam: 20M EndSem Exam: 60 Tutorial / Termwo	rks Iarks)Marks	
Prerequi	site Courses: -				
To introd transform To introd To introd To introd To introd To introd	Objectives: Juce concepts of Matrices ar nations. Juce concepts of Eigen value Juce concepts of Partial Diff Juce concepts of Jacobians, Juce fundamental concepts of Juce computational tools for Dutcomes: On completion of	es and Eigen Vectors. Ferentiation. Maxima and Minima, er of probability. solving mathematical p	rors and Approximation	-	
		Course Outcomes		Bloom's Level	
CO1 CO2	Interpret the concepts of Jacobians, rank, quadratic form, canonical form, transformations, Eigen values, Eigen vectors and probability.2-UnderstandinSolve problems on linear algebra, partial derivatives and probability.3- Apply				
CO3	Apply concepts of linear to engineering problems.	0	1 0	3- Apply	
CO4	Use computational tools	for solving mathematica	l problems.	3- Apply	
CO5	Analyze the nature of qua function, error and approx	ximations.		4 -Analyze	
		COURSE CONTEN	TS		
Unit I	Matrices and Linear S	System of Equations	(07hrs+2hrsTutor l)	ia COs Mapped CO1, CO2, CO3	
	a matrix, system of linear Ecogonal transformations, App			e of vectors, Linea	
Unit II	Eigen Values and	Eigen Vectors	(08hrs+ 2hrsTutorial)	COs Mapped CO1, CO2, CO3, CO5	

Unit	Partial Differentiation	(07hrs +	COs Mapped
III		2hrsTutorial)	-CO2, CO3

Introduction to functions of two or more variables, Partial Differentiation, Euler's Theorem on Homogeneous Functions, Partial differentiation of Composite and Implicit functions, Total derivatives.

Unit IV	Application of Partial Differentiation	(07hrs+ 2hrsTutorial)	COs Mapped - CO1, CO2, CO3, CO5
------------	--	--------------------------	---------------------------------------

Jacobians, Functional Dependence & Independence, Errors and Approximation, Maxima and Minima of Functions of two variables, Lagrange's method of undetermined multipliers.

Unit V	Introduction to Probability and Counting	(07hrs+ 2hrsTutorial)	COs Mapped - CO1, CO2,
			CO3

Interpreting probabilities, Relative frequency and classical definition of probability, sample spaces and Events, mutually exclusive events, Permutations and Combinations, Axioms of probability, Addition rule, conditional probability, multiplication rule, Independent Events, Bayes' Theorem.

TextBooks

1. B.V. Ramana, "Higher Engineering Mathematics", Tata McGraw-Hill.

2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publication, Delhi.

Reference Books

1. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley Eastern Ltd.

2. P. N. Wartikar and J. N. Wartikar, "Applied Mathematics" (Volumes I and II), Pune Vidyarthi Griha Prakashan, Pune.

	Strength of CO-PO Mapping											
						P	С					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1	-	-	-	-	-	-	-	-	-	2
CO2	3	1	1	-	-	-	-	-	-	-	-	2
CO3	3	3	2	2	2	-	-	-	-	-	-	2
CO4	1	-	-	-	3	-	-	-	-	-	-	2
CO5	3	3	2	2	2	-	-	-	-	-	-	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course								
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation								
1	Assignments (Total 3 Assignment, Unit I and II 20 marks, Unit III and IV 20 marks and Unit V 10 marks &50 marks will be converted to 10 Marks)	10							
2	Tests on each unit using LearniCo (Each test for 15 M and total will be converted out of 10 M)	10							

	List of Tutorial Assignments	
Sr. No.	Title	CO Mapped
1	Examples on rank of a matrix, system of linear Equations	CO1, CO2
2	Examples on linear dependence and Independence of vectors, application to system of linear equations.	CO1, CO2, CO3
3	Examples on Eigen values & Eigen Vectors.	CO1, CO2, CO3
4	Examples quadratic forms to canonical forms.	CO1, CO2, CO3,CO5
5	Solve problems on matrices using Matlab.	CO1, CO2, CO4
6	Solve system of equations using Matlab.	CO1, CO2, CO4
7	Examples on partial differentiation, Euler's Theorem on homogeneous functions	CO2, CO3
8	Examples on partial differentiation of composite and implicit functions, total derivatives.	CO2, CO3
9	Examples on Jacobians, functional dependence & independence, errors and approximation	CO1, CO2, CO3 , CO5
10	Examples on maxima and minima of functions of two variables, Lagrange's method of undetermined multipliers.	CO1, CO2, CO3, CO5
11	Examples on fundamental concepts of probability.	CO1, CO2
12	Examples on conditional probability, Bayes' Theorem.	CO1, CO2, CO3

	Guidelines for Tutorial / Termwork Assessment									
Sr. No.	Components for Tutorial / Termwork Assessment	Marks Allotted								
1	Assignment on computational software	5								
2	Tutorial (Each tutorial carries 15 marks)	15								
3	Attendance (Above 95 % : 05 Marks, below 75% : 0 Marks)	5								

		F. Y. B. Tech. Pattern 2023				
		2300103A: Applied Ph er, IT, E&TC, AI&DS	•	R&A)		
Teachin	g Scheme:	Credit Scheme:	Examination Sch			
	:03 hrs/week l : 02 hrs/week	03 01	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks Termwork: 50Marks			
Prerequ	isite Courses, if any: -					
To learn fields. To enabl fields. . To study . To study conserva		ors and nanomaterials f wledge of wave optics a Mechanics for quantum hysical processes that g	or their applications nd their applications computing. govern energy usag	in various technical s in various technical		
Course	Outcomes: On completion of		ill be able to-			
		Course Outcomes		Bloom's Level		
CO1	Describe basics of electro wave mechanics and envi		aterials, wave optics	' 1-Knowledge		
CO2	Classify advanced materi	als, refracting crystals a	nd solar cell	2-Understand		
CO3	Explain properties of sup waves	erconductors, nano-mate	erials and matter	2-Understand		
CO4	Calculate characteristics devices, conductivity, eff	-	_	3-Apply		
CO5	Use concepts of electrom and wave equations in rea	0	luctors, wave optics	3-Apply		
		COURSE CONTEN	TS			
Unit I	Electromagnetism & Ele	ectromagnetic Waves	(08hrs)	COs Mapped - CO1, CO2		
Introduct nature of density, r Simple s	nagnetism: tion: Magnetic effect of an effect of an effect of an effect of long strater reluctance, permeability and teries magnetic circuit, Intro- tecircuit, force on current car	hight conductor, solenoi field strength, their unit oduction to parallel mag	d and toroid. Conce s and relationships. gnetic circuit, compa	ight hand thumb rule, pt of mmf, flux, flux		

Faradays laws of electromagnetic induction, Fleming right hand rule, statically and dynamically induced e.m.f., self and mutual inductance, coefficient of couplings. Energy stored in magnetic field; Fleming left hand rule.

Electromagnetic Waves

Introduction, Electromagnetic Waves, Electromagnetic Wave Equations, Maxwell's Wave Equations for Free Space

Unit II	Semiconductors, Superconductivity, Nano-	(06hrs)	COs Mapped -
	Material		CO1, CO2, CO4,
			CO5

Semiconductors:

Types of semiconductor, Conductivity of conductors and semiconductors, temperature dependence of conductivity, Fermi Dirac distribution function, Position of Fermi level in intrinsic and extrinsic semiconductors, variation with respect to temperature and doping concentration, Hall effect: Derivation for Hall voltage, Hall coefficient, applications of Hall effect.

Superconductivity:

Definition, Properties, type of superconductor, Josephson effect and applications

Nano-Materials:

Introduction, quantum confinement effect, surface to volume ratio, properties: Optical, electrical & Mechanical.

Unit	Wave Optics	(08hrs)	COs Mapped -
III			CO1, CO2, CO4,
			CO5

Polarization – Introduction of polarization, law of Malus, double refraction, Huygens theory, LCD. **Diffraction** – Introduction of diffraction, types of diffraction, diffraction grating, conditions for principal maxima and minima, maximum orders of diffraction, Rayleigh's criterion,

Interference – Introduction, thin film interference, optical flatness testing, antireflection coating, Rayleigh interferometer and Radio interferometer.

Laser: Basic terms and types of lasers, application (IT, Medical & Industry), laser interferometer and Hologram Interferometer.

Optical Fibre – Introduction and basic terms, Fibre optic communication with block diagram.

Unit IVQuantum Mechanics & Quantum Computing	(07hrs)	COs Mapped - CO1, CO2, CO3, CO5
---	---------	---------------------------------------

Basics of Quantum theory, postulates of quantum mechanics, wave nature of particles, wave function, Schrodinger's time dependent equation, Stern-Gerlach experiment, electron spin, superposition of states, Entanglement Bits and Qubits, Implementing a quantum computer : Ion trap, Linear optics, NMR and superconductors.

Unit V	Energy and Environment	(07hrs)	COs Mapped -		
			CO1, CO2, CO4		

Energy and its Usage:

Overview of World energy scenario, climate change, Engineering for energy conservation, units and scales of energy.

Solar Energy:

Introduction to solar energy, fundamentals of solar radiation and its measurement aspects, basic physics of solar cell, carrier transport, generation & recombination in solar cell, semiconductor junctions: metalsemiconductor junction & p-n junction, essential characteristics of solar photovoltaic devices, First generation solar cells, Second generations of Solar cells, Third generations of solar cells-Quantum Dot solar cell, multi junction solar cells

Fluid and Wind Power:

Fluid dynamics and power in the wind, available resources, Wind turbine dynamics, wind farms

Text Books

1. V K Mehta and Rohit Mehta ,"Basic Electrical Engineering", S Chand Publications.

- 2. M.N. Avadhanulu and P.G. Kshirsagar,"Engineering Physics ", S. Chand Publications
- 3. Robert L. Jaffe and Washington Tayler, "The Physics of Energy", Cambridge University Press Performence People

Reference Books

- 1. H.D. Young and R.A. Freedman, "University Physics", Pearson Publication
- 2. Resnick and Halliday, "Principles of Physics", John Wiley and Sons
- 3. Jenkins and White, "Optics", Tata McGraw Hill
- 4. Noson S. Yanofsky and Mirco A. Mannucci, "Quantum computing for computer scientists".

Strength of CO-PO Mapping												
						Р	С					
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	-	-	-	-	-	2	1	1	-	-	1
CO2	3	3	-	-	2	-	2	1	1	-	-	1
CO3	3	-	-	-	-	-	-	1	1	-	-	1
CO4	3	3	-	-	-	-	2	1	1	-	-	1
CO5	3	3	2	-	2	2	2	1	1	1	-	1
Average	3	3	2	-	2	2	2	1	1	1	-	1

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation M						
1	Three Assignments on unit-1, Unit-2, Unit-3 & 4	05					
2	Group Presentation on Unit-5	10					
3	LearniCo Test on Each Unit	05					
	Total	20					

	List of Laboratory Experiments / Assignments					
Sr. No.	Laboratory Experiments / Assignments	CO Mapped				
1	Experiment based on Newton's rings (determination of wavelength of monochromatic light, determine radius of curvature of plano-convex lens).	CO1, CO5				
2	To determine position of diffraction minima by studying diffraction at a single slit.	CO4				
3	To determine unknown wavelength by using plane diffraction grating.	CO4				
4	To verify Law of Malus.	CO4, CO5				
5	Experiment based on Double Refraction (Determination of refractive indices / Identification of types of crystal).	CO1, CO5				
6	To determine band gap of given semiconductor.	CO4				
7	To study IV characteristics of Solar Cell and determine parameters (fill factor and efficiency).	CO4				
8	To determine Hall coefficient and charge carrier density.	CO4, CO5				
9	Experiment based on Laser (Determination of thickness of wire / Number of lines on grating surface).	CO4				
10	Determination of refractive index using Brewster's law.	CO4				
11	To determine magnetic force on a current carrying conductor.	CO4, CO5				
12	To study magnetic induction due to current carrying conductor	CO4, CO5				

13	To study the quantum confinement effect in synthesis of silver nano- particles.	CO3, CO5					
	Guidelines for Laboratory Conduction						
1. Teach	er will brief the given experiment to students its procedure, observations c	alculation, and					
outcome	of this experiment.						
	2. Apparatus and equipments required for the allotted experiment will be provided by the lab assistants using SOP.						
	nts will perform the allotted experiment in a group (two students in each gr ion of faculty and lab assistant.	oup) under the					
4. After	performing the experiment students will check their readings, calculations fro	om the teacher.					
5. After	checking they have to write the conclusion of the final result.						
	Guidelines for Student's Lab Journal						
Write-up	should include title, aim, diagram, working principle, procedure, observ	ations, graphs,					
calculati	ons, conclusion and questions, if any.						
	Guidelines for Termwork Assessment						
1. Each	1. Each experiment from lab journal is assessed for thirty marks based on three rubrics.						
	1 5 6						

	2300105A: I	F. Y. B. Tech. (All Bran Pattern 2023 Fundamentals of Electr IDS, Comp, CSD, IT, F	ical Engineering				
Teaching	g Scheme:	Credit Scheme:	Examination Sc	heme	:		
	03hrs/week 1: 02hrs/week	03 01	Evaluation: 20N InSem Exam: 20 EndSem Exam:	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam:60Marks Termwork: 50Marks			
Prerequi	isite Courses: -						
To make To expla To introd	Objectives: students aware of the funda in the working principles of luce the components of low Dutcomes: On completion of	electrical machines and voltage electrical install	batteries ations				
		Course Outcomes			Bloom's Level		
CO1	Define terminologies a and batteries.	Define terminologies and laws related to AC-DC circuits, machines and batteries					
CO2	Demonstrate the need	for safety precautions an uments in the laboratory.			2-Understand		
CO3	*	, working and performa		of	2-Understand		
CO4	Solve problems on AC relevant laws and theorem	C-DC circuits, work, pow rems.		g	3-Apply		
CO5	applications.	chines, protective device			3-Apply		
CO6		transformer efficiency,		HT	4-Analyze		
		COURSE CONTEN	TS				
Unit I	Work, Power, Energy,	Batteries and Supplies	(8hrs)		s mapped - 1, CO4		
insulation thermal s Batteries	s and Power Supply: Charge, maintenance of batteries, s	energy from one form to	another in electrica	l, mec ot of d luction CO	chanical, and epth of n to UPS, SMPS s mapped -		
• 1	electrical circuits, KVL and ition, and Thevenin's theory		ce transformations,		elta connection,		

Unit III	AC Circuits	(8hrs)	COs mapped - CO1, CO4						
Representation of sinusoidal waveforms, peak and RMS values, Phasor representations, real power, reactive power, apparent power, power factor, analysis of single-phase AC circuits consisting of pure R, L, C, series R-L, R-C, R-L-C combinations, parallel AC circuit, series, and parallel resonance									
Unit IV	1								
Three-Phase Circuit: Three-phase balanced circuits, voltage and current relations in star and delta connections, and power calculations. Electrical Installations: Components of LT Switchgear: fuse MCB, ELCB, types of wiring, earthing.									
Unit V	Electrical Machines	(8hrs)	COs mapped - CO1, CO3, CO5, CO6						
Transformers: Construction, principle, e.m.f. equation, ideal and practical transformer, vector diagram for ideal transformer, losses, regulation and efficiency, Introduction to Auto-transformer. Electrical machines: Construction, working principle and types of DC generator and motor, construction, working principle and applications of stepper motor.									
	Text Books								
 B.L. Theraja, A. K. Theraja, "<u>A Textbook of Electrical Technology</u>" - Volume I: Basic Electrical <u>Engineering: Part 1</u> and 2. S Chand Publication. Bharti Dwivedi, Anurag Tripathi, "Fundamentals of Electrical Engineering", 2nd Edition, Wiley Publication. 									
- 40110441	Reference Books								
1. D.P. K	othari and I. J. Nagrath, "Basic Electrical Engineering"	1. D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.							

1. D.P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.

E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
 H. Cotton, "Electrical Technology", 7th Edition, CBS Publications and distributors.

	Strength of CO-PO Mapping											
Course					Prog	gram (Dutcor	nes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3											1
CO2	3					2			2	3		3
CO3	3								2	3		3
CO4	3	3							2	3		2
CO5	3		2						2	3		3
CO6	3	3			2	2			2	3		3

	Guidelines for Continuous Comprehensive Evaluation of Theory Course							
Sr. No.	No. Components for Continuous Comprehensive Evaluation							
1	Assignment 1 – (Units 1 to 2, before the in-semester exam)	4 Marks						
2	Assignment 2 – (Units 3 to 4, after in-semester exam)	4 Marks						
3	Minimum 10 LearniCo sessions (taking best 5)	4 Marks						
4	Class Test – (Units 3 to 5, before end-semester exam)	8 Marks						

	List of Laboratory Experiments	
Sr. No.	Laboratory Experiments	COs Mapped
1	To introduce basic safety precautions, introduction and use of measuring instruments, like voltmeter, ammeter, multi-meter, oscilloscope, etc., the practical relevance of resistors, capacitors and inductors.	CO2
2	To analyze the effect of temperature on resistance of conducting material and measure the insulation resistance of cable/equipment using Megger	CO2
3	To study LT and HT electricity bills and energy conservation	CO6
4	To demonstrate different types of electrical protection equipment such as fuses, MCB, MCCB, ELCB	CO3, CO5
5	To verify Thevenin's Theorem on DC supply	CO1, CO4
6	To analyze series RL and RC circuits on single phase AC supply.	CO4
7	To find efficiency and regulation of single-phase transformer at different loading conditions.	CO6
8	To determine the relationship between phase and line quantities for a three- phase AC circuit when the load is star and delta connected.	CO4
9	To demonstrate the construction and working of electrical machines.	CO3, CO5
	Guidelines for Laboratory Conduction	
≻ St	each laboratory session, four to five students will perform the experiment i udents should do connections under the supervision of the teachers and ge llowing safety precautions and procedures.	
	Guidelines for Student's Lab Journal	
$\begin{array}{c} \searrow & A \\ \geqslant & C \\ \geqslant & O \\ \geqslant & O \\ \geqslant & S \\ \geqslant & R \end{array}$	ent's Lab Journal should contain the following - pparatus with their detailed specifications. onnection diagram /circuit diagram. bservation table/ simulation waveforms. ample calculations for one/two readings. esult table, Graph and Conclusions. ew short questions related to the experiment. Guidelines for Term Work Assessment	
1. The st	tudent's termwork will be through continuous assessment.	
2. Each Rubri	experiment from lab journal is assessed for thirty marks based on three rubr c R-1 for timely completion, R-2 for understanding and R-3 for presentation g where each rubric carries ten marks.	

		F. Y. B. Tech.		
		Pattern 2023		
	23	00110A: Engineering Di	rawing	
Teaching	g Scheme:	Credit Scheme:	Examination Sche	me:
	01hr/week	01	In-Sem Exam: 20N	
-	l: 02hrs/week	01	End-Sem Exam: 3	
11400104		Term Work: 50 M		
Prerequi	isite Courses: -			
	Objectives:			
	in the fundamental concepts	of engineering drawing	and its standards.	
-	ove visualization skills of ph	0 0 0		
	op interpretation and drawir		omputerized graphica	l techniques.
	Dutcomes: On completion of			-
COs		Course Outcomes		Bloom's Level
C01	Explain the need of en	igineering drawing and it	s standards.	2-Understand
CO2	Interpret engineering	2-Understand		
CO3	Draw projections of 2	3-Apply		
CO4	Apply manual and cor	nputerized graphical tool	s to solve practical	2 A
CO4	problems.			3-Apply
		COURSE CONTENT	ſS	
Unit I	Projections of a l	Point and Line	(UShrg)	COs Mapped – CO2, CO4
Projectio	ns of a point, projections of	a line located in first qua	drant only.	
Unit II	Projections	of Plane	$(\mathbf{U}/\mathbf{nrs})$	COs Mapped – CO2, CO3, CO4
Types of	planes, projections of plane	e inclined to both the refer	rence planes	
Unit III	Orthographic	Projections	(03hrs)	COs Mapped - CO1, CO2, CO3, CO4
basic rule	of projections, types of proj es of orthographic projection nd machine elements/parts.	on, orthographic and sec	tional orthographic p	rojection of simple
Unit IV	Isometric P	rojections	(02hrg)	COs Mapped – CO2, CO3, CO4
Introduct	ion to isometric projection a	and isometric scale. Cons	truction of isometric	view from given
orthograp	phic views. Applications of	isometric drawing in indu	istries.	
Unit V	Development of Lateral Introduction to Comp		(03hrs)	COs Mapped - CO1, CO2, CO3, CO4

Types of solids, projection of solids resting on HP only. Methods of development: parallel line development and radial line development. Development of simple solids like cone, cylinder, prism, tetrahedron and pyramid. Introduction to CAD and basic commands to draw simple 2D and 3D objects.

TextBooks

1. Bhatt, N. D. and Panchal, V. M., (2016), "Engineering Drawing", Charotar Publication, Anand, India 2.Jolhe, D. A., (2015), "Engineering Drawing with introduction to AutoCAD", Tata McGraw Hill, New Delhi

Reference Books

1. Bhatt, N. D., "Machine Drawing", Charotar Publishing house, Anand, India.

	Strength of CO-PO Mapping												
		РО											
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	2											1	
CO2	2									1		1	
CO3	2				2					1		1	
CO4	2				2					1		1	
Average	2				2					1		1	

	List of Laboratory Assignments	
Sr. No.	Laboratory Assignments	CO Mapped
1	Projection of lines and Projection of Planes (One problem each)	CO2, CO3, CO4
2	Orthographic Projection of given objects including sectional view. (Two Problems)	CO1, CO2, CO3, CO4
3	Isometric view / projection for the given set of two-dimensional views. (Two Problems)	CO2, CO3, CO4
4	Development of Lateral Surfaces of solids. (Two Problems)	CO1, CO2, CO3, CO4
5	Orthographic Projection of given object using any drafting software (One Problem)	CO1, CO2, CO3, CO4
6	Isometric view / projection of given object using any drafting software (One Problem)	CO2, CO3, CO4
	Guidelines for Laboratory Conduction	
Students	will solve six laboratory assignments on A2 size drawing sheet.	
	Guidelines for Tutorial Conduction	
Students	will solve four tutorial assignments by using any drafting software.	
Drawing	limits for all drawings to be made in drafting software should be se	t to A2 Size.
At the enfaculty.	d of semester students shall submit all soft copies of all assignment	s to a concerned
	Guidelines for Termwork and Tutorial Assessment	
Each lab	oratory and tutorial assignments will be assessed for 30 Marks account	rding to following
rubrics:		
	ely completion of assignments (10 Marks)	
	erstanding of assignment (10 Marks)	
	sentation/Clarity of journal writing (10 Marks)	
	x drawing sheets total marks of 180 will be converted into 25 Marks	
For all fo	our tutorial assignments total marks of 120 will be converted into 25	marks.

	F. Y. B. Tech.									
	Pattern 2023									
2300112A: Communication Skills										
Teaching Scheme:	Credit Scheme:	Examination Scheme:								
Theory: 01hr/week	01	Continuous Comprehensive								
Practical: 02hrs/week	01	Evaluation: 25Marks								
		Termwork: 50Marks								

Course Objectives:

1. To highlight the need to improve soft skills among engineering students so as to become good professionals.

2. To facilitate a holistic development of students by enhancing soft skills.

3. To develop and nurture the soft skills of the students through individual and group activities.

4. To expose students to right attitudinal and behavioural aspects and assist in building the same through activities.

Course Outcomes:	On completion of the course,	students will be able to-
-------------------------	------------------------------	---------------------------

	Course Outcomes	Bloom's Level
CO1	Develop effective communication skills including Listening, Reading, Writing and Speaking	3-Apply
CO2	Practice professional etiquette and present oneself confidently.	3-Apply
CO3	Function effectively in heterogeneous teams through the knowledge of team work, Inter-personal relationships, conflict management and leadership quality.	3-Apply
CO4	Evaluate oneself by performing SWOC Analysis to introspect about individual's goals and aspirations.	4-Evaluate
CO5	Constructively participate in group discussion, meetings and prepare and deliver Presentations.	4-Evaluate

Text Books

1. Gajendra Singh Chauhan, Sangeeta Sharma, "Soft Skills – An Integrated Approach to Maximize Personality", Wiley India, ISBN:13:9788126556397

 Simon Sweeney, "English for Business Communication", Cambridge University Press, ISBN 13:978-0521754507

Reference Books

1. Indrajit Bhattacharya, "An Approach to Communication Skills", Delhi, Dhanpat Rai, 2008

2. Sanjay Kumar and Pushpa Lata, "Communication Skills", Oxford University Press, ISBN 10:9780199457069

3. Business Communication & Soft Skills, McGraw Hill Education.

4. Atkinson and Hilgard, "Introduction to Psychology", 14th Edition, Geoffrey Loftus, ISBN-10:0155050699, 2003.

5. Kenneth G. Mcgee, "Heads Up: How to Anticipate Business Surprises & Seize Opportunities First", Harvard Business School Press, Boston, Massachusetts, 2004, ISBN 10:1591392993
6. Krishnaswami, N. and Sriraman T., "Creative English for Communication," Macmillan

	Strength of CO-PO Mapping												
	PO												
	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	-	-	-	-	-	-	-	-	3	3	-	-	
CO2	-	-	-	-	-	-	-	-	3	3	-	-	
CO3	-	-	-	-	-	-	-	-	3	3	-	-	
CO4	-	-	-	-	-	-	-	-	3	3	-	-	
CO5	-	-	-	-	-	-	-	-	3	3	-	-	

	List of Laboratory Experiments / Class Assignments	
Sr. No.	Laboratory Experiments / Class Assignments	COs Mapped
1	English Language Basics – Class Assignments	C01
	Fundamentals of English grammar, Vocabulary Building, Developing basic	
	writing skills and Identifying Common Errors in Writing	
2	Listening and Reading Skills	CO1
	a. Listening Worksheets using Language Lab Software	
	Each student will be given specifically designed worksheets that contain blanks /	
	matching / MCQs that are designed to an audio (chosen by the faculty). Students	
	have to listen to the audio (only once) and complete the worksheet as the audio	
	plays. This will help reiterate active listening as well as deriving information	
	(listening to information between the lines)	
	b. Reading Comprehension Worksheets to be distributed/displayed to students. –	
	Class Assignments	
	Teacher will choose reading passages from non-technical domains, design	
	worksheets with questions for students to answer. This will enhance student's	
	reading skills by learning how to skim and scan for information.	~~~
3	Writing Skills	CO1
	a. Letter / Email Writing – Lab Experiment	
	After explaining to the students the highlights of effective writing, students can be	
	asked to write (using digital platforms / paper-based) letter to an organization with	
	the following subject matter,	
	i. Requesting opportunity to present his/her product.	
	ii. Complaining about a faulty product / service.	
	iii. Apologizing on behalf of one's team for the error that occurred.iv. Providing explanation for a false accusation by a client.	
	iv. Froviding explanation for a faise accusation by a cheft.	
	b. Abstract Writing – Class Assignment	
	Teacher will choose a newspaper article / short stories and ask students to write an	
	abstract.	
4	Speaking Skills / Oral Communication – Part A	CO5,
•	a. One minute Self Introduction – Class Assignment	CO2
	Explain how to introduce oneself in a professional manner and presenting oneself	
	positively Name, Academic Profile, Achievements, Career Aspirations, Personal	
	Information (hobbies, family, social).	
	b. Presentations – Lab Experiment	

	Every student will have to choose a topic of his/her choice and make a 5-minute presentation using audio-video aids / PPT. Every student will make two presentations on – one technical and other non-technical topic. Focus and evaluation of each presentation should be the depth of knowledge about the topic, originality of perspective on the topic, well-researched or not, verbal and non- verbal skills and ability to answer questions effectively. Plagiarism should be discredit and students should be instructed about it.	
5	Speaking Skills / Oral Communication – Part B a. Group Discussion – Lab Experiment / Class Assignment The class will be divided into groups of 5-6 students for a discussion lasting 15 minutes. Topics should be provided by teachers. After each group finishes its discussion, the teacher will give critical feedback including areas of improvement. The teacher should act as a moderator / observer only	CO1, CO5, CO2, CO3
6	Extempore Various topics will be laid out in front of the audience and each student is to pick one topic and speak about the topic for 5 minutes followed by Q&A from audience. Teacher will evaluate each student based on thinking ability, content, communication skills, logical and cohesive presentation of topic, perspective of student, ability to handle questions and respond positively	CO1, CO2
7	 SWOC Analysis a. Focus on introspection and become aware of one's Strengths, Weakness, Opportunities and Challenges. Students can write down their SWOC in a matrix and the teacher can discuss the gist personally. b. Resume Writing The teacher should conduct a brief session outlining the importance of a CV / Resume and students can write / type out their own resumes i. Share various professional formats. ii. Focus on highlighting individual strengths. iii. Develop personalized professional goals / statement at the beginning of the resume. 	CO4
	Guidelines for Laboratory Conduction	
	her may design specific assignments that can highlight the learning outcomes of each u conducted in the lab should begin with a brief introduction of the topic, purpose of th	

The teacher may design specific assignments that can highlight the learning outcomes of each unit. Each activity conducted in the lab should begin with a brief introduction of the topic, purpose of the activity from a professional point of view and end with the learning outcomes as feedback from students. Most of the lab sessions can be designed to be inclusive; allowing students to learn skills experientially; which will benefit them in the professional environment. Every student must be given sufficient opportunity to participate in each activity and constructive feedback from the instructor / facilitator at the end of the activity should learn towards encouraging students to work on improving their skills. Activities should be designed to cater to enhancement of multiple skills – e.g. Team Building Activity can highlight 'open communication', 'group discussion', 'respecting perspectives', 'leadership skills', 'focus on goals' which can help students improve their inherent interpersonal skills.

At least one session should be dedicated to an interactive session that will be delivered by an expert from the industry; giving the students an exposure to professional expectations.

Guidelines for Student's Lab Journal

Each student should have a Lab Workbook (sample workbook attached) which outlines each lab activity conducted. The student must respond by writing out their learning outcomes and elaborating the activities performed in the lab., group discussion, group exercises and interpersonal skills and similar other activities/assignments.

Guidelines for Term work Assessment

Continuous assessment of laboratory work is to be done based on overall performance and lab assignments and performance of student. Each lab assignment assessment will be assigned grade/marks based on parameters with appropriate weightage. Suggested parameters for overall assessment as well as each lab assignment assessment include- timely completion, performance, punctuality, neatness, enthusiasm, participation and contribution in various activities-SWOC analysis, presentations, team activity, event management

		Y. B. Tech. (All Brand Pattern 2023 17D: Electrical Wiring	,			
Teaching Sc	heme:					
Theory:01 h	rs/week	02		ontinuous Comprehensive valuation: 25 Marks		
Prerequisite	Courses:					
To introduce To provide sl wiring.	ectives: Objectives of the to basics of electricity me kills for the electrical hou comes: On completion of	easurement and safety sehold wiring/ residentia		ıl wiring,industr	ial	
	1	Course Outcomes		Bloom's	Level	
C01	Dismantle and identify	various parts of the elec	trical home applian	ces. 1-Remen 2-Unders		
CO2	Locate or recognize the	fault location in the app	oliance.	4-Analyz 5-Evalua		
CO3	Use the appropriate too appliances.	ls, machines, meter, or o	levices to repair the	3-Apply		
CO4	Assemble the repaired a	appliances and make it o	-	1-Remen 2-Unders		
		COURSE CONTENT	ſS			
Unit I Ba	sics of electricity, measu	rements & safety	(7hrs)	COs mapped CO1	l -	
wire, complete Power. Circuir and Bonding. tester, earth te B. Dangers as Health, CAT	onents of a basic electrical e the electrical circuit.Ov t Breakers: Specifications Measuring & testing equi ster, etc. sociated with working arc ratings, Electricity rules fficials in electrical install	verview of Generation, s, construction, operatio pment: Digital multime pund electricity, safety p & regulations, Electric	Transmission & Di n, types, etc. Neutra ter, multifunction m precautions, tools, C cal permits, and th	stribution of El al Bus Bar, Gro neter, testers, co Occupational Sat ne role of gove	lectrical ounding ntinuity fety and ernmen	
Unit II El	ectrical Wiring		(8 hrs)	COs mapped CO2, CO3, C	l –	

Wires - Colors, the material used for wires or conductors

Cable - types, number of conductors, sizes, and colors used in domestic, commercial & industrial wiring Electrical accessories of common house wiring, commercial wiring, and industrial wiring, Selection of wires/cables.

Guidelines for Electrical installations, Preparation for Cable and Wire Termination.

Circuits and types, testing of single and three phase supply, controlling of the lamp through the switch in series and parallel connections, ceiling fan connections, regulator connection, making of distribution board, different wiring connections such as staircase, earthing testing and connections, types of wires and cables,

soldering practices, surface wiring, concealed wiring

Text Books

- 1. S. L. Uppal Electrical Power Khanna Publishers Delhi.
- 2. S. Rao, Testing Commissioning Operation and Maintenance of Electrical Equipment, Khanna publishers.
- 3. M.L. Anwani- Basic Electrical Engineering

Reference Books

- 1. S. L. Uppal, Electrical Wiring and Costing Estimation, Khanna Publishers, New Delhi.
- 2. P.S. Pabla Electric Power Distribution, 5th edition, Tata McGraw Hill.
- 3. Surjit Singh, Electrical Wiring, Estimation, and Costing, DhanpatRai and Company, New Delhi

E-Resources

1. <u>http://www.opentextbooks.org.hk/system/files/export/9/9648/pdf/Fundamentals_of_Electrical_Engineering_I_9648.pdf</u>

Useful websites / Video

- 1. <u>https://studio.youtube.com/channel/UCSXIMvov4_DEbAyvFHrY-PA</u>
- 2. <u>https://nptel.ac.in/courses/108/105/108105112/</u>
- 3. https://www.udemy.com/course/learn-the-basics-of-household-wiring/

	Strength of CO-PO Mapping												
Course	e Program Outcomes												
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	
CO1	2	2							2			3	
CO2	2	2		-		-			2			3	
CO3	2	2							2			3	
CO4	2	2							2			3	

	List of Laboratory Experiments (Minimum 8)				
Sr. No.	Laboratory Experiments	COs Mapped			
1	Study of standard electrical components used in domestic, commercial, and industrial wiring	CO1			
2	Study of protective equipment used in domestic, commercial, and industrial wiring	CO1, CO2			
3	Fluorescent lamp wiring and staircase wiring	CO1, CO2			
4	Preparation of wiring diagram in AutoCAD	CO1, CO2			
5	Measurement of energy using Single Phase Energy Meter	CO1, CO2			
6	Measurement of resistance to earth of an electrical equipment.	CO1, CO2			
7	Wiring of DOL and star-delta starters,	CO1, CO2			
8	Estimation & costing of Residencial house Electrical wiring - case study	CO1, CO2			
9	Estimation & costing of Industrial Electrical wiring - case study	CO1, CO2			
10.	Testing of wiring residential/commertial/industrial wiring as per Indian Electricity Rules	CO1, CO2			

Guidelines for Laboratory Conduction
> In each laboratory session, four to five students will perform the experiment in a group.
> Students should do connections under the supervision of the teachers and get the results by
following safety precautions and procedures.
Guidelines for Student's Lab Journal

The Student's Lab Journal should contain the following -

- > Apparatus with their detailed specifications.
- Connection diagram /circuit diagram.
- Observation table/ simulation waveforms.
- Sample calculations for one/two readings.
- Result table, Graph and Conclusions.
- > Few short questions related to the experiment.

Guidelines for Term Work Assessment

1. The student's termwork will be through continuous assessment.

2. Each experiment from the lab journal is assessed for thirty marks based on three rubrics.

Rubric R-1 for timely completion, R-2 for understanding, and R-3 for presentation/journal writing where each rubric carries ten marks.

	23	F. Y. B. Tech. Pattern 2023 00102A: Differential Ca	alculus		
Teaching	Examination Sche	me:			
•	03hrs/week : 01hr/week	03 01	Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks Tutorial / TermWork: 25Marks		
Prerequi	site Courses: -				
To introd To model electrical To introd To introd To introd	Objectives: luce concepts of first order f l various physical systems, s circuits, Rectilinear motion luce interpolating polynomia luce concept of double and t luce computational tools for	such as orthogonal trajec , Heat transfer. als, numerical differentia riple integration and their solving mathematical pr	tories, Newton's law tion and integration. ir applications. roblems.	of cooling, Simple	
Course	Dutcomes: On completion o		III be able to-	Bloom's Level	
CO1	Course Outcomes Blo Explain types of differential equations, finite differences and multiple integrals. 2- Un				
CO2	Solve problems on differe	tiple integrals.	3- Apply		
CO3	Apply concept of numeric calculus to engineering pu	roblems.		3- Apply	
C04 C05	Use computational tools f Analyze the solution of d differentiation & integrat	ifferential equations, nur	nerical s.	3- Apply4- Analyze	
Unit I	Differential Eq	uations (DE)	8hrs+ 2hrsTutorial	COs Mapped CO1, CO2, CO3	
	n of differential equations ial equation reducible to line	-	educible to exact for	rm, Linear DE and	
Unit II	Applications of Diffe	erential Equations	7hrs+ 2hrsTutorial	COs Mapped CO1, CO2,	

Unit	Finite differences and Interpolation	7hrs+	COs Mapped
III		2hrsTutorial	– CO1, CO3 ,
			CO5

Finite differences, differences of polynomials, relations between the operators, Newton's interpolation formula, Stirling's formula, Lagrange's Interpolation formula.

Unit IV	Numerical Differentiation and Integration	7hrs+2hrsTutorial	COs Mapped - CO1, CO3,
			CO5

Numerical Differentiation: Euler's method, Euler's Modified Method, Runge- Kutta fourth order, Predictor- Corrector Method.

Numerical Integration: Trapezoidal rule, Simpson's 1/3rd and 3/8th rule.

Unit V	Multiple Integrals and their Applications	7hrs+2hrsTutorial	COs Mapped - CO1, CO2, CO3,CO5
--------	---	-------------------	--------------------------------------

Double and Triple integrations, applications to area, volume, mean and root mean square values and Center of Gravity.

TextBooks

1.M.K. Jain, R.K.Jain, Iyengar, "Numerical Methods for scientific and engineering computation" (New age International)

2. B. S. Grewal ,"Higher Engineering Mathematics" Khanna Publication, Delhi.

Reference Books

 Erwin Kreyszig ,"Advanced Engineering Mathematics" ,Wiley Eastern Ltd.
 P. N. Wartikar and J. N. Wartikar," Applied Mathematics" (Volume I and II) , Pune Vidyarthi Griha Prakashan, Pune.

Strength of CO-PO Mapping												
		PO										
	1	2	3	4	5	6	7	8	9	10	11	12
CO 1	3	1	-	-	-	-	-	-	-	-	-	2
CO 2	3	1	1	-	-	-	-	-	-	-	-	2
CO 3	3	3	2	2	2	-	-	-	-	-	-	2
CO 4	1	-	-	-	3	-	-	-	-	-	-	2
CO5	3	3	2	2	2	-	-	-	-	-	-	2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	Assignments (Total 3 Assignment, Unit I and II 20 marks, Unit III and IV 20 marks and Unit V 10 marks &50 marks will be converted to 10 Marks)	10				
2	Tests on each unit using LearniCo (Each test for 15 M and total will be converted out of 10 M)	10				

List of Tutorial Assignments					
Sr. No.	Title	CO Mapped			
1	Examples on formation of differential equations exact DE.	CO1, CO2			
2	Examples on linear DE and reducible to linear differential equations.	CO1, CO2			
3	Examples on application of DE to Orthogonal trajectories, Newton's Law of cooling.	CO1, CO2, CO3,CO5			
4	Examples on Electrical Circuits, motion under gravity, Rectilinear Motion.	CO1, CO2, CO3,CO5			
5	Solving differential equation using Matlab.	CO1, CO2, CO4			
6	Examples on finite differences, differences of polynomials, relations between the operators.	CO1, CO3			
7	Examples on Newton's interpolation formula, Stirling's formula, Lagrange's Interpolation formula.	CO1, CO3 , CO5			
8	Solve ordinary differential equations using Numerical Methods.	CO1, CO3 , CO5			
9	Solve definite integration using Numerical Methods.	CO1, CO3 , CO5			
10	Solving differential equation and definite integrals using Matlab.	CO1, CO2, CO4			
11	Examples on double and triple integrations.	CO1, CO2, CO3			
12	Examples on applications of double and triple integration.	CO1, CO2, CO3, CO5			

Guidelines for Tutorial / Termwork Assessment						
Sr. No.	Sr. No. Components for Tutorial / Termwork Assessment					
1	Assignment on computational software	5				
2	Tutorial (Each tutorial carries 15 marks)	15				
3	Attendance (Above 95 % : 05 Marks, below 75% : 0 Marks)	5				

П

Teachin	g Scheme:	Credit Scheme:	Examination Scheme	:	
	: 03hrs/week ll : 02hrs/week	03 01	nensive 5 ks arks 5		
Prerequ	isite Courses, if any: -				
To acqui understa To unde To study To unde To unde	Objectives: ire the knowledge of electro- nding of materials. rstand structure, properties a v conventional and alternativ rstand technology involved i rstand corrosion mechanism	nd applications of specia e fuels with respect to the n analysis and improvin s and preventive method	ality polymers, nano mate neir properties and applica g quality of water as com ls for corrosion control.	erial and alloys.	
Course	Outcomes: On completion of		ill be able to–		
		Course Outcomes		Bloom's Level	
CO1	Describe different technic fuel, polymer, alloys.	Describe different techniques used for chemical entities present in fluids, fuel, polymer, alloys.			
CO2	Select appropriate techno properties of material.	logy involved in determ	ination of purity and	2- Understand	
CO3	Illustrate causes and prev corrosion	entive measures of ill ef	fect of hard water and	3-Apply	
CO4	Analyse the fluids, fuels methods.	and selection of appropr	iate purification	3-Apply	
CO5	Compare composition of corrosion control	fuels, purity of water an	d mitigation for	4-Analyze	
		COURSE CONTEN	TS		
				CO1,CO4	

pH metry: Introduction, standardization of pH meter, pH metric titration of strong acid versus strong base with titration curve.

UV-Visible Spectroscopy: Introduction, interaction of electromagnetic radiation with matter, statement of Beer's law and Lambert's law, different electronic transitions, terms involved in UV-visible

Spectros	copy.		
Unit II	Fuels	(8hrs)	CO1, CO4, CO5

Introduction, classification, Calorific value (CV): Gross calorific value (GCV) and Net calorific value (NCV), Determination of Calorific value: Bomb calorimeter, Solid fuel: Coal: Analysis of Coal-Proximate and Ultimate analysis, Liquid fuel: Petroleum: Refining of petroleum, CNG, Hydrogen gas as a fuel. Alternative fuels: Power alcohol, biodiesel and Rocket propellants, Knocking in engines, octane number and cetane number.

Unit	Introduction to Engineering Materials	(8hrs)	CO1, CO2
III			

Solid: crystalline and amorphous solids, Polymorphism, unit cell, crystal system-cubic, APF. Metallurgy-Ores and Minerals, Alloys- classification. Composition, woods metal, brass, Bronze, Tialloys. Preparation of alloys by fusion and powder method. Introduction of polymer: Terms- Speciality polymers: Introduction, structure, properties and applications of the polymers:

1. Bio-degradable polymers: Poly (hydroxybutyrate-hydroxyvalanate),

2. Conducting and doped conducting Polymer: Polyacetylene

3.Polymer Composite,

Nanomaterials: Introduction, definition, classification of nanomaterials based on dimensions, properties and general applications.

Unit	Analytical Aspects of Fluids	(8hrs)	CO1, CO2,
IV			CO3, CO4,
			CO5

Properties of Fluids-Surface Tension, Capillary action, Viscosity, Vapour Pressure, Types of Fluid Liquid Fluid- Water and Oil

Water: hardness of water: Types, Determination of hardness by EDTA method, Chloride content in water by Mohr's method, Ill effects of hard water in boiler, External Treatment of water i) Zeolite method ii) Demineralization method. Purification of water: Reverse osmosis.

Oil: Aniline point, Flash Point, Fire point.

Gaseous fluids: Gas Sensors, Types of Gas sensors

Unit V Corrosion Science	(8hrs)	CO3, CO5
--------------------------	--------	----------

Introduction, Types of corrosion – Dry and Wet corrosion, mechanism, nature of oxide films and Pilling-Bedworth's rule, hydrogen evolution and oxygen absorption, Factors influencing rate of corrosion. Methods of corrosion control: cathodic protection, Metallic coatings and its types, Galvanizing and Tinning, Electroplating, Powder coating.

Text Books

1. O.G. Palanna, "Engineering Chemistry", Tata Magraw Hill Education Pvt. Ltd.

2. Dr. S. S. Dara, Dr. S. S. Umare, "Textbook of Engineering Chemistry", S. Chand & Company Ltd.

Reference Books

- Wiley Editorial, "Engineering Chemistry", Wiley India Pvt.Ltd
 Shriver and Atkins, "Inorganic Chemistry", 5ed, Oxford University Press,
 S. M. Khopkar, "Basic Concept of Analytical Chemistry", 2ed, New Age-International Publisher

	Strength of CO-PO Mapping											
		PO										
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	1										2
CO2	3	1				2						2
CO3	3	1				1	1					2
CO4	3	1	1			1	2					2
CO5	3	1	1			1	2					2

	Guidelines for Continuous Comprehensive Evaluation of Theory Course					
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted				
1	Assignment on Unit 1 & 2	05				
2	Group presentations on Unit 3/4/5	10				
3	LearnCo test on each unit	05				

Sr. No.	Laboratory Experiments / Assignments	CO Mappeo	
1	Daniel Cell	C01	
2	To determine strength of strong acid using conductometer.	CO2	
3	To determine maximum wavelength of absorption and find unknown concentration of given sample by colorimeter.	CO4	
4	Determine the calorific value of given solid fuel by using Bomb calorimeter.	CO2	
5	Proximate analysis of coal.	CO5	
6	To determine hardness of water by EDTA method	CO4	
7	Estimation of chloride content by Mohr's method	CO4	
8	Estimation of Cu from given brass alloy	CO4	
9	ECE - To coat copper and zinc on iron plate using electroplating.	CO1	
10	Preparation of nanomaterials.	CO1	
11	Preparation of biodiesel from oil.	CO1	
12	To determine alkalinity of water	CO5	

1. Teacher will brief the given experiment to students its procedure, observations calculation, and outcome of this experiment.

2. Apparatus, chemicals, solutions and equipments required for given experiment will be provided by the lab assistants using SOP.

3. Students will perform the same experiment in a group (two students in each group) under the supervision of faculty and lab assistant. After performing the experiment students will check their readings, calculations from respective teacher.

Guidelines for Student's Lab Journal

Write-up should include title, aim, diagram, working principle, procedure, observations, graphs, calculations, conclusion and questions, if any.

Guidelines for Term work Assessment

Each experiment from lab journal is assessed for thirty marks based on three rubrics. Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

		F. Y. B. Tech.					
	Р	attern 2023 Semester	r: I / II				
		undamentals of Electr					
		ical, E&TC, R&A, Co					
Teaching		Credit Scheme:	Examination Sch				
Theory :0	3hrs/week	03	Continuous Con	nprehensive			
Practical :	: 02hrs/week	01	Evaluation: 20N	J arks			
			InSem Exam: 20	0Marks			
			EndSem Exam:				
			TermWork: 50N	Marks			
Prerequisi	ite Courses, if any: Semico	onductor Theory, Math	ematics				
Course Ob	ojectives:						
14. To stu	dy basic electronic compon	ents like PN junction d	iode, Zener diode, I	LED, Photodiode, B.	JT,		
E-MO	SFET and OpAmp along w	ith their applications.					
	derstand different number s		-	-			
	dy the basics of electronic of			inication system.			
Course Ou	utcomes: On completion of	f the course, students w	ill be able to–				
		Course Outcomes		Bloom's Le	vel		
CO1	Describe the working of OpAmp.	of semiconductor diode	2- Understan	ıd			
CO2	Explain the basics of n	umber systems, logic g ion system, AM, FM, c		ıd			
CO3	Apply the knowledge of	of semiconductor diode of basic analog circuits		3-Apply			
CO4	Apply the knowledge of	of number systems, log of basic digital circuits.		n 3-Apply			
CO5	Analyze the basic anal	og and digital applicati	on circuits.	4-Analyze			
	I	COURSE CONTEN		I			
Unit I	Semiconductor Diodes (08hrs) COs Mapped CO1, CO3, CO						
Rectifiers: Working o Zener Dio	on Diode: Construction, We Working and Parameters of of Bridge Rectifier with Caj de: Working, VI Characteri Photodiode: Working, Char	of Half Wave Rectifier pacitor Filter stics, Breakdown Mech	and Full Wave Rect nanisms, Zener Diod	tifiers			
Unit II	Transis	stors	(08hrs)	COs Mapped - CO1, CO3, CO5	5		

Transistors: Introduction and Types

BJT: Construction, Types and Regions of Operations, CB and CE configurations with their characteristics and current relationships, BJT as Switch, DC Load Line, Voltage Divider Bias Circuit, Single Stage CE Amplifier

Enhancement MOSFET: Types, Construction, Operation and Characteristics

Unit III	Linear Integrated Circuits	(08hrs)	COs Mapped -
			CO1, CO3, CO5

Introduction to OpAmp, Ideal Differential Amplifier, OpAmp Parameters, Introduction to Open Loop and Closed Loop OpAmp Configurations, Applications of OpAmp: Comparator, Inverting Amplifier, Non-Inverting Amplifier, Voltage Follower and Summing Amplifier.

Unit	Digital Electronics	(08hrs)	COs Mapped -
IV			CO2, CO4, CO5

Binary, Octal, Decimal, Hexadecimal, their conversion, Binary Arithmetic, Logic Gates, Boolean Laws, De Morgan's Theorem, Half Adder, Full Adder, Flip Flops: SR, JK, D and T

Unit V	Electronic Communication Systems	(08hrs)	COs Mapped - CO2
--------	---	---------	---------------------

Block Diagram of Communication System, Communication Media: Wired and Wireless, Modes of Transmission, Electromagnetic Spectrum, Modulation and It's Need, AM and FM: Definition, Modulation Index and Bandwidth, Mobile Communication System: Cellular Concept and Block Diagram of GSM System

Text Books

1. Thomas. L. Floyd, "Electronics Devices", 9th Edition, Pearson

2. R. P. Jain, "Modern Digital Electronics", 4th Edition, Tata McGraw Hill

3. George Kennedy, "Electronic Communication Systems", 5th Edition, Tata McGraw Hill

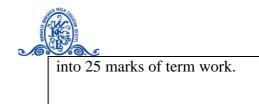
Reference Books

1. Paul Horowitz, "The Art of Electronics", 3rdEdition, Cambridge University Press

2. Theodore S. Rappaport, "Wireless Communications: Principles and Practice", 2ndEdition,Pearson

	Strength of CO-PO Mapping											
		РО										
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	-	-	-	2	-	-	-	-	-	-	-
CO2	3	-	-	-	2	-	-	-	-	-	-	-
CO3	3	2	-	-	2	-	-	-	-	-	-	-
CO4	3	2	-	-	2	-	-	-	-	-	-	-
CO5	-	2	-	-	-	-	-	-	-	-	-	-

	Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Sr. No. Components for Continuous Comprehensive Evaluation Marks							
1	Assignment:	10					
	Assignment No. 1 - Unit 1, 2 (10 Marks)						
	Assignment No. 2 - Unit 3, 4, 5 (10 Marks)						
2	Quiz (Using Learnico):	10					
	Unit No. 1 (10 Questions - 10 Marks)						


Unit No. 2 (10 Questions - 10 Marks)	
Unit No. 3 (10 Questions - 10 Marks)	
Unit No. 4 (10 Questions - 10 Marks)	
Unit No. 5 (10 Questions - 10 Marks)	

Sr. No.	Laboratory Experiments / Assignments	CO Mapped		
1	Build and demonstrate appropriate AC to DC converter for Mobile charger. How to rectify the fault, if the output of your circuit reduces to half of	CO3, CO5		
	the required value?			
2	Build and demonstrate a circuit to superimpose analog signal with DC CO3, C signal. Hint: Television system.			
3	Build and demonstrate basic charging circuit for battery of an electric vehicle.	battery of an electric CO3, CO5		
4	Build and demonstrate a simple circuit to control the flashing speed of LEDs used in decorative lighting system.	CO3, CO5		
5	Build and demonstrate simple circuit that will convert sine waveform into square waveform.	CO3, CO5		
6	Build and demonstrate a simple circuit that will turn off a water pump automatically when the water tank is full.	CO3, CO5		
7	Build and demonstrate the simple PUC system which will show green light indication if all CO ₂ , SO ₂ , Carbon monoxide levels are less than threshold value otherwise it should show red light indication. Hint: MQ series sensors along with comparators cane be used	CO4, CO5		
8	Suggest a simple electronic system for a hearing-impaired person. (Implementation is not expected)			
9	Suggest a simple system to transmit your voice signal from a recording room in Nashik to a broadcasting station in Mumbai. (Implementation is not expected)	CO3, CO4, CO5		
	Guidelines for Laboratory Conduction			
1. Experi	ments should be performed in a group of two students only.			
2. Avoid	contacting circuits with wet hands or wet materials.			
3. Double	e check circuits for proper connections and polarity prior to applying the p	ower.		
4. Observ	e polarity when connecting polarized components or test equipment.			
5. Make	sure test instruments are set for proper function and range prior to taking a	measurement		
	Guidelines for Student's Lab Journal			

Graph, Calculations, Results, Conclusion and Assignment questions

Guidelines for Termwork Assessment

- 3. R1: Timely completion of experiment (10 Marks)
- 4. R2: Understanding of experiment (10 Marks)
- 5. R3: Presentation / clarity of journal writing (10 Marks)
- 6. Total 30 marks for each experiment and average marks of all experiments will be converted

		F. Y. B. Tech. Pattern 2023 300108A: Programming COMP, IT, CSD, Elect		&A)
Teachin	ng Scheme:	Credit Scheme:	Examination	Scheme:
Theory : 01hrs/week Practical : 02hrs/week		01 01	InSem Exam: 20Marks EndSem Exam: 30Marks Termwork: 50 Marks	
Prerequ	isite Courses, if any: -			
To get a To unde To use c To apply To build	Objectives: cquainted with the fundame erstand data types, control st concept of arrays, string ope y the concept of structures in the programming skills usi	ructures and functions in rations in C to solve a pr n 'C' to solve a problem ng 'C' to solve a problem	'C' oblem	
Course	Outcomes: On completion		ill be able to-	
0.04		Course Outcomes		Bloom's Level
CO1		lowchart for a given pro		2- Understand
CO2	Apply fundamentals of problem	Apply fundamentals of 'C' programming to solve a giver problem		3-Apply
CO3	Build a solution for a given problem using conditional and iterative algorithmic constructs		ditional and	3-Apply
CO4			ms	3-Apply
CO5	Develop program usi	ng structure		3-Apply
		COURSE CONTENT	S	
Unit I	Introduction to Program	nming Languages	02 hrs	COs Mapped – CO1
program	6			
Unit	f Program Errors: Syntax, Fundamentals of 'C' Pr		03 hrs	COs Mapped –
II		- -		CO2
Operator	ction to 'C' Programming, rs (Arithmetic, relational, lo		,	· 1 · ·
conversi		vo Algonithmia	04 hra	COg Mangad
Unit III	Conditional and Iterative Algorithmic Constructs		04 hrs	COs Mapped – CO3
Iterativ	onal algorithmic construct e algorithm constructs: Co le' statements, nested loops,	onstruction of loops, Esta	blishing initial c	
u0-w111	ie statements, nesteu toops,	Commue, oreak statemet		
Unit IV	Arrays and Functions		04 hrs	COs Mapped – CO4

Arrays: Concept, One- dimensional, multidimensional array, character arrays (Strings). **Function types:** Library functions (math, string), user defined functions: Function definition, function declaration, arguments, scope rules and lifetime of variables, function calls and return.

Unit V	Structure	02 hrs	COs Mapped – CO5
	· · ·	1	

Defining a structure, accessing members, structure initialization.

Text Books

1. Yashavant Kanetkar, "Let Us C" – Seventh Edition, BPB Publications, 2007

2. E. Balagurusamy, "Programming in ANSI C", Tata McGraw Hill, 2002

Reference Books

1.Brian W. Kernighan and Dennis M. Ritchie, "The C Programming Language", Pearson Education, 1988

2.Computer Science: A Structured Programming Approach Using C, B. A. Forouzan and R.F. Gilberg, Third Edition, Cengage Learning.

			Stre	ngth o	f CO-	PO M	appin	g				
Course						P	0					
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3	3	3	-	-	-	-	-	-	-	-	3
CO2	3	3	3	-	-	-	-	-	-	-	-	3
CO3	3	3	3	-	-	-	-	-	-	-	-	3
CO4	3	3	3	-	-	-	-	-	-	-	-	3
CO5	3	3	3	-	-	-	-	-	-	-	-	3

9	List of Laboratory Experiments / Assignments	~~~
Sr. No.	Laboratory Experiments / Assignments	CO Mapped
1	In a departmental store, a customer is offered an x% discount on the printed price of each commodity. The customer needs to pay y% sales tax on the discounted amount. Draw a flowchart, write an algorithm / a pseudo-code and write a C program to calculate the amount to be paid by the customer for a commodity using above conditions.	CO1,CO2
2	A type of a triangle (equilateral, isosceles, right angle triangle etc) is decided using the length of its three sides. Draw a flowchart, write an algorithm /write a pseudo-code and write a C program to accept the length of three sides of a triangle and display the type of triangle. Also Calculate its area and perimeter.	C01,C02, C03
3	After conducting a class test for a course, a teacher wants to record the marks obtained by all the students in the class and find the Minimum and Maximum score obtained. The teacher is also interested in knowing the number of students who passed in this test Draw a flowchart, write an algorithm/ a pseudo-code and write a C program to record the marks and perform above functions.	CO1,CO2, CO3,CO4
4	Draw a flowchart/write an algorithm / a pseudo-code and write a menu driven C program to perform following string operations using library and user defined function: i.Find length of a string ii.Copy a string iii.Concatenate the string iv.Compare two strings	CO1,CO2, CO3,CO4
5	Draw a flowchart/write an algorithm / a pseudo-code and write a C program using functions to perform the following operations: i. Addition of Two Matrices ii.Multiplication of Two Matrices iii.Transpose of a given matrix	C01,C02, C03,C04
6	Draw a flowchart, write an algorithm / a pseudo-code and write a C program using a function to test whether the given number is a prime number and also to find smallest divisor, GCD, LCM of the given number	CO1,CO2, CO3,CO4
7	A company desires to maintain a database of its customer by recording information about customers such as name, mobile, gender, city etc. The sales department personnel would like to get i. Customers with all the details, ii. Customers and their mobile numbers, iii. Customers from a given city Draw a flow-chart, write an algorithm / a pseudo-code and develop a menu driven application to provide above functionalities	CO1,CO2, CO3,CO4, CO5

Guidelines for Laboratory Conduction

Use coding standards such as variable naming conventions, use of constants, proper indentation, comments and documentation

For each assignment, students should write number of lines of code, various errors encountered and test cases used to test the program

Students should incorporate functionalities mentioned in boldface in the assignments

In addition to above eight assignments, students may develop an application in consultation with the teacher

Guidelines for Student's Lab Journal

The laboratory assignments are to be submitted by students in the form of a journal. Journal consists of Certificate, table of contents, and handwritten write-up of each assignment (Title, problem statement, theory concepts in brief, algorithm, flowchart, test cases and conclusions). Program codes with sample outputs shall be submitted in soft form.

Guidelines for Term work Assessment

Continuous assessment of laboratory work shall be based on the overall performance of a student. Assessment of each laboratory assignment shall be based on rubrics that include

R1- Timely completion (10) – Full marks if submitted in time, 5 marks otherwise,

R2- Understanding of assignment (10) Full marks for accurate flowchart, algorithm / pseudo-code and working code

R3- Use Coding standards, proper documentation, neatness of writeup (10) - 5 marks for coding standards and documentation and 5 marks for neatness of write up.

	F	Y. B. Tech. (All Brand Pattern 2023	ches)		
	23001181	D: Power Generation T	echnologies		
Teaching S		Credit Scheme:	Examination Sc	heme	:
Theory:02	hrs/week	02	Continuous Cor Evaluation: 20N InSem Exam: 20 EndSem Exam:	/larks 0Mar	s ks
Prerequisi	te Courses: - Fundamental	s of Electrical Engineeri			
To introduc To introduc To present	jectives: Objectives of the ce energy conversion technology renewable energy as a su the impact of conventional	blogies stainable source of energ and non-conventional so	ources on the enviro	onmer	nt
Course Ou	tcomes: On completion of	Course Outcomes	i be able to-		Bloom's Level
C01	Identify components on		ing principle of		1-Remember
COI	• 1	d elaborate on the worki onventional power plant	01 1		1-Kemember
CO2		ce and opportunities of		•	2-Understand
CO3	Calculate the power out	put of wind solar, and h	ydropower plants.		3-Apply
CO4	Compare and evaluate t generation technologies		-	ious	4-Analyze 5-Evaluate
		COURSE CONTENT	ſS		
Unit I	Thermal P	ower Plant	(6hrs)		s mapped - 01, CO4
Thermal Pow Water tube).	ne power sector (Ministry of wer Plants: Site selection, N Assessment of heat recover Draught systems, electrostati	Iain parts, and it's work ery systems Steam turbi	ing. Types of boiler	s (FB	C, Fire tube, and
Unit II	Nuclear, Gas, and		(6hrs)		s mapped - 01, CO4
nuclear read B. Diesel (Numerical C. Gas Pot thermal eff	r Power Plant : Introduct ctors and working of each p Power Plants : Main comp), Site selection of diesel po ower Plant : Introduction to iciency, open loop and clos nbined cycle power plants,	bart, classification of nuc bonents and its working ower plant. o gas cycles, Simple gas ed loop cycle power pla	elear reactor, nuclea , Diesel plant effici s turbine power plan nts, gas fuels, gas t	nterial ur was ency nt, me	s, site selection te disposal. and heat balance thods to improve
Unit III	Hydro, Geother		(6hrs)	CO	s mapped -

Site selection, Hydrology, storage and pondage, general arrangements, and operation of hydro the power plant, Hydraulic turbines, turbine size, Pelton wheel turbine, Francis and Kaplan turbines, selection of turbines, Dams, Spillways, gates, intake and outtake works, canals, and the layout of penstocks, water hammer and surge tank, simple numerical on hydrographs, and the number of turbine required. Small, mini, and micro hydro power plant (Introduction only), Introduction to Geothermal and Tidal Energy Conversion

Unit IV	Wind, Biomass energy	(6hrs)	COs mapped –
			CO1, CO2, CO3,
			CO4

Historical Development of Wind Power, Types of Wind turbine, Impact of Tower Height, Power in the Wind. Maximum Rotor efficiency, Speed control for Maximum Power, and Average Power in the wind (Numerical). Wind Turbine Generators (WTG) - Synchronous and Asynchronous (block diagrams only), Wind Turbine Economics, Simple Estimates of Wind Turbine Energy, Environmental Impacts of Wind Turbines. Change in wind pattern and its effect on power generation. Control of wind turbine generator.

Introduction to biomass energy, Municipal waste to energy

maoaaeao	it to bronnuss energy, manierpar waste to energy		
Unit V	Solar PV-based Generation	(6hrs)	COs mapped -
			CO1, CO2, CO3,
			CO4

Principles of solar radiations, solar constant, cloudy index and concentration ratio, measurement of solar radiation, A Generic Photovoltaic Cell, The Simplest Equivalent Circuit for a Photovoltaic Cell From Cells to Modules to Arrays, Numerical on number of solar panel selection. The PV I–V Curve under Standard Test Conditions (STC), Impacts of Temperature and Insolation on I–V Curves, Shading Impacts on I–V curves, System: Introduction to the Major Photovoltaic System

Text Books

4. R. K. Rajput, "A text book on Power System Engineering", Laxmi Publications (P) Ltd.

5. G. D. Rai, "Renewable Energy Sources", Khanna Publications.

Reference Books

- 4. Mukund Patel, "Wind and Solar Power Plants", CRC Press.
- 5. Gilbert Masters John, "Renewable Energy", Wiley and Sons' publications

6. Chetan Singh Solanki "Solar Photovoltaics: Fundamentals, Technology and Application" PHI Publications.

			Stre	ength	of CO	-PO N	Aappi	ing				
Course					Prog	gram	Outco	mes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	2										3
CO2	2	2										3
CO3	2	2										3
CO4						1	1					3

	Guidelines for Continuous Comprehensive Evaluation of Theory Cours	e
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted
1	LMS test one test on each unit	5 Marks
2	Industrial Visit (Quiz)	10 Marks

	Γ	3	Group Presentation	5 Marks
--	---	---	--------------------	---------

		F. Y. B. Tech. (All Branc Pattern 2023 16A: Indian Knowledg		
Teaching S		Credit Scheme:	Examination Sch	neme:
Tutorial: (02 hrs/Week	02	Termwork: 50Ma	urks
Course Ot To create a	jectives: wareness of contribution of	of India in the field of eng	gineering	
Course Ou	itcomes: On completion o	f the course, students will	ll be able to-	
		Course Outcomes		Bloom's Level
CO1	Understand the term andkey components.	'Indian Knowledge Sy	stem' it's framew	rork 1-Remember
CO2	Appreciate the measur	ement techniques and ma	athematics in IKS	2-Understand
CO3	Identify and elaborate	the applications of IKS in	5 5	ain 3-Apply
		COURSE CONTENT	S	
Unit I	Overview of Indiar	Nowledge System	(6 hrs)	COs mapped- CO1
Tarka: The	of ancient knowledge, Def Indian Art of Debate, The valid knowledge. Mathematics and M		-	-
-	system in India, Salient fe easurement of time, distan			pproaches to represent
square root	ects of Indian mathematic , series and progression s and combinatorial proble	s, Geometry, The valu	e of π , Trigonom	netry, algebra, Binary
Unit III	Astrono	ny in IKS	(6 hrs)	COs mapped- CO4
coordinate s	ects of Indian Astronomy system, elements of Indian der system, Astronomical	n Calender, Aryabhatiya	and Siddhantic tra	India, The celestial dition, Pancanga-The
Unit IV	Metalworking and Ot	her applications in IKS	(6 hrs)	COs mapped- CO2, CO3
steel in Ind	S&T heritage, mining and ia, Lost wax casting of Ide	ols and Artfacts, Apparat	uses used.	chnology, Iron and
Literature s	sources of science and tech	nology, physical structu	res in India, Irrigati	on and water

 House, Mumbai. Kak, S.C. (1987). "On Astronomy in Ancient India", Indian Journal of History of Science, 22(3) pp. 205–221. Subbarayappa, B.V. and Sarma, K.V. (1985). Indian Astronomy: A Source Book, Nehru Centre Mumbai. 	Unit V	Town Planning and Architecture in IKS	(6 hrs)	COs mapped- CO3, CO5				
 Mahadevan, B., Bhat Vinayak Rajat, Nagendra Pavana R.N. (2022), "Introduction to India Knowledge System: Concepts and Applications", PHI Learning Private Ltd. Delhi. Kapoor Kapil, Singh Avadhesh (2021). "Indian Knowledge Systems Vol – I & II", Indian Institution of Advanced Study, Shimla, H.P. Reference Books Pride of India: A Glimpse into India's Scientific Heritage, Samskrita Bharati, New Delhi. Datta, B. and Singh, A.N. (1962). History of Hindu Mathematics: Parts I and II, Asia Publishing House, Mumbai. Kak, S.C. (1987). "On Astronomy in Ancient India", Indian Journal of History of Science, 22(3) pp. 205–221. Subbarayappa, B.V. and Sarma, K.V. (1985). Indian Astronomy: A Source Book, Nehru Centre Mumbai. Bag, A.K. (1997). History of Technology in India, Vol. I, Indian National Science Academy, New Delhi. Acarya, P.K. (1996). Indian Architecture, MunshiramManoharlal Publishers, New Delhi. Banerjea, P. (1916). Public Administration in Ancient India, Macmillan, London. 			imbs of vastu, 7	Гown planning,				
 Knowledge System: Concepts and Applications", PHI Learning Private Ltd. Delhi. Kapoor Kapil, Singh Avadhesh (2021). "Indian Knowledge Systems Vol – I & II", Indian Institute of Advanced Study, Shimla, H.P. Reference Books Pride of India: A Glimpse into India's Scientific Heritage, Samskrita Bharati, New Delhi. Datta, B. and Singh, A.N. (1962). History of Hindu Mathematics: Parts I and II, Asia Publishing House, Mumbai. Kak, S.C. (1987). "On Astronomy in Ancient India", Indian Journal of History of Science, 22(3) pp. 205–221. Subbarayappa, B.V. and Sarma, K.V. (1985). Indian Astronomy: A Source Book, Nehru Centre Mumbai. Bag, A.K. (1997). History of Technology in India, Vol. I, Indian National Science Academy, New Delhi. Acarya, P.K. (1996). Indian Architecture, MunshiramManoharlal Publishers, New Delhi. Banerjea, P. (1916). Public Administration in Ancient India, Macmillan, London. 		Text Books						
 Kapoor Kapil, Singh Avadhesh (2021). "Indian Knowledge Systems Vol – I & II", Indian Institut of Advanced Study, Shimla, H.P. Reference Books Pride of India: A Glimpse into India's Scientific Heritage, Samskrita Bharati, New Delhi. Datta, B. and Singh, A.N. (1962). History of Hindu Mathematics: Parts I and II, Asia Publishing House, Mumbai. Kak, S.C. (1987). "On Astronomy in Ancient India", Indian Journal of History of Science, 22(3) pp. 205–221. Subbarayappa, B.V. and Sarma, K.V. (1985). Indian Astronomy: A Source Book, Nehru Centre Mumbai. Bag, A.K. (1997). History of Technology in India, Vol. I, Indian National Science Academy, New Delhi. Acarya, P.K. (1996). Indian Architecture, MunshiramManoharlal Publishers, New Delhi. Banerjea, P. (1916). Public Administration in Ancient India, Macmillan, London. 			· · · · · · · · · · · · · · · · · · ·					
of Advanced Study, Shimla, H.P. Reference Books 1. Pride of India: A Glimpse into India's Scientific Heritage, Samskrita Bharati, New Delhi. 2. Datta, B. and Singh, A.N. (1962). History of Hindu Mathematics: Parts I and II, Asia Publishing House, Mumbai. 3. Kak, S.C. (1987). "On Astronomy in Ancient India", Indian Journal of History of Science, 22(3) pp. 205–221. 4. Subbarayappa, B.V. and Sarma, K.V. (1985). Indian Astronomy: A Source Book, Nehru Centre Mumbai. 5. Bag, A.K. (1997). History of Technology in India, Vol. I, Indian National Science Academy, New Delhi. 6. Acarya, P.K. (1996). Indian Architecture, MunshiramManoharlal Publishers, New Delhi. 7. Banerjea, P. (1916). Public Administration in Ancient India, Macmillan, London. Online Course								
 Reference Books Pride of India: A Glimpse into India's Scientific Heritage, Samskrita Bharati, New Delhi. Datta, B. and Singh, A.N. (1962). History of Hindu Mathematics: Parts I and II, Asia Publishing House, Mumbai. Kak, S.C. (1987). "On Astronomy in Ancient India", Indian Journal of History of Science, 22(3) pp. 205–221. Subbarayappa, B.V. and Sarma, K.V. (1985). Indian Astronomy: A Source Book, Nehru Centre Mumbai. Bag, A.K. (1997). History of Technology in India, Vol. I, Indian National Science Academy, New Delhi. Acarya, P.K. (1996). Indian Architecture, MunshiramManoharlal Publishers, New Delhi. Banerjea, P. (1916). Public Administration in Ancient India, Macmillan, London. 								
 Datta, B. and Singh, A.N. (1962). History of Hindu Mathematics: Parts I and II, Asia Publishing House, Mumbai. Kak, S.C. (1987). "On Astronomy in Ancient India", Indian Journal of History of Science, 22(3) pp. 205–221. Subbarayappa, B.V. and Sarma, K.V. (1985). Indian Astronomy: A Source Book, Nehru Centre Mumbai. Bag, A.K. (1997). History of Technology in India, Vol. I, Indian National Science Academy, New Delhi. Acarya, P.K. (1996). Indian Architecture, MunshiramManoharlal Publishers, New Delhi. Banerjea, P. (1916). Public Administration in Ancient India, Macmillan, London. 								
 House, Mumbai. Kak, S.C. (1987). "On Astronomy in Ancient India", Indian Journal of History of Science, 22(3) pp. 205–221. Subbarayappa, B.V. and Sarma, K.V. (1985). Indian Astronomy: A Source Book, Nehru Centre Mumbai. Bag, A.K. (1997). History of Technology in India, Vol. I, Indian National Science Academy, New Delhi. Acarya, P.K. (1996). Indian Architecture, MunshiramManoharlal Publishers, New Delhi. Banerjea, P. (1916). Public Administration in Ancient India, Macmillan, London. 	1. Pride of India: A Glimpse into India's Scientific Heritage, Samskrita Bharati, New Delhi.							
 Kak, S.C. (1987). "On Astronomy in Ancient India", Indian Journal of History of Science, 22(3) pp. 205–221. Subbarayappa, B.V. and Sarma, K.V. (1985). Indian Astronomy: A Source Book, Nehru Centre Mumbai. Bag, A.K. (1997). History of Technology in India, Vol. I, Indian National Science Academy, New Delhi. Acarya, P.K. (1996). Indian Architecture, MunshiramManoharlal Publishers, New Delhi. Banerjea, P. (1916). Public Administration in Ancient India, Macmillan, London. 								
 Mumbai. Bag, A.K. (1997). History of Technology in India, Vol. I, Indian National Science Academy, New Delhi. Acarya, P.K. (1996). Indian Architecture, MunshiramManoharlal Publishers, New Delhi. Banerjea, P. (1916). Public Administration in Ancient India, Macmillan, London. 	3. Kak, S.C. (1987). "On Astronomy in Ancient India", Indian Journal of History of Science, 22(3),							
 Delhi. Acarya, P.K. (1996). Indian Architecture, MunshiramManoharlal Publishers, New Delhi. Banerjea, P. (1916). Public Administration in Ancient India, Macmillan, London. Online Course								
7. Banerjea, P. (1916). Public Administration in Ancient India, Macmillan, London. Online Course								
Online Course	6. Acarya, P.K. (1996). Indian Architecture, MunshiramManoharlal Publishers, New Delhi.							
	7. Banerjea, P. (1916). Public Administration in Ancient India, Macmillan, London.							
		Online Course						
	nttps://onli	inecourses.swayam2.ac.in/imb23_mg53/preview						

Term work Assessment:

1.	Assignment 01 (Unit 01 and 02)	15 Marks
2.	Assignment 02 (Unit 03 and 04)	15 Marks
3.	Field visit and quiz	10 Marks
4.	Group Presentation (group of 5 students)	10 Marks

Guidelines for Term Work Assessment

1. The student's termwork will be through continuous assessment.

2 Rubric R-1 for timely completion, R-2 for understanding and R-3 for presentation/journal writing where each rubric carries ten marks.

F. Y. B. Tech.									
Pattern 2022									
2300111A: Workshop Practice									
Teaching Scheme:	Credit Scheme:	Examination Scheme:							
Lecture : 01 hrs/week	01	Continuous Comprehensive							
Practical : 02 hrs/week	01	Evaluation :25							
		Term work: 25Marks							

Course Objectives:

To acquire the basic knowledge of fundamentals Machine Tools.

To inculcate the basics of various manufacturing processes.

To impart practical aspects of Machine Tools and Manufacturing processes used in industrial applications

To develop the skill through hands-on practices using hand tools, power tools, machine tools in manufacturing and assembly shop

Course Outcomes: On completion of the course, students will be able to-

	Course Outcomes	Bloom's Level
CO1	Select appropriate machine and cutting tools for a given application	1- Remember
CO2	Describe the process and programming methods for CNC machines and 3D printing	2-Understand
CO3	Apply the basic knowledge of Shop Floor Safety, Machine tools and Manufacturing processes.	3-Apply
CO4	Fabricate the simple mechanical parts	3-Apply

	COURSI CONTEN'		
Unit I	Workshop Safety and Maintenance	(2 hrs)	COs Mapped- CO3
a. Introduction	to Workshop Safety: Introduction to w	orkshop safety norms and gui	delines.
Identifying pote	ntial hazards in a workshop. Proper usag	e of personal protective equip	ment (PPE).
Safety guideline	es forhandling various tools and equipme	nt. Emergency procedures and	l first aid
basics.			

b. Workshop Maintenance and Housekeeping : Importance of workshop maintenance and cleanliness. Regular maintenance of tools and equipment. Workshop layout and organization for efficient workflow. Properstorage of tools and materials to ensure longevity.

Unit II Measurement and Introduction to Welding	(2 hrs)	COs Mapped- CO2
---	---------	-----------------------

a. Measurement and Metrology: Importance of accurate measurement in workshop practice. Various measuring tools and their uses –varnier calipers, micrometers, rulers, etc. Metrology and its role in qualitycontrol. Understanding measurement units and conversions.

b. Introduction to Welding Shop: Overview of Welding Shop and its applications. Understanding the arc welding process and its principles. Safety precautions for welding operations. Demonstration of simple weldingtasks.

Unit III	Machine Tools	(2 hrs)	COs Mapped- CO1,CO2					
a. Demonstrati	ion of Conventional Machine Tools: In	troduction to Lathe and its con	nponents.					
Understanding the Milling Machine and its operations. Practical applications of Lathe and Milling								
Machine in different								
industries. Safety guidelines while operating conventional machine tools.								
b. Introduction	n to CNC Machine Tools: Understandin	g CNC (Computer Numerical	Control)					
technology. Typ	es of CNC machines - CNC turning, VM	IC (Vertical Machining Cente	r), and plasma arc					
machining, CN0	C wood router, etc. Detailed demonstration	on of any one CNC process, in	cluding a					
programming as	signment. Safety							
considerations s	pecific to CNC machine operations.							
Unit IVIntroduction to 3D Printing(2 hrs)COs Mapped- CO2								
a. 3D Printing : Overview of 3D printing technology and its applications. Step-by-step process of 3D printing, from design to printing. Software used in 3D printing - creating a design, exporting STL file, choosing parameters, and generating G code. Safety measures while handling 3D printing equipment								

choosing parameters, and generating G code. Safety measures while handling 3D printing equipment and materials.

b. Materials and Their Properties: Overview of common workshop materials - metals, wood, and plastics.

Physical and mechanical properties of materials. Material selection criteria for specific projects. Recycling and sustainable practices in the workshop.

Unit V	Workshop Projects, Problem- Solvingand Troubleshooting	(02 hrs)	COs Mapped -CO4	

a. Introduction to Workshop Projects: Planning and executing workshop projects.

Understanding projectrequirements and specifications. Breakdown of complex tasks into smaller achievable steps. Importance of teamwork and collaboration in workshop projects.

b. Problem-Solving and Troubleshooting: Approaches to problem-solving in workshop scenarios. Common issues and challenges in workshop practice. Troubleshooting techniques for tools and equipment. Encouraging aproactive approach to tackle workshop-related problems.

Sr. No.	Laboratory Experiments / Assignments	COs Mapped
1	Workshop safety Introduction to workshop facilities, workshop safety norms.	CO3
2	Fitting shop Preparation of simple fitting job having sawing, filing, drilling, tappingoperations using different tools/equipments such as files, hammers, drills & taps, etc.	CO4
3	Tin Smithy shop Preparation of simple sheet metal job having shearing, bending and joining operations using different tools/equipments such as hammers, mallet, stake block, snip, etc. needed for it.	CO4

4	Carpentry Shop	CO4
	Preparation of simple wooden job having marking, sawing, planning, chiseling operations using different tools/equipments such as saws, Jack plane, chisel, hammer, mallet etc. needed for it.	
5	Welding Shop	C01
	Demonstration of simple welding job using arc welding process.	
6	Demonstration of conventional machine Tools	CO1
	Demonstration of conventional machine Tools: Lathe and Milling machine	
7	Demonstration of CNC machine Tools	CO2
	Introduction to CNC turning, VMC, plasma arc machining, Laser cutting, CNC	
	wood router. Detail demonstration of any one process with one programming	
	assignment.	
8	Demonstration of 3D printing	CO2
	Demonstration of basic steps of 3D printing such as creating a design,	
	exporting STL file, choosing parameters, creating G code and printing	
	Guidelines for Laboratory Conduction	1

1. Importance of workshop practical and shop floor safety norms should be emphasized in the first practical session.

2. Students should develop one product/prototype involving operations from Practical 2 to 5.

- 3. Instructor should demonstrate detailed working of welding and machine tools.
- 4. Instructor should demonstrate one programming assignment on 3D printing and CNC machine.

Guidelines for Student's Lab Journal

1. Prepare work diary based on practical performed in workshop. Work diary consists of job drawing, operations to be performed, required raw materials, tools, equipments, date of performance with instructor signature.

2. Student has to maintain one file for write ups based on safety norms and illustrations/sketches of demonstrated parts/mechanisms/machine tools etc.

Guidelines for Termwork Assessment

Term work assessment shall be based on the timely completion of jobs, quality of job, skill acquired, completion of workshop diary and brief write-ups.

Strength of CO-PO Mapping												
		PO										
	1	2	3	4	5	6	7	8	9	1	1	1
										0	1	2
CO1	2	-	-	-	-	-	-	-	1	-	1	1
CO2	2	-	-	-	1	-	-	-	1	1	-	1
CO3	2	-	-	-	-	1	-	-	1	-	-	1
CO4	2	-	-	-	-	-	-	1	1	1	-	1

Text Books						
1. S. K. Hajra Choudhary, Nirjhar Roy, "Element of Workshop Technology: Vol.1 and 2", Media						
Promoters and Publishers Pvt. Ltd., 15th Edition, 2012						
2. H. S. Bawa, "Workshop Practice", Tata McGraw Hill Education (Publisher)						
Reference Books						
1. John, K. C., "Mechanical Workshop Practice", Prentice Hall Publication, New Delhi						
2. Mikell P. Groover, "Introduction to Manufacturing Processes", Wiley Publications						

	F. Y. B. Tech. Pattern 2023 Semester: II 2300115B: Engineering Explorations									
Teaching Sch		Credit Scheme:	Examination Scheme	e:						
Tutorial : 02	hrs/week	02	Tutorial/Term Worl	k: 75Marks						
Prerequisite	Courses, if any:		·							
 To inculca To engage To provide professionality 	e learning through inter- te independent learning e students in rich experie de opportunity to get sm. comes: On completion of	by problem solving. ential learning. involved in a group	so as to develop tear	m skills and learn						
	-	Course Outcomes		Bloom's Level						
CO1	Apply principles from		3-Apply							
CO2	Demonstrate long-tern	n retention of knowledg	ge and skills acquired.	3-Apply						
CO3	Function effectively as	s a team to accomplish	a desired goal.	3-Apply						
CO4	Explore an Engineering Product and prepare its Mind map 4-Analysis									
CO5	Enhance their learning ability to solve practical problems. 5-Synthesis									
		Reference Books		-						
•	sed Learning, Edutopia, M L? Buck Institute for Edu									

Strength of CO-PO Mapping												
		PO										
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	2	-	1	-	2	2	1	-	-	-	-
CO2	-	-	-	-	-	-	-	-	-	2	2	2
CO3	-	-	-	-	-	-	-	-	3	-	-	-
CO4	2	2	-	2	-	2	2	1	3	3	-	-
CO5	2	2	2	2	2	2	2	1	3	3	2	2

Experiential learning involves a number of steps that offer student a hands-on, collaborative and reflective learning experience which helps them to "fully learn new skills and knowledge". During each step of the experience, students will engage with the content, the instructor, each other as well as self–reflect and apply what they have learned in another situation.

Students undergo the Experiential Learning through following phases of Engineering Exploration, Engineering Design and Product Realization. Students will undertake mini projects to acquaint with knowledge in the various domains of Engineering.

The course introduces students to analyzing, designing, developing, testing, report writing and project presentations that demonstrate understanding. Students will be asked to observe, document, raise questions and draw conclusions. Teachers rely on a variety of resources to enrich students' studies that may include meeting experts and hands-on experimentation.

Guidelines for Course Conduction

- There should be a group of 4-5 students.
- Groups will be monitored by the Course teacher.
- Following two assignments will be completed by all groups

 A) Exploration of an Engineering product like Electronic Voting Machine, Car, Mobile handset, Elevator / Escalator, Operation Table, Solar water heater. The exploration will be based on working principle, specifications, material used, manufacturing process, technology used, operations (observable and controllable), ergonomics, extent of automation, safety features, environmental issues, maintenance and costing.
 B) Teachers will identify 12-15 mini project ideas.
- Every group will undertake a mini project in consultation with the Course teacher.
- Project ideas will be common to all first year divisions but the implementation might be different.
- The students will plan, manage and complete the associated tasks.

Guidelines for Course Completion

Students will present/submit the Mind Map of the Engineering product chosen for exploration. Students will exhibit/demonstrate the completed project at the end of the semester along with a brief report in a recommended format as term work submission.

Guidelines for Term work Assessment

The Course teacher is committed to assess and evaluate the students' performance. Progress of work done will be monitored on weekly basis.

During process of monitoring and continuous assessment, the individual and team performance is to be measured.

- Individual assessment for each student should be based on understanding individual capacity, role and involvement in the Engineering Product Exploration/project.
- Group assessment should be based on roles defined, distribution of work, intra-team communication and togetherness.
- Documentation and Demonstration.

It is recommended that all activities are to be recorded regularly and proper documents are to be maintained by both students as well as the course teacher.

Continuous Assessment Sheet (CAS) is to be maintained by the Course teacher.

A) Recommended parameters for assessment of Engineering Product Exploration: (25marks)

Working principle, specifications, material used, manufacturing process, technology used, operations (observable and controllable), ergonomics, extent of automation, safety features, environmental issues, maintenance and costing.

- B) Recommended parameters for assessment of Project: (25marks)
 - Outcomes of Mini Project / Problem Solving Skills / Solution provided / Final product (50%) (Individual assessment and team assessment)
 - Documentation (Gathering requirements, design & modeling, implementation/execution, use of technology and final report, other documents) (25%)
 - Demonstration (Presentation, User Interface, Usability, Participation in Exhibition/Contest etc) (15%)
 - Awareness / Consideration of Environmental / Social / Ethical / Safety / Legal aspects (10%)

 3. Enable students to develop professional and employability skills and expand their professional network Course Outcomes: On completion of the course, students will be able to- Course Outcomes: On completion of the course, students will be able to- Course Outcomes: Bloom's Level CO1 Operate various meters, measuring instruments, and tools used in industry efficiently and develop technical competence. 2-Understand CO2 Understand the working culture and environment of the Industry and d-Analyze get familiar with various departments and practices in the industry. S-Evaluate CO3 Apply internship learning in engineering project work, i.e. topic finalization, project planning, hardware development, result interpretations, report writing, etc. CO4 Create a professional network and learn about ethical, safety measures, and legal practices. I-Remember 2-Understand I-Remember 2-Understand I - Remember 2-Understand I - Remember 2-Understand The internship foundelines for the Students Ask for the internship in the industries provided by the department. The internship request letter from the respective class coordinator. He will appoint a guide for you. Mentoring of the internship activity will be done through your Guide. You are informed to report to your guide time-to-time. B. During Internship Keep the internship record book with you. Note down all the details date-wise in the internship record book. Take the signature of your industry mentor daily. The internship record book will help you to write your final internship report. Simultaneously you can start writing internship reports. Maintain an institutional culture while working in the industry. 	F. Y. B. Tech. (All Branches) Pattern 2023 2300119A: Internship						
Prerequisite Courses: Course Objectives: Objectives of the course are 1. To encourage and provide opportunities for the students to acquire professional learning experiences. 2. Provide exposure to handling and using various tools, measuring instruments, meters, and technologies used in industries. 3. Enable students to develop professional and employability skills and expand their professional network Course Outcomes: On completion of the course, students will be able to- Course Outcomes: On completion of the course, students will be able to- Course Outcomes Bloom's Level CO1 Operate various meters, measuring instruments, and tools used in industry efficiently and develop technical competence. 2-Understand CO2 Understand the working culture and environment of the Industry and get familiar with various departments and practices in the industry. 5-Evaluate CO3 Apply internship learning in engineering project work, i.e. topic finalization, project planning, hardware development, result interpretations, report writing, etc. CO4 Create a professional network and learn about ethical, safety measures, and legal practices. 1-Remember 2-Understand Apply finalization, project planning, hardware development, result internship durations should be 4 weeks. 1-Remember 2-Understand <t< th=""><th>Teaching Sch</th><th>eme:</th><th>Credit Scheme:</th><th>Examination Scheme</th><th>:</th></t<>	Teaching Sch	eme:	Credit Scheme:	Examination Scheme	:		
Course Objectives: Objectives of the course are 1. To encourage and provide opportunities for the students to acquire professional learning experiences. 2. Provide exposure to handling and using various tools, measuring instruments, meters, and technologies used in industries. 3. Enable students to develop professional and employability skills and expand their professional network Course Outcomes: On completion of the course, students will be able to- CO1 Operate various meters, measuring instruments, and tools used in industry efficiently and develop technical competence. 2-Understand CO2 Understand the working culture and environment of the Industry and get familiar with various departments and practices in the industry. 5-Evaluate CO3 Apply internship learning in engineering project work, i.e. topic finalization, project planning, hardware development, result interpretations, report writing, etc. 1-Remember 2-Understand CO4 Create a professional network and learn about ethical, safety measures, and legal practices. 2-Understand Apply 1-Remember 2-Understand 2-Understand Internship Guidelines for the Students 3-Apply Apply internship found be 4 weeks. 3. Ask for the internship request letter from the respective class coordinator. He will appoint a guide for you. 4. Mentoring of the internship activity will be done through your Guide. You are informed to report to your guide time-to-time. B. During Inte	Theory: NA		02	Termwork: 100 Mar	ks		
 To encourage and provide opportunities for the students to acquire professional learning experiences. Provide exposure to handling and using various tools, measuring instruments, meters, and technologies used in industries. Enable students to develop professional and employability skills and expand their professional network Course Outcomes: On completion of the course, students will be able to— Course Outcomes: On completion of the course, students will be able to— CO1 Operate various meters, measuring instruments, and tools used in industry efficiently and develop technical competence. Understand the working culture and environment of the Industry and get familiar with various departments and practices in the industry. Evaluate CO3 Apply internship learning in engineering project work, i.e. topic finalization, project planning, hardware development, result interpretations, report writing, etc. CO4 Create a professional network and learn about ethical, safety measures, and legal practices. Internship Guidelines for the Students A Before Joining the Internship Look for internships in the industries provided by the department. The internship activity will be done through your Guide. You are informed to report to your guide time-to-time. B During Internship Keep the internship record book with you. Note down all the details date-wise in the internship record book. Take the signature of your industry mentor daily. The internship record book will help you to write your final internship report. Simultaneously you can start writing internship reports. Maintain an institutional culture while working in the industry. 	Prerequisite	Courses:					
Course Outcomes: On completion of the course, students will be able to- Course Outcomes Bloom's Level CO1 Operate various meters, measuring instruments, and tools used in industry efficiently and develop technical competence. 1-Remember 2-Understand CO2 Understand the working culture and environment of the Industry and get familiar with various departments and practices in the industry. 5-Evaluate CO3 Apply internship learning in engineering project work, i.e. topic finalization, project planning, hardware development, result interpretations, report writing, etc. 3-Apply CO4 Create a professional network and learn about ethical, safety measures, and legal practices. 1-Remember 2-Understand A Before Joining the Internship Internship Guidelines for the Students 2-Understand A sk for the internship request letter from the respective class coordinator. He will appoint a guide for you. 4. Mentoring of the internship activity will be done through your Guide. You are informed to report to your guide time-to-time. B During Internship The internship record book with you. Note down all the details date-wise in the internship record book. Take the signature of your industry mentor daily. B. Note down all the details date-wise in the internship record book. Take the signature of your industry mentor daily. The internship reports. B. Maintain an institutional culture while working in the industry.<	 To encourag Provide expo used in industri 	. To encourage and provide opportunities for the students to acquire professional learning experiences. 2. Provide exposure to handling and using various tools, measuring instruments, meters, and technologies used in industries.					
CO1 Operate various meters, measuring instruments, and tools used in industry efficiently and develop technical competence. 1-Remember 2-Understand CO2 Understand the working culture and environment of the Industry and get familiar with various departments and practices in the industry. 4-Analyze 5-Evaluate CO3 Apply internship learning in engineering project work, i.e. topic finalization, project planning, hardware development, result interpretations, report writing, etc. 3-Apply CO4 Create a professional network and learn about ethical, safety measures, and legal practices. 1-Remember 2-Understand Manternship fulleares. Internship Guidelines for the Students 1-Remember 2-Understand A Before Joining the Internship Internship Guidelines for the Students 1-Remember 2-Understand A. Before Joining the Internship Internship for the respective class coordinator. He will appoint a guide for you. 1. Keep the internship activity will be done through your Guide. You are informed to report to your guide time-to-time. B. During Internship Internship record book with you. 1. Keep the internship record book with you. 1. Keep the internship record book will help you to write your final internship report. Simultaneously you can start writing internship reports. 4. Maintain an institutional culture while working in the industry.							
industry efficiently and develop technical competence. 2-Understand CO2 Understand the working culture and environment of the Industry and get familiar with various departments and practices in the industry. 4-Analyze CO3 Apply internship learning in engineering project work, i.e. topic finalization, project planning, hardware development, result interpretations, report writing, etc. 3-Apply CO4 Create a professional network and learn about ethical, safety measures, and legal practices. 1-Remember 2-Understand Methor internship foundelines for the Students 3-Apply Ask for internships in the industries provided by the department. 2-Understand 1 Look for internship request letter from the respective class coordinator. He will appoint a guide for you. 4. Mentoring of the internship activity will be done through your Guide. You are informed to report to your guide time-to-time. B. During Internship 1. Keep the internship record book with you. 1. Keep the internship record book with you. 1. Keep down all the details date-wise in the internship record book. Take the signature of your industry mentor daily. 3. The internship record book will help you to write your final internship report. Simultaneously you can start writing internship reports. 4. Maintain an institutional culture while working in the industry.			Course Outcomes		Bloom's Level		
get familiar with various departments and practices in the industry. 5-Evaluate CO3 Apply internship learning in engineering project work, i.e. topic finalization, project planning, hardware development, result interpretations, report writing, etc. 3-Apply CO4 Create a professional network and learn about ethical, safety measures, and legal practices. 1-Remember 2-Understand Matternship Guidelines for the Students 1-Remember 2-Understand A Before Joining the Internship 1 1 Look for internships in the industries provided by the department. 2 2 The internship duration should be 4 weeks. 3 3 Ask for the internship request letter from the respective class coordinator. He will appoint a guide for you. 4 4 Mentoring of the internship activity will be done through your Guide. You are informed to report to your guide time-to-time. B. During Internship 1 1 Keep the internship record book with you. 2 Note down all the details date-wise in the internship record book. Take the signature of your industry mentor daily. 3 The internship record book will help you to write your final internship report. Simultaneously you can start writing internship reports. 4 Maintain an institutional culture while working in the industry.		1	0				
CO3 Apply internship learning in engineering project work, i.e. topic finalization, project planning, hardware development, result interpretations, report writing, etc. 3-Apply CO4 Create a professional network and learn about ethical, safety measures, and legal practices. 1-Remember 2-Understand Internship Guidelines for the Students A. Before Joining the Internship 1 Look for internships in the industries provided by the department. 2-Understand Co4 A set for the internship for the industries provided by the department. A. Before Joining the Internship 1 Look for internships in the industries provided by the department. 2. The internship request letter from the respective class coordinator. He will appoint a guide for you. 4. Mentoring of the internship activity will be done through your Guide. You are informed to report to your guide time-to-time. B. During Internship 1 1 Keep the internship record book with you. 2. Note down all the details date-wise in the internship record book. Take the signature of your industry mentor daily. 3. The internship record book will help you to write your final internship report. Simultaneously you can start writing internship reports. 4.	CO2				•		
CO4 Create a professional network and learn about ethical, safety measures, and legal practices. 1-Remember 2-Understand Internship Guidelines for the Students A. Before Joining the Internship 1 Look for internships in the industries provided by the department. 2. The internship duration should be 4 weeks. 3. Ask for the internship request letter from the respective class coordinator. He will appoint a guide for you. 4. Mentoring of the internship activity will be done through your Guide. You are informed to report to your guide time-to-time. B. During Internship Internship record book with you. 2. Note down all the details date-wise in the internship record book. Take the signature of your industry mentor daily. 3. The internship record book will help you to write your final internship report. Simultaneously you can start writing internship reports.	CO3 Apply internship learning in engineering project work, i.e. topic finalization, project planning, hardware development, result						
 A. Before Joining the Internship 1. Look for internships in the industries provided by the department. 2. The internship duration should be 4 weeks. 3. Ask for the internship request letter from the respective class coordinator. He will appoint a guide for you. 4. Mentoring of the internship activity will be done through your Guide. You are informed to report to your guide time-to-time. B. During Internship 1. Keep the internship record book with you. 2. Note down all the details date-wise in the internship record book. Take the signature of your industry mentor daily. 3. The internship record book will help you to write your final internship report. Simultaneously you can start writing internship reports. 4. Maintain an institutional culture while working in the industry. 	CO4	Create a professional ne		hical, safety measures,			
 Look for internships in the industries provided by the department. The internship duration should be 4 weeks. Ask for the internship request letter from the respective class coordinator. He will appoint a guide for you. Mentoring of the internship activity will be done through your Guide. You are informed to report to your guide time-to-time. B. During Internship Keep the internship record book with you. Note down all the details date-wise in the internship record book. Take the signature of your industry mentor daily. The internship record book will help you to write your final internship report. Simultaneously you can start writing internship reports. Maintain an institutional culture while working in the industry. 		Internsh	ip Guidelines for the	e Students			
 The internship duration should be 4 weeks. Ask for the internship request letter from the respective class coordinator. He will appoint a guide for you. Mentoring of the internship activity will be done through your Guide. You are informed to report to your guide time-to-time. B. During Internship Keep the internship record book with you. Note down all the details date-wise in the internship record book. Take the signature of your industry mentor daily. The internship record book will help you to write your final internship report. Simultaneously you can start writing internship reports. Maintain an institutional culture while working in the industry. 	A. Before Join	ing the Internship					
 B. During Internship 1. Keep the internship record book with you. 2. Note down all the details date-wise in the internship record book. Take the signature of your industry mentor daily. 3. The internship record book will help you to write your final internship report. Simultaneously you can start writing internship reports. 4. Maintain an institutional culture while working in the industry. 	 Look for internships in the industries provided by the department. The internship duration should be 4 weeks. Ask for the internship request letter from the respective class coordinator. He will appoint a guide for you. Mentoring of the internship activity will be done through your Guide. You are informed to report to 						
 Note down all the details date-wise in the internship record book. Take the signature of your industry mentor daily. The internship record book will help you to write your final internship report. Simultaneously you can start writing internship reports. Maintain an institutional culture while working in the industry. 	2 0						
4. Maintain an institutional culture while working in the industry.	2. Note down all the details date-wise in the internship record book. Take the signature of your industry mentor daily.						
	can star 4. Maintai	t writing internship report n an institutional culture	rts.				
C. After Internship			- 1	Detherns in head as not			
 Submit the Internship Record book and Internship report. Both are in hard copy. Submit all your details within 15 days of completion of the Internship. After the internship, the presentation schedule will be displayed. 	2. Submit	all your details within 15	5 days of completion of the	ne Internship.			

4. The internship course will be assumed to be completed only after the final presentation. The date of presentation will be declared at least 10-15 days before the actual date.

	Evaluation and Assessment of Internship					
Sr. No.	Evaluation Parameter	Marks	Remarks			
1	Internship Record Book	25	 Maintain all the records. This should be handwritten and submitted in hard copy. It will be evaluated based on 1. Proper and timely documented entries 2. Adequacy and quality of information 3. Data, observations, and discussions recorded 4. Thought process and recording techniques used 5. Organization of the information 			
2	Internship Report	25	 Submit your report as per the guidelines. It should have 1. Starting pages: Certificates, declaration, abstract, table of contents, figures, tables, etc. 2. Chapter 1: Introduction: Brief about the company, industry or organization, objectives, motivation, and organization of the report 3. Chapter 2: Problem Identification/Problem statement/objectives and scope/expected outcomes 4. Chapter 3: Methodological details 5. Chapter 4: Results / Analysis /inferences and conclusion 6. Chapter 5: Suggestions/Recommendations for improvement to the industry, if any 7. End Pages: Acknowledgement and references 			
3	Post- Internship Evaluation	50	 Evaluation will be done by both industry and department mentors, based on the presentation criteria given below 1. Internship Identification and Selection 2. Problem Studied with objectives and expected outcomes 3. Consideration of Environment/ Social /Ethical/ Safety measures/Legal aspects. 4. Methodology/System/Procedure Q&A 5. Block diagram, flow-chart, algorithm, system description Q&A 6. Final results, discussions, suggestions, comments, etc. Q&A 7. Presentation and Communication 			
Т	otal Marks	100	Timely completion of activities is essential for all above			

	Strength of CO-PO Mapping											
Course					Prog	gram	Outco	mes				
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
CO1	2	2							2			3
CO2	2	2							2			3
CO3	2	2							2			3
CO4	2	2							2			3

F. Y. B. Tech. (All Branches) Pattern 2023 2300126A: Electrical Load Calculations and Design					
Teaching Se	cheme:	Credit Scheme:	Examination Sch	eme:	
Theory:02h Practical: 0		02 01	InSem Exam: 20Marks EndSem Exam:60Marks Termwork: 50Marks		
Prerequisit	e Courses: -Electrical W	Viring and Installations			
Course Obj	jectives: Objectives of th	ne course rae			
	erything about electrical	6	-		
	e skills of LV wrings syst tcomes: On completion o				
	Comes. On completion o				
		Course Outcomes		Bloom's Level	
CO1	using Dialux Evo	es of lighting and design			
CO2	three phase system.	d and short circuit calcul		3-Apply	
CO3	Estimate voltage drop	calculations for LV and N	MV cables	4-Analyze	
CO4	Design cable and earth	ing for a given electrical	systems	3-Apply	
CO5		distribution transformer e device for any building	• •	ter, 5-Evalaute	
	batteries and protective	COURSE CONTENT	· · ·		
Unit I	Lighting Sy	stem Design	(6 hrs)	COs mapped- CO1	
Introduction to electrical design, steps of lighting design, Types of Filament Lamps, Fluorescent and Compact Fluorescent Lamps, High and Low Pressure Sodium Lamps, High Pressure Mercury and Metal Halide Lamps, LED Lighting, Types of Luminaires, Types of Diffusers, Color Rendering Index (CRI), Polar Curve of Luminaire Fixture, Color Temperature of a Lighting Fixture, Difference between Lumen and Lux, Utilization and Maintenance Factors, IP or Ingress Protection for Luminaries, Lux Required from Electrical Code, Lighting Design of a Room Using Manual Calculations, Work Space and Type of Lux					
Unit II				COs mapped- CO1	
Drawing Doc and Objects, Settings, Add Unit III	Tabs in, Plans in Construction tab, Drawing the Building Outlines, Construction Site tab, Drawing Rooms, Drawing Doors and Windows, Spaces, Adding Ceiling,Quick Lesson on cut out Tool, Adding Furniture and Objects, Materials and Colors, Adding Catalogs, Selection and Adding Luminaries, Adding Room Settings, Adding Luminaries to Rooms, Lighting Calculations, Exporting Results to an Autocad FileUnit IIICable and Earthing System Design(6 hrs)COs mapped- CO4				
Classification of Cables According to Voltage and Frequency, Classification of Cables According to Conductor Type, Cable Classification According to Insulation Level, Types of Armouring in Cables,					

Types of Cable Formation, Number of Cores of Cables, Derating Factor of Cables According to Cable Formation, Selection of Neutral Conductor & Earthing Cross-Sectional Areas, Cable Design – how to Select Cable Cross-Sectional Area

Components of Earthing System, Design and Resistance of Earthing Electrode, Design and Resistance of Earthing Conductor, Measurement of Earth Resistance by Megger and Three Point Method

0		0	
Unit IV	Electrical Load Calculation	(6 hrs)	COs mapped-
			CO2, CO3

Introduction, Electrical codes, reading layout, voltage drop calculation, short circuit calculation, static load calculation, dynamic load calculation, Main Cable and Main Circuit Breaker Calculations, Use of standard EXCEL sheets

Unit V	Transformer, Generator, Inverter Sizing and	(6 hrs)	COs mapped-
	Case studies		CO3, CO5

Calculation of size of transformer, generator, inverter and battery size.

Case study (i) Residential (ii) Small Industry (iii) Commercial

Text Books

1. "Electrical Wiring An introduction", Satheesh Kumar, Ano Books Pvt. Ltd.

2. "A Course in Electrical Installation Estimating and Costing" by J.B. Gupta KATSON Books

Reference Books

- 8. "Electrical Installations in Building", Hari Mohan Johri, KW publishers
- 9. "How to Calculate Electrical Loads and Design Power Systems", Ralph White, Createspace Independent Publishing Platform

Online Course

- 2. Ultimate Electrical Design Course from Zero to Hero https://www.udemy.com/course/apartment-electrical-design-drawing-using-autocad-and-dialux/
- 3. Electrical Loads Calculations and Design https://www.udemy.com/course/electrical-loads-calculations-and-design-q/

	(Any six from Sr. No. 01 to 08 and any two from Sr. No. 09 to 1	1)
Sr. No.	Laboratory Experiments	COs Mapped
1.	Study of sodium and mercury vapor lamps	CO1
2.	Study of CFL and LED Lamps	CO1
3.	Design of lighting scheme using Dialux Evo software	CO1
4.	Study of cables and cable derating factor	CO4
5.	Static and dynamic load calculation	CO2, CO3
6.	Calculation of voltage drop and short circuit level in commercial project	CO2, CO3
7.	Measurement of earthing resistance by three point method	CO4
8.	Design of earthing system in Autocad	CO4
9.	Case Study: Residential wiring	CO2, CO3, CO4
10.	Case Study: Industrial Electric System Design	CO2, CO3, CO4
11.	Case Study: Commercial Electric System Design	CO2, CO3,

		CO4			
	Guidelines for Laboratory Conduction				
	Students should do connections and study under the supervision of the teachers and get the results by following safety precautions and procedures.				
	Guidelines for Student's Lab Journal				
	dent's Lab Journal should contain the following - Apparatus with their detailed specifications. Connection diagram /circuit diagram. Observation table/ simulation waveforms. Sample calculations for one/two readings. Result table, Graph and Conclusions. Few short questions related to the experiment. Guidelines for Term Work Assessment				
	student's termwork will be through continuous assessment.				
Rub	n experiment from lab journal is assessed for thirty marks based on three rub ric R-1 for timely completion, R-2 for understanding and R-3 for presentation ing where each rubric carries ten marks.				

		. Y. B. Tech. (All Branch Pattern 2023 Maintenance of Electric	,		
Teaching	Scheme:	Credit Scheme:	Examination Sch	neme	:
Theory:02	2 hrs/week		InSem Exam: 20 Marks EndSem Exam:30 Marks Termwork: 50 Marks		
Prerequis Engineerin	ite Courses:Fundamentals on g	of Electrical Engineering,	Fundamentals of H	Electr	onics
	bjectives: Objectives of the	course are			
	ce to various tools used for				
To provide	e skills for the repair and ma	intenance of home applia	inces		
Course O	utcomes: On completion of	the course, students will	be able to-		
		Course Outcomes			Bloom's Level
CO1	Dismantle and identify	various parts of the elect	rical home applian	ces	1-Remember 2-Understand
CO2	Locate or recognize the	e fault location in the app	liance.		4-Analyze 5-Evaluate
CO3	Use the appropriate too appliance	l, machine, meter, or dev	vice to repair the		3-Apply
CO4	Assemble the repaired	11 1		1-Remember 2-Understand	
		COURSE CONTENTS	8	·	
Unit I	Introd	uction	(6 hrs)	CO CO	s mapped - 1
Basic const	ructions, functionality/work	ing and Installation of e	electrical appliance		
	on, and specification of com				
to tools, an	d meters used for repair a	nd maintenance, solderi	ng and de-soldering	ng, a	ctive and passive
	s, power supply circuit, sense			arts	
Unit II	Maintenance of heating ap	pliances	(6 hrs)		s mapped – 2, CO3, CO4
	on of various parts, replacen				
	c kettle, electric rice cooker,			1	
Unit III	IIIMaintenance of motorized appliances(6 hrs)COs mapped - CO2, CO3, CO4			2, CO3, CO4	
1	maintenance of motorized a		1		1 0
problem, rotating in reverse direction, tripping. Mixer grinder, food processor, juicer, blender, ceiling and					
table fan, cooler, pump motor, hair dryer, etc. Control of appliances. Probable faults, causes and removal					
Of faults.Unit IVMaintenance of washing machine and vacuum(6hrs)COs mapped –					
Unit IV	clea	ner	(6hrs)	CO	s mapped – 2, CO3, CO4
Washing Machine: Identification of various parts of a semi-automatic/automatic washing machine like					
notor, water valve, timer, brake arrangement, PCBs, and working of all parts for various modes of					

operation, replacement of various parts of a washing machine. Probable faults, causes and removal of faults. **Vacuum Cleaner:** Identification of various constructional parts, motor specifications, types, and electrical connections, common faults, repair, and maintenance of vacuum cleaners.

Unit V	Maintenance of water purifier, UPS and Inverter	(6hrs)	COs mapped -
	and Refrigerator		CO2, CO3, CO4

Water Purifier: Identification of various constructional parts, motor specifications, type, and electrical connection. Common faults, repair, and maintenance of water purifier/RO plant.

Maintenance of Refrigerator and AC: Identification of various constructional parts, motor, valve, gas specification, type, and electrical connection, common faults, repair, and maintenance of refrigerator, split AC.

Maintenance of UPS: Identification of various components, their specification, electrical connection, and ratings. Common faults, repair, and maintenance of UPS / Inverter, Battery.

Text Books

- 6. ShashiBhushanSinha, "Handbook of Repair and Maintenance of Domestic Electronics Appliances", BPB Publication
- 7. Eric Kleinert, "Troubleshooting and Repairing Major Appliances", 3rd Edition, McGraw-Hill Education

Reference Books

- 7. Michael Squeglia, Illustrated by Carl Bryant and Eleanor Malara Isenberg "All About Repairing Major Household Appliances", Hawthorn Books, Inc. W. Clement Stone, Publisher New York
- 8. Graham Dixon "Electrical Appliances: The Complete Guide to the Maintenance and Repair of Domestic Electrical Appliances", 2nd Edition, Haynes, 1995

	List of Laboratory Experiments				
Sr. No.	Laboratory Experiments	COs Mapped			
1	Dismantling, re-assembling, and troubleshooting of electric room heater andkettle.	CO1, CO2, CO3, CO4			
2	Dismantling, re-assembling, and troubleshooting of ordinary/automatic electric iron, Immersion Heater, etc.	CO1, CO2, CO3, CO4			
3	Dismantling, re-assembling, and troubleshooting of electric geyser	CO1, CO2, CO3, CO4			
4	Dismantling, re-assembling, and troubleshooting of Table fan and Ceiling fan	CO1, CO2, CO3, CO4			
5	Testing of burnt/faulty motors like (ceiling fan, 3-ph motor, and mixer motor).	CO1, CO2, CO3, CO4			
6	Identify different parts of a semi-automatic/automatic washing machine. Testing of its switches, brake arrangement, and valves, know the causes of failures.	· · · ·			
7	Identify different parts of a vacuum cleaner and test different components of it and find causes of different failures.	CO1, CO2, CO3, CO4			
8	Identify different parts of a water purifier/RO plant. Testing of its switches, valves, and motor, know the causes of failures.	CO1, CO2, CO3, CO4			
9	Identify different parts of a refrigerator, split AC. Know the causes of different failures. Testing of its motor, compressor, valves, lamps, door switches, etc.	CO1, CO2, CO3, CO4			
10	Identify different parts of a UPS / Inverter and battery. Know the causes of different failures. Testing of wiring, battery, etc.	CO1, CO2, CO3, CO4			

\Guidelines for Laboratory Conduction

- > In each laboratory session, four to five students will perform the experiment in a group.
- Students should do connections under the supervision of the teachers and get the results by following safety precautions and procedures.

Guidelines for Student's Lab Journal

The Student's Lab Journal should contain the following -

- > Apparatus with their detailed specifications.
- Connection diagram /circuit diagram.
- Observation table/ simulation waveforms.
- Sample calculations for one/two readings.
- Result table, Graph and Conclusions.
- > Few short questions related to the experiment.

Guidelines for Term Work Assessment

1. The student's termwork will be through continuous assessment.

2. Each experiment from the lab journal is assessed for thirty marks based on three rubrics.

Rubric R-1 for timely completion, R-2 for understanding, and R-3 for presentation/journal writing where each rubric carries ten marks.