

K. K. Wagh Institute of Engineering Education and Research, Nasik (Autonomous w.e.f. A.Y.2022-23) Details of Course Structure: S.Y.B.Tech Artificial Intelligence and Data Science

• Summary of Credits and Total Marks for U.G. Programme:

Semester	S.Y.B.Tech				
	Total Credits (TH+PR/OR/TU)	Total Marks			
III	21	725			
IV	21	725			
Total	42	1450			

• Description of various Courses:

Type of Course	Description	Type of Course	Description
ESC	Engineering Science Course -Workshop - Drawing-Fundamentals of different branches	DCC	Department Core Course
BSC	Basic Science Courses	DEC	Department Elective Course
LHSM	Liberal arts, Humanities, Social Sciences and Management courses	OEC	Open Elective Courses of other technical or emerging areas /Courses designed by Industry
PSI	Project work, Seminar, Internship, PBL	IMC	Induction and Mandatory Courses
NC/AC	Non Credit Courses	ASM	Additional Specialized/MOOCs

K. K. Wagh Institute of Engineering Education and Research, Nasik (Autonomous w.e.f. A.Y.2022-23) Details of Course Structure: S.Y.B.Tech Artificial Intelligence and Data Science

Course Code	Course Type	Title of Course	T S W	`eachin cheme∃ ∕eek	g Hrs./		Eval	uation S	cheme	and M	arks					Credits	
			TH	TU	PR	InSem	EndSem	CCE	TU	TW	PR	OR	Total	ТН	TU	PR*	Total
COM222001	DCC	Fundamentals of DataStructures	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
ADS222002	DCC	Computer Networks	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
COM222003	DCC	Discrete Mathematics	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
COM222004	ESC	Digital Electronics and Logic Design	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
COM222005	DCC	Programming Paradigms and Java Programming	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
ADS222006	LHSM	Emotional Intelligence	1	-	-	-	-	-	-	25	-	-	25	1#	-	-	1
COM222007	DCC	Data Structures Lab	-	-	4	-	-	-	-	25	50	-	75	-	-	2	2
COM222008	ESC	Digital Electronics Lab	-	-	2	-	-	-	-	25	25	-	50	-	-	1	1
ADS222009	DCC	Programming Paradigms and Computer Networks Lab	-	-	2	-	-	-	-	25	25	-	50	-	-	1	1
COM222010	PSI	Python Programming Lab	-	-	2	-	-	-	-	25	-	-	25	-	-	1	1
		Total	16	-	10	100	300	100	-	125	100	-	725	16	-	5	21

Note: Credits are as per the Teaching Scheme * Credits for PR are linked with PR/ OR/ TW/ TU

This Credit will be assessed as TW

K. K. Wagh Institute of Engineering Education and Research, Nasik (Autonomous w.e.f. A.Y.2022-23) Pattern of Course Structure:2022 Semester– IV S.Y.B.Tech Artificial Intelligence and Data Science

Course Code	Course Type	Title of Course	T S	'eachin Scheme week	g Hrs./		Ass	essment	Schem	e of M	arks					Credits	
			TH	TU	PR	InSem	EndSem	CCE	TU	TW	PR	OR	Total	TH	TU	PR*	Total
SMH222111	BSC	Applied Mathematics–III	3	1	-	20	60	20	25	-	-	-	125	3	1	-	4
COM222012	DCC	Advanced Data Structures	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
COM222013	DCC	Operating Systems	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
ADS222014	DCC	Database Management Systems	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
COM222015	LHSM	Software Engineering and Project Management	3	-	-	20	60	20	-	-	-	-	100	3	-	-	3
ADS222016	ASM	Design Thinking	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
COM222017	DCC	Advanced Data Structures Lab	-	-	4	-	-	-	-	25	50	-	75	-	-	2	2
COM222018	DCC	Operating Systems Lab	-	-	2	-	-	-	-	25	25	-	50	-	-	1	1
ADS222019	DCC	Database Management Systems Lab	-	-	2	-	-	-	-	25	25	-	50	-	-	1	1
ADS222020	PSI	Project Based Learning-Design Thinking	-	-	2	-	-	-	-	25	-	-	25	-	-	1	1
		Total	16	1	10	100	300	100	25	100	100	-	725	15	1	5	21

Note: Credits are as per the Teaching Scheme * Credits for PR are linked with PR/ OR/ TW/ TU

K. K. Wagh Institute of Engineering Education and Research, Nashik

	(Autonomous from A	Academic Year 2022-23)		1					
S. Y. B. Tech. Artificial Intelligence and Data Science									
Pattern 2022 Semester: III									
Teaching	g Scheme:	Credit Scheme:	Examination Sch	eme:					
Theory :	: 03 hrs/week	03	Continuous Com	nrehensive					
	Evaluation: 20 Marks								
	InSem Exam: 20 Marks								
			EndSem Exam: 6	60 Marks					
Prerequ	isite Courses:- FYE221010	: Programming in C, FYE	E221011:Programm	ing in CPP					
Compan	Companion Course:- ADS222007: Data Structures Laboratory								
Course (Objectives:								
• T	o understand basic concepts	and terminology of algor	ithms and data strue	ctures					
• T	o study data structures array	s, linked lists, stack and c	lueues						
• T	o learn searching and sorting	g methods							
Course (Outcomes: On completion of	of the course, students wil	l be able to-						
		Course Outcomes		Bloom's Level					
CO1	Describe the fundamenta	l concepts and terminolog	gy of data structures	2-Understand					
	and algorithms, including	g arrays, linked lists, stac	ks, queues and						
	searching and sorting alg	orithms							
CO2	Demonstrate the ability to	o choose and implement a	appropriate data	3-Apply					
	structures such as Array, linked list, stack and queue to solve a given								
	problem								
CO3	Implement algorithms fo	r array and linked list pro	cessing such as	3-Apply					
<u> </u>	insertion, and deletion us	ting C++							
CO4	Use stack and / or queue	to solve the given problem	m	3-Apply					
CO5	Compare different search	ning and sorting algorithm	is based on their	3-Apply					
	performance, strenguis, e	COURSE CONTENT	Ś						
Unit I	Introduction to Algorithi Structures	ns and Data	(06 hrs)	COs Mapped - CO1					
Algorithn	ns-Introduction, Characteris	tics, Analysis of algorith	ms						
Complexi	ty of algorithms- Space con	mplexity, Time complexit	ty, Big O notation						
Data, Data	a objects, Data types, Data	structure, Abstract Data 7	Types (ADT), Primi	tive and non-					
primitive,	linear and nonlinear, static	and dynamic, persistent a	nd ephemeral data s	structures					
Unit II	uit IISequential Organization(08 hrs)COs Mapped - CO1,CO2, CO3								
Sequentia	Il Organization- Concept, A	Array as an abstract data t	ype, Memory repres	sentation and address					
calculation, Inserting and deleting an element, Multidimensional arrays, Ordered lists									
Single Va	riable Polynomial-Represe	ntation, evaluation and ac	ldition						
Sparse M	Sparse Matrix-Sparse matrix representation, addition, simple transpose, fast transpose								
String- Operations using arrays. Pattern matching algorithm- Naive pattern matching, Rabin Karp									
ugorithm									

Linked lists-Concept, Linked list as an Abstract data type, Comparison of sequential and lind organizations Realization of Linked list- using arrays, using dynamic memory management, header node, advantages and disadvantages of linked list Linked list operations-Insert a node, delete a node, traverse, copy, reverse, concatenate, deleters of linked list-Linear, circular, Doubly linked list and operations, Representation of a Polynomial using linked list Generalized Linked List (GLL)-Concept, Representation of polynomial and sets. Unit IV Stacks and Queues (08 hrs) COs Mate CO1, CO Stacks-Concept, Stack as an ADT, Representation of stacks using array and linked list, stack operations, Multi-stacks Applications of Stack- Polish notation, expression conversion and evaluation, Processing of calls and Returns	<pre>ked , ete list pped - D2, CO4</pre>
organizations Realization of Linked list- using arrays, using dynamic memory management, header node, advantages and disadvantages of linked list Linked list operations-Insert a node, delete a node, traverse, copy, reverse, concatenate, deleters of linked list-Linear, circular, Doubly linked list and operations, Representation of a Polynomial using linked list Generalized Linked List (GLL)-Concept, Representation of polynomial and sets. Unit IV Stacks and Queues (08 hrs) COs Mate CO1, CO Stacks-Concept, Stack as an ADT, Representation of stacks using array and linked list, stack operations, Multi-stacks Applications of Stack- Polish notation, expression conversion and evaluation, Processing of colls and Petures	, ete list pped - D2, CO4
Realization of Linked list- using arrays, using dynamic memory management, header node, advantages and disadvantages of linked listLinked list operations-Insert a node, delete a node, traverse, copy, reverse, concatenate, deletTypes of linked list-Linear, circular , Doubly linked list and operations, Representation of a Polynomial using linked listGeneralized Linked List (GLL)-Concept, Representation of polynomial and sets.Unit IVStacks and Queues(08 hrs)COs Mag CO1, COStacks-Concept, Stack as an ADT, Representation of stacks using array and linked list, stack operations, Multi-stacksApplications of Stack- Polish notation, expression conversion and evaluation, Processing of calls and Returns	, ete list pped - D2, CO4
advantages and disadvantages of linked list Linked list operations-Insert a node, delete a node, traverse, copy, reverse, concatenate, dele Types of linked list-Linear, circular , Doubly linked list and operations, Representation of a Polynomial using linked list Generalized Linked List (GLL)-Concept, Representation of polynomial and sets. Unit IV Stacks and Queues (08 hrs) COs May CO1, CO Stacks-Concept, Stack as an ADT, Representation of stacks using array and linked list, stack operations, Multi-stacks Applications of Stack- Polish notation, expression conversion and evaluation, Processing of colls and Petures	ete list pped - D2, CO4
Linked list operations-Insert a node, delete a node, traverse, copy, reverse, concatenate, deleteration of a linked list-Linear, circular , Doubly linked list and operations, Representation of a Polynomial using linked list Generalized Linked List (GLL)-Concept, Representation of polynomial and sets. Unit IV Stacks and Queues (08 hrs) COs Ma CO1, CO Stacks-Concept, Stack as an ADT, Representation of stacks using array and linked list, stack operations, Multi-stacks Applications of Stack- Polish notation, expression conversion and evaluation, Processing of colls and Returns	ete list pped - D2, CO4
Types of linked list-Linear, circular , Doubly linked list and operations, Representation of a Polynomial using linked list Generalized Linked List (GLL)-Concept, Representation of polynomial and sets. Unit IV Stacks and Queues (08 hrs) COs Ma CO1, CO Stacks-Concept, Stack as an ADT, Representation of stacks using array and linked list, stack operations, Multi-stacks Applications of Stack- Polish notation, expression conversion and evaluation, Processing of calls and Returns	pped - D2, CO4
Polynomial using linked list Generalized Linked List (GLL)-Concept, Representation of polynomial and sets. Unit IV Stacks and Queues (08 hrs) COs Ma CO1, CO Stacks-Concept, Stack as an ADT, Representation of stacks using array and linked list, stack operations, Multi-stacks Applications of Stack- Polish notation, expression conversion and evaluation, Processing of calls and Returns	pped - D2, CO4
Unit IV Stacks and Queues (08 hrs) COs Ma Stacks-Concept, Stack as an ADT, Representation of stacks using array and linked list, stack operations, Multi-stacks Applications of Stack- Polish notation, expression conversion and evaluation, Processing of calls and Returns	pped - D2, CO4
Unit IV Stacks and Queues (08 hrs) COs Ma CO1, CO Stacks-Concept, Stack as an ADT, Representation of stacks using array and linked list, stack operations, Multi-stacks Applications of Stack- Polish notation, expression conversion and evaluation, Processing of calls and Returns	pped - D2, CO4
Stacks- Concept, Stack as an ADT, Representation of stacks using array and linked list, stack operations, Multi-stacks Applications of Stack- Polish notation, expression conversion and evaluation, Processing of calls and Returns	C
operations, Multi-stacks Applications of Stack- Polish notation, expression conversion and evaluation, Processing of calls and Returns	
Applications of Stack- Polish notation, expression conversion and evaluation, Processing of calls and Returns	
calls and Returns	function
	. .
Recursion- Concept, Types of recursion-Direct recursion, Indirect recursion, Tail recursion,	Linear
recursion, Tree recursion, Comparison of recursion and iterations, Backtracking algorithmic s	strategy,
use of stack in backfracking	* (110110
Deque Multi-queues Linked queue and operations	i queue,
Applications of Queue: Scheduling Josephus problem	
Self Study- Four Oueens problem.	
Unit V Searching and Sorting (06 hrs) COs Ma	pped -
)5
Searching Techniques- Sequential search, Binary search, Fibonacci search.	
Sorting- Internal and external sorting, Sort order, Stability, Efficiency, Number of passes	
Sorting methods- Bubble sort, Insertion sort, Selection sort, Quick sort, Shell sort, Bucket so	ort, Radix
sort, Merge sort ,Comparison of Sorting Methods.	
Self Study- Jump search.	
Text Books	
1. Horowitz, Sahani, Dinesh Mehata, "Fundamentals of Data Structures in C++", Galgotia	Publisher,
ISBN: 8175152788, 9788175152786	
2. J. Tremblay, P. Soresan, "An Introduction to data Structures with applications", TMH Pu 2nd Edition, 1984. ISBN:0-07-462471-7	iblication,
Reference Books	
1. Sartaj Sahani, "Data Structures, Algorithms and Applications in C++", Second Edition,	University
Press, ISBN:9788173715228	-
2. G A V Pai, "Data Structures and Algorithms", McGraw-Hill Companies, ISBN:9780070	667266
Guidelines for Continuous Comprehensive Evaluation of Theory Course	
Sr. No. Components for Continuous Comprehensive Evaluation Man	rks Allotted
1 Quiz on Unit-1, Unit-2, Unit-3	10
¹ (Quiz 10 marks on each unit and will be converted to 10 Marks)	10
Theory assignment on Unit- 4 and 5	
2 (10 marks assignment on unit 4 and 5 each and that will be converted in	10
to 10 Marks)	
Total	20

S. Y. B. Tech. Artificial Intelligence and Data Science Pattern 2022 Semester: III ADS222002 : Computer Networks							
Teaching	g Scheme:	Credit Scheme:	Examination Sche	me:			
Theory :	Theory :03 hrs./week03Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks						
Prerequisite Courses: - ADS222004 Computer Architecture							
Companion Course :- ADS222009 Programming Paradigms and Computer Networks Laboratory							
 Course Objectives: To understand fundamental concepts of networking standards, protocols, hardware and technologies To Understand the basics of error detection including parity, checksums, and CRC To Understand the client/server model and key application layer protocols To Learn sockets programming and how to implement client/server applications To Understand the concepts of reliable data transfer, principles of routing, semantics and syntax 							
Course Outcomes: On completion of the course, students will be able to							
	Course Outcomes Bloom's Level						
CO1	Summarize fundamental models, technologies and	concepts of computer net security aspects	work, architectures,	2 - Understand			
CO2	Illustrate functions of HT	TTP, DNS and SMTP pro	tocols.	2-Understand			
CO3	Explain the Transport Lay programming Connection mechanism	yer functions such as port Management, Error and	addressing, socket Flow control	2-Understand			
CO4	Demonstrate routing prot	tocols and mechanisms		2-Understand			
CO5	Apply concepts of framin	g, error detection and cor	ntrol at data link laye	r 3-Apply			
		COURSE CONTEN	TS				
Unit I	Introduction to Compute	er Network	(08hrs)	COs Mapped - CO1			
Introduction Definition, Goals and applications of networks, Types of Networks: LAN, MAN, WAN, Wireless networks, Network Architectures: Client-Server, Peer To Peer, Hybrid .Protocol, Design issues for the network layers. Network Models: The OSI reference model, TCP/IP Model Network Topologies and design: Network hardware devices: Bridge, Switch, Router, Gateway, Access Point. Cast: Unicast, Multicast, Broadcast, Types of transmission medium, Signal transmission and Line coding scheme: Manchester and Differential Manchester encoding, Frequency Hopping(FHSS) , Direct Sequence Spread Spectrum (DSSS) Switching Techniques: Circuit, message and packet switching, Multiplexing. Network Performance: Bandwidth and Latency, Delay and bandwidth product, High speed							

Basic	network Security Concepts : Need, attacks, Types of	f network securit	y and tools.
Topics	s for Self Study : Network hardware devices: Bridge, S	Switch, Router, C	Gateway, Access Point
Unit II	Application Layer	(07hrs)	COs Mapped - CO2
Web and FTP, TEI OHCP, SI Basic Cor	HTTP, Web Caching, DNS, Email: SMTP, MIME, F NET, NMP accepts of Data Compression and Cryptography	OP3, Webmail,	
nitIII	Transport Layer	(07hrs)	COs Mapped - CO3
Process to	Process Delivery , Services, Socket programming.		
Flow cont F ranspor QoS), Dif F CP and	rol and buffering, Multiplexing, Congestion Control. t Layer Protocols: TCP and UDP, SCTP, RTP, Cong fferentiated services UDP for Wireless networks.	gestion control an	nd quality of Service
Fopics for	Self Study: Connection establishment, Connection re	lease	
nitIV	The Network Layer	(07hrs)	COs Mapped - CO4
Jnit V	Data Link Layer	(07hrs)	COs Mapped - CO5
Design Iss ARQ stra Flow Con WAN Con MAC Sub CSMA/CI Introduct Standards.	sues: Services to network layer, Framing. tegies: Error Detection and correction, Parity Bits, Ha trol Protocols: Unrestricted simplex, Stop and Wait, S nectivity: PPP and HDLC. layer: Multiple Access Protocols: Pure and Slotted A D, CSMA/CA, Binary Exponential Back-off algorithm ion to Ethernet IEEE 802.3, IEEE 802.11 a/b/g/n, IE	mming codes (11 Sliding Window LOHA, CSMA, L EE 802.15 and II	1/12-bits) and CRC. protocol. WDMA, EEE 802.16
Topics for	self-study: CSMA/CD, CSMA/CA		
	Text Books		
1. Ku 10	rose and Ross, "Computer Networking- A Top-Dowr :0132856204	n Approach", Pea	rson, ISBN-
2. An	drew Tanenbaum "Computer Networks", Prentice Ha	ll, ISBN:0-07-05	58408-7
	Reference Books		
1. Be IS	hrouz Forouzan, "Data Communication and Networki BN:0-07-058408-7	ng", McGraw Hi	ill Publication,
 D. Be Wi 	Comer, "Computer Networks and Internets", Pearson hrouz Forouzan, "TCP/IP Protocol Suite", McGraw H illam Stallings," Cryptography and Information Securi	, ISBN: 013358' [ill Publication, I ty: Principles and	7932 SBN 0-07-337604-3 d Practice",

Guidelines for Continuous Comprehensive Evaluation of Theory Course						
Components for Continuous Comprehensive Evaluation		Marks Allotted				
Quiz on Unit 1, Unit-2, Unit-4, Unit 5 (Quiz 15 marks each and will be converted to 15 Marks)		15				
Theory assignment on Unit-3 (One Assignment on Unit III of 10 marks will be converted to 5 Marks)		5				
	Total	20				

	S.Y. B.Tech. Artificial Intelligence and Data Science Pattern 2022 Semester: III							
	ADS222003:Discrete Mathematics							
Teaching	gScheme:	CreditScheme:	ExaminationSch	eme:				
Theory:	Theory:03hrs/week 03 Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks Evaluation: 20 Marks Evaluation							
PrerequisiteCourses: -FYE221001:Applied Mathematics-I								
CourseC • To • To • To • To	Objectives: o understand the concepts of ounderstandthe useofproposi- ostudyconceptsof graph andth ostudyalgebraicstructures	relations and functions tionallogicand numberthe rees	eory					
Course	Dutcomes: Oncompletionoft	hecourse, students will bea	able to–					
		CourseOutcomes		Bloom'sLevel				
CO1	Solveproblemsusingpropos	itionallogicand numberth	eory.	3-Apply				
CO2	Userelationsor functions to	solveproblems.		3-Apply				
CO3	Applygraph theorytorepress	ent dataandsolveassociate	edproblems.	3-Apply				
CO4 Applytheconceptsoftreestogenerate minimumspanningtreeandprefix 3-Apply code.								
CO5	Usealgebraic structuresto se	olveproblems.		3-Apply				
		COURSECONTENT	'S					
UnitI	PropositionalLogicandNu	mberTheory	(06hrs)	COs Mapped – CO1				
Proposition Number congruence	onal Logic: Propositiona ofpropositional logic, Theory: Introduction, divise, applications of number th	l equivalences, predict mathematical induction, sibility and modular a eory.	ates and quantifi recursive definition rithmetic, greates	ers, applications n. t common divisors,				
UnitII	RelationsandFunctions		(08hrs)	COs Mapped - CO2				
 Relations: Properties, n-aryrelations, represent relations, equivalence relations, partial orderings, partitions, Hasse diagram, lattices, chains and anti-chains, closures of relations, transitive closure and Warshall's algorithm. Functions: Types of functions, properties, Pigeonhole principle. Recurrence relations, generating functions. 								
Unit III	GraphTheory		(08hrs)	COs Mapped - CO3				
Graphter t,Eulerpa algorithn	minology,typesofgraphs,rep thandcircuit,Hamiltonpatha 1,maximumflowlabelingalgo	resentationofgraphs,graph ndcircuit,singlesourcesho prithm.	nisomorphism,plana rtestpath-Dijkstra's	rgraphs,pathandcircui				

Unit IV	Trees	(07hrs)	COs Mapped - CO4					
Treeste	Treesterminology, properties of tree, prefix codes and Huffman coding, cutsets, tree traversal,							
spanni	spanningtrees, minimum spanningtree, Kruskal's and Prim's algorithms.							
UnitV	Unity AlgebraigStructuresandCodingTheory (07hrs) COs Manned							
	Angeoratestrateur esand counig riteory	(07113)	CO5					
Thestr	ictureofalgebra,algebraicsystems,semigroups,monoids,g	groups,homom	orphismand					
norma	subgroups,congruencerelations,rings,integraldomainsat	ndfields,coding	gtheory.					
	TextBooks							
1.	KennethH Rosen "DiscreteMathematicsanditsApplicat	ions" TataMcC	Fraw-Hill ISBN					
	978-0-07-288008-3	, 1 404 , 10						
2.	C.L. Liu, Elements of Discrete Mathematics, TataMcGra	w-Hill, ISBN1	0:0-07-066913-9					
3.	BernardKolman,RobertC.Busby							
	andSharonRoss, "DiscreteMathematicalStructures", Pre	entice-HallofIn	dia /Pearson, ISBN:					
	01320/8457, 9780132078450.							
	Reference Books							
1.	N.Biggs, "DiscreteMathematics", 3rdEd, OxfordUnivers	sityPress,ISBN	0-19-850717-8					
2.	NarsinghDeo,"Graph with application to Engineeringan	d ComputerSc	ience",PrenticeHall					
	ofIndia,1990, 0 – 87692 –145 – 4.							

	GuidelinesforContinuousComprehensiveEvaluationofTheoryCourse							
Sr.No.	ComponentsforContinuousComprehensiveEvaluation	MarksAllotted						
1	Quiz on Unit 1, Unit-2, Unit-4, Unit 5 (Quiz 15markseachandwillbeconvertedto15Marks)	15						
2	Theoryassignment onUnit-3 (OneAssignmentonUnitIIIof 10marks will beconvertedto5Marks)	5						
	Total	20						

S. Y. B. Tech.Artificial Intelligence and Data Science Pattern 2022 Semester: III ADS222004: Digital Electronics and Logic Design					
Teaching	Teaching Scheme: Credit Scheme: Examination Scheme:				
Theory :03 hrs/week03Continuous Comprehensive Evaluation: 20Marks InSem Exam: 20Marks EndSem Exam: 60Marks			ehensive ks urks Aarks		
Prerequis	site Course:- FYE221007 :	Fundamentals of Electro	onics Engineering		
Compani	on Course:- ADS222008 I	Digital Electronics Lab			
 Course O To stude To dev To dev Course O 	bjectives: dy logic minimization techn velop skills for design and i velop skills for design and i utcomes: On completion o	niques mplementation of combin mplementation of sequen f the course, students wil	national logic circuits itial logic circuits Il be able to–		
	-	Course Outcomes		Bloom's Level	
CO1	Solve the problem of min method of Boolean expres	imization using K Map a ssion	and QuineMc-Clusky	3-Apply	
CO2	Build combinational circu	its using AND-OR logic		3-Apply	
CO3	Build combinationalcircu	its using SSI and MSI log	gic	3-Apply	
CO4	O4 Explain applications of Flip Flops, registers and shift registers 2-Understa		2-Understand		
CO5	Develop sequential logic	circuits using Flip Flops	and MSI logic	3-Apply	
		COURSE CONTENT	TS		
Unit I L	ogic Minimization Techn	ique	(08hrs)	COs Mapped - CO1	
Signed Bin arithmetic,I Minimizati	ary Number Representat Boolean expression: sum of Boolean expression u	tion: Signedmagnitude, 1 of product and product of sing K-map(upto 4 varial	l's complement, 2's o of sum form, Don't c bles)and QuineMc-Cl	complement,Binary eare conditions, uskymethod	
Unit II I	ntroduction to Combinati	onal Circuits	(06hrs)	COs Mapped - CO2	
Introduction adder, Full 7483), Looi	n to combinational circuits adder, Half subtractor, Full k ahead carry generator, BO	s, Codes &Code conver I subtractor, Universal ad CD adder	ter : BCD, Excess-3 Ider/subtractor, 4 bit b	, Gray code, Half- binary adder (IC	
Unit C III	Combinational Logic Desig	yn (m. 1997) Lleither (m. 1997)	(06hrs)	COs Mapped - CO3	
Multiplexers, Cascading multiplexers, Demultiplexers, Encoder, Decoder, Implementation of Boolean expression using multiplexer, Demultiplexer, Comparators, Parity generator and Checker. Programmable Logic Devices: ROM,PLA,PAL					
Unit II IV	ntroduction to Sequential	Circuits	(08hrs)	COs Mapped - CO4	
Difference Clocked-SF tables and e Registers, S register	Difference between Combinational and Sequential Circuits, Flip-Flops: SR, Concept of preset & clear, Clocked-SR, JK, Master slave JK flip flop, T, D,Edge triggered and level triggered flip flops, Truth tables and excitation tables Registers, Shift registers, Bidirectional shift register, Ring counter, Twisted ring counter, Universal shift register				

Unit V	Sequential Logic Design	(08hrs)	COs Mapped -
			CO5

Counters:Types – Synchronous and asynchronous counters

Asynchronous Counters: Modulus of the counter, Decade counter, Up, Down and Up/Down counters Synchronous sequential circuit design, State diagram, State assignment, State table, State reduction, Design procedure, Sequence generator and detector

Text Books

- 1. R. P. Jain, "Modern Digital Electronics", Fourth Edition, Tata McGraw Hill, ISBN 978-0-07-06691-16
- Moris Mano, "Digital Logic and Computer Design", Second Edition, Pearson, ISBN: 978-8177584097

Reference Books

- 1. John Yarbrough, "Digital Logic applications and Design", FourthEdition, Thomson Publication , ISBN:978-8131500583
- 2. Malvino, D.Leach "Digital Principles and Applications", Sixth Edition, Tata McGraw-Hill, ISBN: 978-0070601758

Guidelines for Continuous Comprehensive Evaluationof Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Quiz on Unit 1, Unit2, Unit 3 (Quiz 15 marks each and will be converted to 15 Marks)	15		
2	Theory assignment on Unit 4, Unit 5 (OneAssignment each on Unit 4 and Unit 5 of 10 marks will be converted to 5 Marks)	5		
	Total	20		

S. Y. B. Tech. Artificial Intelligence and Data Science Pattern 2022 Semester: III						
Teachi	Teaching Scheme: Credit Scheme: Examination Scheme:					
Theory	v :03 hrs/week	03	Continuous Com	prehensive		
			Evaluation: 20M InSem Exam: 20 EndSem Exam: 6	arks Marks 60Marks		
Prereq	uisite Courses:-FYE221010):Programming in C, FYI	E221011:Programm	ning in CPP		
Compa	nion Course:- ADS222009	: Programming Paradigm	s and Computer N	etwork Lab		
Course	Objectives:					
Г• 1 т•	o understand principles of pro-	programming paradigms	les in Iava progran	nming		
• 1	To be familiar with the basic	concepts of logical and fi	unctional program	ning language		
Course	• Outcomes: On completion	of the course, students w	ill be able to-			
		Course Outcomes		Bloom's Level		
CO1	Remember and describe various programming paradigms			2-Understand		
CO2	Make use of appropriate data types and control structures in Java to3-Applysolve a given problem3-Apply			3-Apply		
CO3	Apply object oriented constructs in Java			3-Apply		
CO4	O4 Make use of exception handling and multithreading in Java			3-Apply		
CO5	Compare and contrast Fun	ctional and Logic progra	mming	4-Analyze		
		COURSE CONTENT	ГS			
Unit I	Introduction to Programm	ing Paradigms	(05hrs)	COs Mapped - CO1		
Language standardization: Proprietary and consensus, Programming paradigms- Procedural, Object oriented, Functional, Logic Properties of data types, objects, Scalar data types, Composite data types, Programming language syntax, Stages in translation: analysis of the source program. synthesis of the object program.						
Unit II	Introduction to Java prog	ramming	(07hrs)	COs Mapped - CO2		
History and features of Java, Java Virtual Machine Data Types : Signed vs. unsigned, User defined vs. primitive Data types, pointers Arrays : One dimensional array, Multi-dimensional array, Alternative array declaration statements Decision Making : if, else if, nested if, switch, Nested control structures: Syntax, semantics, pitfalls Iterative Control Structures: while, do-while, for, the 'for- each': Syntax, semantics, pitfalls Jump Statements : break and continue String Handling : String classes and methods. Comparison of Java and C++						

Unit III	Object Oriented Programming in Java	(08hrs)	COs Mapped - CO3		
Classes	Classes and Methods: Review of object oriented programming, objects, classes.				

Assigning object reference variables, Introducing methods, constructors, Garbage collection, finalize() method

Inheritance: Member access and inheritance, Super class references, Using 'super' to call super class constructer, Creating a multilevel hierarchy, Method overriding, Dynamic method - dispatch, Using abstract classes

Packages and Interfaces: Defining a package, Finding packages, Access protection, Importing packages, Interfaces.

Comparison of Java and C++

Unit	Multithreading	and Exception Handling using	(08hrs)	COs Mapped -
IV	Java			CO4

Exception Handling: Types of Exceptions, Uncaught exceptions, Using try-catch, Multiple catch clauses, Nested try statements, Built-in exceptions, and Chained exceptions.

Multithreading in Java: Thread priorities, Synchronization, Messaging, Main thread, Creating a thread, Creating multiple threads.

Unit	Logical and Functional Programming	(08 hrs)	COs Mapped -
\mathbf{V}	Languages		CO5

LISP: Understanding symbol manipulation, Basic LISP functions, Definitions, predicates, Conditionals and scoping, Recursion and iteration, Properties list arrays and access functions, Using lambda definitions, Printing, Reading and atom manipulation

Prolog: Introduction, Syntax and semantics of prolog programs, Lists, Operators, Arithmetic, Using structures.

Text Books

1. T. W. Pratt, M. V. Zelkowitz, "Programming Languages Design and Implementation", Fourth Edition, PHI, ISBN 81-203-2035-2

2. Herbert Schildt, "The Complete Reference Java", Ninth Edition, Tata McGraw Hill, ISBN: 978-0-07-180856-9

3.Ivan Bratko ,"Prolog programming for Artificial Intelligence", Wesley publishers Limited, ISBN10: 0321417461 · ISBN13: 978-0321417466

4. Winston P., Klaus B., Horn P., "LISP", Third Edition Pearson education, ISBN:81-7808-155-5

Reference Books

1. Carlo Ghezzi, Mehdi Jazayeri, "Programming Language Concepts", Third Edition, Wiley Publication ISBN 978-81-265-1861-6.

2. Deugo, "Java Gems", Cambridge University Press, ISBN 0521648246

Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Quiz on Unit 1, Unit-2, Unit-4, Unit 5 (Quiz 15 marks each and will be converted to 15 Marks)	15		
2	Theory assignment on Unit-3 (One assignment on Unit III of 10 marks will be converted to 5 Marks)	5		
	Total	20		

S. Y. B. Tech. Artificial Intelligence and Data Science Pattern 2022 Semester: III ADS222006: Emotional Intelligence					
Teachin	eaching Scheme: Credit Scheme: Examination Scheme:				
Theory	:01 hrs/week	01	Term Work: 25		
Prerequ	isite Courses, if any: -Comr	nunication Skill			
Course (• To • To • To	Objectives: • understand use of Emotiona • acquire knowledge of Emot • DevelopEmotional Intellige	al Intelligence. ional Intelligence and im ence in personal manner	plement it at workpl	ace	
Course	Outcomes: On completion of	of the course, students wil	l be able to-		
		Course Outcomes		Bloom's Level	
CO1	Outline the emotional and social competencies that make up Emotional Intelligence			al 2-Understanding	
CO2	Classify how you can work to enhance your Emotional Intelligenceto 2-Underst increase your performance at work				
CO3	Compare what Emotional Intelligenceis and what it is NOT 2-Understa			2-Understanding	
CO4	Analyze how basic human emotions and how they impact on decision 3-Apply making and on developing relationships				
CO5	Distinguish models of E regarding your personal de with a particular focus on your behavior.	Emotional Intelligencean velopment. Assess how y how your feelings and e	nd what they mea you react in situation emotions impact upo	n is 3-Apply n	
		COURSE CONTENT	S		
Unit I	Introduction to Emotional	Intelligence	(03hrs)	COs Mapped - CO1	
Introducti Intelligent personality	on to Emotional Intelligence Quotient, list of EICompetenc development.	e(EI), Importance of EI, c ies, Benefits of EI, EI in H	difference between En ealth and well being,	notional Quotient and role of EI in	
NPTEL C	ourse: Introduction to Emotion	nal Intelligence			
Unit II	Emotions Methodology		(02hrs)	COs Mapped - CO2	
Function of emotions, hierarchy of the human brain, levels of the brain work, expression of emotion depends upon the context.					
NPTEL Course: Emotions Methodology					
Unit III	Emotional Intelligence Mo	dels	(02hrs)	COs Mapped – CO3	
Effective the emot	emotional information, mea ional climate, EI feedback, a	uningful ways of EI, EIan dvantages and disadvanta	nd cognitive intellig ages of EI.	ence, working with	

NPTEL Course: Emotional Intelligence Models					
Unit IV	Emotional Intelligence at workplace	(03hrs)	COs Mapped – CO4		
Pioneers world co Managir	Pioneers in the field of EI, components of the EI, competency framework, inner world and outer world components, abilities of EI, actions you can take to work with EI, measurement of EI. Managing stress suicide prevention spirituality and meditation				
NPTEL (Course: Emotional Intelligence at workplace				
Unit V	Development of Emotional Intelligence	(02hrs)	COs Mapped – CO5		
Emotion EI.	al Intelligence for growth, development of EI, aspect	of EI, working w	ith EI, Application of		
NPTEL C	ourse: Development of Emotional Intelligence				
	Text Books				
1. Er Y	notional Intelligence: For a Better Life, success at w Your Social Skills, Emotional Agility and Discover V Collection) Paperback – June 17, 2019, ISBN-13 978-	ork, and happier 1 Why IQ. (EQ 2. 1077972131.	relationships. Improve 0) (Brandon Goleman		
Reference Books					
1. <u>Da</u> IS	niel Goleman, "Emotional Intelligence Reader's Gui BN 10- 9780553383713.	de", Random Ho	use Publishing Group,		
MOOC Courses					
• <u>ht</u> er	tps://alison.com/topic/learn/79339/an-introduction- notional-intelligence	to-the-course-on	-developing-your-		
• <u>ht</u>	tps://alison.com/topic/learn/79349/the-developmen	t-and-function-o	f-emotions		
• <u>ht</u> • <u>ht</u>	<u>tps://alison.com/topic/learn/79355/emotional-intell</u> <u>tps://alison.com/topic/learn/79361/develop-your-en</u> itcomes	igence-models-lea notional-intelliger	<u>arning-outcomes</u> <u>1ce-learning-</u>		
 <u>https://alison.com/topic/learn/79339/an-introduction-to-the-course-on-developing-your-</u> emotional-intelligence 					
Guidelines for Term work Assessment					
Termwork Assessment shall be based on overall performance of a student.					
Rubrics for Assessment:					
R1- Multiple Choice Questions (05)					
R2-Cas	e Study based on Emotional Intelligence (10)				
K3- Assignments and Poster Presentation (10).					

S. Y. B. Tech. Artificial Intelligence and Data Science Pattern 2022 Semester: III ADS222007: Data Structures Lab					
Teaching	Scheme:	Credit Scheme:	Examination Scher	ne:	
Practical : 04 hrs/week02Term Work: 25 MarksPractical Exam : 50 Marks		arks) Marks			
Prerequis	site Courses:- FYE221010	: Programming in C, FYE	E221011: Programmin	g in CPP	
Compani	on Course:- ADS222001:	Fundamentals of Data St	ructures		
 Course Objectives: To understand basic concepts and terminology of algorithms and data structures To study data structures arrays, linked lists, stack and queues To learn searching and sorting methods 					
Course O	utcomes: On completion o	of the course, students wil	l be able to–		
		Course Outcomes		Bloom's Level	
CO1	Describe the fundamental concepts and terminology of data structures and algorithms, including arrays, linked lists, stacks, queues and searching and sorting algorithms				
CO2	CO2 Demonstrate the ability to choose and implement appropriate data structures such as Array, linked list, stack and queue to solve a given problem 3-Apply				
CO3	Implement algorithms for array and linked list processing such as3-Applyinsertion, and deletion using C++			3-Apply	
CO4	Use stack and / or queue	to solve the given problem	n	3-Apply	
CO5	Compare different search performance, strengths, a	ing and sorting algorithm nd limitations.	s based on their	3-Apply	

List of Laboratory Experiments / Assignments				
Sr. No.	Laboratory Experiments / Assignments	COs Mapped		
1	 Set operations: Write a menu driven C++ program to store sets for students' names participating in different events in Equinox such as Coding contest, Project competition, Paper Presentation, MasterMind etc. 1. Find out participants who have participated in Coding and Project both 2. Find out participants who have participated in Coding or Project competition or both or Mastermind 3. Find out participants who have participated in Coding but not in Master mind Find out participants who have participated in Coding but not in Master mind 	CO1,CO2, CO3		

	Knight's tour: The problem is to move the knight, beginning from any	CO1,CO2, CO3
	given square on the chessboard, in such a manner that it travels successively	, ,
	to all 64 squares, touching each square once and only once.	
	It is convenient to represent a solution by placing the numbers 1.2,64 in	
	the squares of the chessboard indicating the order in which the squares are	
	reached Note that it is not required that the knight be able to reach the	
	initial position by one more move: if this is possible the knight's tour is	
	called re-entrant. One of the more ingenious methods for solving the	
	problem of the knight's tour is that given by I C Warnsdorff in 1823 His	
	rule is that the knight must always be moved to one of the squares from	
	which there are the fewest exits to squares not already traversed. Write a	
	C_{++} program to implement Warnsdorff's rule and show it graphically	
2	er + program to imprement + ambaorri brate and bhow it graphicany.	
	OR	
	Random walk : A (drunken) cockroach is placed on a given square in the	
	middle of a tile floor in a rectangular room of size n x m tiles. The bug	
	wanders (possibly in search of an aspirin) randomly from tile to tile	
	throughout the room. Assuming that it may move from his present tile to any	
	of the eight tiles surrounding it (unless it is against a wall) with equal	
	probability, how long will it take him to touch every tile on the floor at least	
	once?	
	Write a C++ program to graphically show a random walk of a (drunken)	
	cockroach and find the no of moves made.	
	String Operations: Write a menu driven C++ program with a class for	CO1,CO2, CO3
	String. Write functions	
	1. To determine the frequency of occurrence of a particular character	
	in the string.	
	2. Extract a new string from original string by accepting starting	
3	position and length	
	3. To accept any character and return the string with by removing all	
	occurrences of a character accepted	
	4. To make an in-place replacement of a substring w of a string by the	
	string x. Note that w may not be of same size that of x	
	5. To check whether given string is paindrome or not	CO1 CO2 CO2
	Matrix Write functions to perform Sparse Matrix operations as listed	C01, C02, C03
	below	
	1 Read sparse matrix	
Δ	2. Display sparse matrix	
•	3. Add two sparse matrices	
	4. Find transpose using Simple transpose algorithm	
	5. Find transpose using Fast transpose algorithm	
	Compare complexity of simple and fast transpose using counter.	

	Polynomial operations: Write a menu driven C++ program with class for	CO1,CO2, CO3
	single variable polynomial and write functions to perform following	
	polynomial operations using arrays	
5	1. Read polynomial	
	2. Display polynomial	
	3. Add two polynomials	
	You can try above polynomial operation using Linked list	
	Linked list operations: Create a linked list of names and birthdays of	CO1,CO2, CO3
	students. Write a menu driven C++ program to perform following	
	operations	
6	1. Insert name and birthday of new student	
0	2. Delete a student entry	
	3. Display a happy birthday message for whom today (based on	
	system date) is birthday	
	4. Display list of students with their birthdays	
	Appointment Management: Write a menu driven C++ program for storing	CO1,CO2, CO3
	appointment schedules for the day.	
	Appointments are booked randomly using linked lists. Set start and end	
_	time for visit slots. Write functions for	
7	1. Display free slots	
	2. Book appointment	
	3. Cancel appointment (check validity, time bounds, availability etc)	
	4. Sort list based on time	
	5. Sort list based on time using pointer manipulation	
		001 000 001
	Expression conversion : Write a menu driven C++ program for expression	CO1,CO2, CO4
	Expression conversion : Write a menu driven C++ program for expression conversion and evaluation	CO1,CO2, CO4
0	Expression conversion: Write a menu driven C++ program for expression conversion and evaluation 1. infix to prefix	CO1,CO2, CO4
8	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation 1. infix to prefix 2. prefix to postfix 3. and for to infin 	CO1,CO2, CO4
8	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation 1. infix to prefix 2. prefix to postfix 3. prefix to infix 4. postfix to infix 	CO1,CO2, CO4
8	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation 1. infix to prefix 2. prefix to postfix 3. prefix to infix 4. postfix to infix 5. postfix to prefix 	CO1,CO2, CO4
8	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation 1. infix to prefix 2. prefix to postfix 3. prefix to postfix 4. postfix to infix 5. postfix to prefix 	CO1,CO2, CO4
8	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation 1. infix to prefix 2. prefix to postfix 3. prefix to infix 4. postfix to infix 5. postfix to prefix String operations: A palindrome is a string of characters that's identical when read in forward and backward direction. Typically, punctuation 	CO1,CO2, CO4 CO1,CO2, CO4
8	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation 1. infix to prefix 2. prefix to postfix 3. prefix to infix 4. postfix to infix 5. postfix to infix 5. postfix to prefix String operations: A palindrome is a string of characters that's identical when read in forward and backward direction. Typically, punctuation, capitalization, and spaces are ignored. For example, "I Poor Dan is in a 	CO1,CO2, CO4 CO1,CO2, CO4
8	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation 1. infix to prefix 2. prefix to postfix 3. prefix to infix 4. postfix to infix 5. postfix to prefix String operations: A palindrome is a string of characters that's identical when read in forward and backward direction. Typically, punctuation, capitalization, and spaces are ignored. For example, "1.Poor Dan is in a droop!!" is a palindrome as can be seen by examining the characters 	CO1,CO2, CO4 CO1,CO2, CO4
8	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation infix to prefix prefix to prefix prefix to infix postfix to infix postfix to prefix String operations: A palindrome is a string of characters that's identical when read in forward and backward direction. Typically, punctuation, capitalization, and spaces are ignored. For example, "1.Poor Dan is in a droop!!" is a palindrome, as can be seen by examining the characters 	CO1,CO2, CO4 CO1,CO2, CO4
8	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation infix to prefix prefix to postfix prefix to infix postfix to infix postfix to prefix String operations: A palindrome is a string of characters that's identical when read in forward and backward direction. Typically, punctuation, capitalization, and spaces are ignored. For example, "1.Poor Dan is in a droop!!" is a palindrome, as can be seen by examining the characters 	CO1,CO2, CO4 CO1,CO2, CO4
8	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation 1. infix to prefix 2. prefix to postfix 3. prefix to infix 4. postfix to infix 5. postfix to prefix String operations: A palindrome is a string of characters that's identical when read in forward and backward direction. Typically, punctuation, capitalization, and spaces are ignored. For example, "1.Poor Dan is in a droop!!" is a palindrome, as can be seen by examining the characters "poordanisinadroop" and observing that they are identical when read forward and backward directions. One way to check for a palindrome is to reverse the characters in the string and compare them with the original-in a 	CO1,CO2, CO4 CO1,CO2, CO4
8	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation infix to prefix prefix to prefix prefix to infix postfix to infix postfix to prefix String operations: A palindrome is a string of characters that's identical when read in forward and backward direction. Typically, punctuation, capitalization, and spaces are ignored. For example, "1.Poor Dan is in a droop!!" is a palindrome, as can be seen by examining the characters "poordanisinadroop" and observing that they are identical when read forward directions. One way to check for a palindrome is to reverse the characters in the string and compare them with the original-in a palindrome, the sequence will be identical.	CO1,CO2, CO4 CO1,CO2, CO4
8	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation infix to prefix prefix to prefix prefix to infix postfix to infix String operations: A palindrome is a string of characters that's identical when read in forward and backward direction. Typically, punctuation, capitalization, and spaces are ignored. For example, "1.Poor Dan is in a droop!!" is a palindrome, as can be seen by examining the characters "poordanisinadroop" and observing that they are identical when read forward directions. One way to check for a palindrome is to reverse the characters in the string and compare them with the original-in a palindrome, the sequence will be identical. 	CO1,CO2, CO4 CO1,CO2, CO4
8	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation infix to prefix prefix to prefix prefix to infix postfix to infix postfix to prefix String operations: A palindrome is a string of characters that's identical when read in forward and backward direction. Typically, punctuation, capitalization, and spaces are ignored. For example, "1.Poor Dan is in a droop!!" is a palindrome, as can be seen by examining the characters "poordanisinadroop" and observing that they are identical when read forward directions. One way to check for a palindrome is to reverse the characters in the string and compare them with the original-in a palindrome, the sequence will be identical. Write C++ program with functions using Standard Template Library (STL) stack-	CO1,CO2, CO4
8	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation infix to prefix prefix to postfix prefix to infix postfix to infix postfix to prefix String operations: A palindrome is a string of characters that's identical when read in forward and backward direction. Typically, punctuation, capitalization, and spaces are ignored. For example, "1.Poor Dan is in a droop!!" is a palindrome, as can be seen by examining the characters "poordanisinadroop" and observing that they are identical when read forward and backward directions. One way to check for a palindrome is to reverse the characters in the string and compare them with the original-in a palindrome, the sequence will be identical. Write C++ program with functions using Standard Template Library (STL) stack- To print original string followed by reversed string using stack 	CO1,CO2, CO4 CO1,CO2, CO4
8	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation infix to prefix prefix to postfix prefix to infix postfix to infix String operations: A palindrome is a string of characters that's identical when read in forward and backward direction. Typically, punctuation, capitalization, and spaces are ignored. For example, "1.Poor Dan is in a droop!!" is a palindrome, as can be seen by examining the characters "poordanisinadroop" and observing that they are identical when read forward and backward directions. One way to check for a palindrome is to reverse the characters in the string and compare them with the original-in a palindrome, the sequence will be identical. Write C++ program with functions using Standard Template Library (STL) stack- To print original string followed by reversed string using stack 	CO1,CO2, CO4
9	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation infix to prefix prefix to postfix prefix to infix postfix to infix String operations: A palindrome is a string of characters that's identical when read in forward and backward direction. Typically, punctuation, capitalization, and spaces are ignored. For example, "1.Poor Dan is in a droop!!" is a palindrome, as can be seen by examining the characters "poordanisinadroop" and observing that they are identical when read forward and backward directions. One way to check for a palindrome is to reverse the characters in the string and compare them with the original-in a palindrome, the sequence will be identical. Write C++ program with functions using Standard Template Library (STL) stack- To print original string followed by reversed string using stack To check whether given string is palindrome or not 	CO1,CO2, CO4 CO1,CO2, CO4 CO1,CO2, CO4
9	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation infix to prefix prefix to postfix prefix to infix postfix to infix postfix to prefix String operations: A palindrome is a string of characters that's identical when read in forward and backward direction. Typically, punctuation, capitalization, and spaces are ignored. For example, "1.Poor Dan is in a droop!!" is a palindrome, as can be seen by examining the characters "poordanisinadroop" and observing that they are identical when read forward and backward directions. One way to check for a palindrome is to reverse the characters in the string and compare them with the original-in a palindrome, the sequence will be identical. Write C++ program with functions using Standard Template Library (STL) stack- To print original string followed by reversed string using stack To check whether given string is palindrome or not Simulation of pizza parlor: Pizza parlor accepting maximum M orders. Orders are served on a first come first served basis. Order once placed	CO1,CO2, CO4 CO1,CO2, CO4 CO1,CO2, CO4
9	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation infix to prefix prefix to postfix prefix to infix postfix to infix String operations: A palindrome is a string of characters that's identical when read in forward and backward direction. Typically, punctuation, capitalization, and spaces are ignored. For example, "1.Poor Dan is in a droop!!" is a palindrome, as can be seen by examining the characters "poordanisinadroop" and observing that they are identical when read forward directions. One way to check for a palindrome is to reverse the characters in the string and compare them with the original-in a palindrome, the sequence will be identical. Write C++ program with functions using Standard Template Library (STL) stack- To print original string followed by reversed string using stack To check whether given string is palindrome or not Simulation of pizza parlor: Pizza parlor accepting maximum M orders. Orders are served on a first come first served basis. Order once placed cannot be canceled.	CO1,CO2, CO4 CO1,CO2, CO4 CO1,CO2, CO4
8 9 10	 Expression conversion: Write a menu driven C++ program for expression conversion and evaluation infix to prefix prefix to prefix Sprefix to infix postfix to infix postfix to prefix String operations: A palindrome is a string of characters that's identical when read in forward and backward direction. Typically, punctuation, capitalization, and spaces are ignored. For example, "1.Poor Dan is in a droop!!" is a palindrome, as can be seen by examining the characters "poordanisinadroop" and observing that they are identical when read forward and backward directions. One way to check for a palindrome is to reverse the characters in the string and compare them with the original-in a palindrome, the sequence will be identical. Write C++ program with functions using Standard Template Library (STL) stack- To check whether given string is palindrome or not Simulation of pizza parlor: Pizza parlor accepting maximum M orders. Orders are served on a first come first served basis. Order once placed cannot be canceled. Write C++ program to simulate the system using simple queue or circular 	CO1,CO2, CO4 CO1,CO2, CO4 CO1,CO2, CO4

11	 Sorting: Write a C++ menu driven program to store the percentage of marks obtained by the students in an array. Write function for sorting array of floating point numbers in ascending order using Selection Sort Bubble sort Insertion sort Shell Sort Quick sort Radix sort Display top five scores Implement 4 methods of sorting. Provide choice to user to take input from user or using random numbers. 	CO1, CO5
12	 Use Standard Template Library (STL) sort function for above data. Searching: Write a C++ program to store roll numbers of students in an array who attended online lectures in random order. Write function for searching, whether a particular student attended lecture or not using 1. Linear search 2. Binary search 3. Jump search compare the searching methods based on complexities of an algorithm Provide choice to user to take input from user or using random numbers Use Visual C++ compiler to compile and execute the program. 	CO1, CO5
13	 A list of data representing various environmental parameters such as temperature, humidity, pollution levels, etc is maintained using appropriate data structure. Write a C++ program that uses data structures to perform the following operations: Find the maximum and minimum values of each parameter in the list. Calculate the average value of each parameter in the list. Sort the list in ascending order of any one parameter. Find the highest and lowest values of any one parameter that are considered safe for the environment. Calculate the impact of the parameter values on the environment based on certain pre-defined criteria. Analyze the impact of the environmental parameters on the health and safety of the society. Ensure that the program follows ethical and professional practices, such as ensuring the privacy and security of the data. You should implement the program using appropriate data structures that take into account the size and complexity of the data, and demonstrate an understanding of the societal and environmental issues related to the data. Your program should also demonstrate an understanding of the impact of the parameter values on the environment, and the need for sustainable development. Finally, your program should adhere to ethical principles and professional practices, such as ensuring the data 	CO1, CO5

Mini Proj	ect	
	Develop a mini project in a group Following is the sample problem	CO1 to CO5
	statements based on concepts learned in the course	
	1. Implement an efficient system to monitor and analyze sound pollution	
	levels in a given area. The system should be able to store and process large	
	amounts of sound data, and provide relevant insights and visualizations to	
	help identify areas of high sound pollution.	
	The system should have the following functionalities:	
	• Data Collection: Collected sound data from various sources, such as	
	sound sensors or microphones is stored in a structured format as a	
	file system.	
	• Data Processing: The system should be able to process the collected	
	data to identify patterns and trends in sound pollution levels. This	
	could involve tasks such as noise filtering signal processing and	
	feature extraction.	
	• Data Analysis: The system should be able to analyze the processed	
	data to provide insights into sound pollution levels in a given area	
	This could involve tasks such as trend analysis outlier detection	
	and clustering	
	 Visualization: The system should be able to provide relevant 	
	visualizations to help identify areas of high sound pollution. This	
	could involve tasks such as heat man generation time series	
	plotting and spatial analysis	
	The system should be designed to handle large volumes of sound data	
	afficiently and provide real time or near real time analysis and	
	visualization. The implementation of the system should be efficient in terms	
	of space and time complexity, and should be scalable to handle increasing	
	volumes of data	
	Students or data.	
	statement as follows	
	2 Operations on Big number	
	3 Appointment management	
	4 Phone book operations	
	5. Sorting methods simulation and comparison	
	5. Sorting methods simulation and comparison	
Additiona	l programming problems for practice	
	- F- 08- mining F- 00-101- F- monor	
	Binary Number operations: Write a C++menu driven program for storing	CO1, CO2, CO3
1	binary numbers using doubly linked lists. Write functions-	-
1	1. To compute 1's and 2's complement	
	2. Add two binary numbers	
	GLL: Write C++ program to realize set using generalized linked list	CO1, CO2, CO3
2	e.g. A = { a, b, {c, d, e, {}, {f, g}, h, i, {j, k}, l, m}. Store and print as set	, ,
	notation.	

3	Eight Queens: A classic problem that can be solved by backtracking is called the Eight Queens problem, which comes from the game of chess. The chess board consists of 64 squares arranged in an 8 by 8 grid. The board normally alternates between black and white squares, but this is not relevant for the present problem. The queen can move as far as she wants in any direction, as long as she follows a straight line, Vertically, horizontally, or diagonally. Write Comparison with a magnitude function for an arrange all	CO1, CO2, CO4			
	possible configurations for 8-queen's problem.				
4	DEQUE: A double-ended queue (deque) is a linear list in which additions and deletions may be made at either end. Obtain a data representation mapping a deque into a one-dimensional array. Write C++ menu driven program to simulate deque with functions to add and delete elements from either end of the deque. Also implement using STL	CO1, CO2, CO4			
	Guidelines for Laboratory Conduction				
Use of cod	ing standards and Hungarian notation, proper indentation and comments.				
Use of ope	n source software is to be encouraged.				
Operating	Operating System recommended:- Linux or its derivative				
Programm	Programming tools recommended: - Open Source line gcc/g++ (Visual C++ compiler for few				
assignmen	(s and note the difference)				
The labors	tory assignments are to be submitted by students in the form of a journal. Jour	rnal consists of			
Contificate, table of contents, and handwritten write up of each assignment (Title, problem statement					
theory con	cepts in brief, algorithm, flowchart, test cases and conclusions). Program code	es with sample			
outputs sh	all be submitted in soft form	io mui sumpre			
1	Guidelines for Termwork Assessment				
Continuous assessment of laboratory work shall be based on the overall performance of a student. Assessment of each laboratory assignment shall be based on rubrics that include R1- timely completion (10), R2- understanding of assignment (10) and R3- presentation/clarity of journal writing (10) (Coding standard, Indentation, Hungarian notation, input validation etc) Mini Project assessment will be based on Teamwork, Communication skill, Social relevance of mini project, Ethics followed.					

S. Y. B. Tech. Artificial Intelligence and Data Science Pattern 2022 Semester: III ADS222008: Digital Electronics Lab				
Teaching	Scheme:	Credit Scheme:	Examination Schem	ne:
Practical : 02 hrs/week01Term Work: 25 Marks Practical Exam: 25 Marks				ks Iarks
Prerequis	site Courses:-FYE221007:	Fundamentals of Electr	onics Engineering	
Compani	on Course:-ADS222004 D	Digital Electronics and L	ogic Design	
 Course Objectives: To study logic minimization techniques To develop skills for design and implementation of combinational logic circuits To develop skills for design and implementation of sequential logic circuits 				
Course Outcomes: On completion of the course, students will be able to- Course Outcomes Bloom's Level				
CO1	Solve the problem of min method of Boolean expres	imization using K Map ssion	and QuineMc-Clusky	3-Apply
CO2	Build combinational circu	its using AND-OR log	ic	3-Apply
CO3	CO3Build combinational circuits using SSI and MSI logic3-Apply			3-Apply
CO4	CO4 Explain applications of Flip Flops, registers and shift registers			
CO5	Develop sequential logic	circuits using Flip Flop	s and MSI logic	3-Apply

List of Laboratory Experiments / Assignments			
Sr. No.	Laboratory Experiments / Assignments	COs Mapped	
1.	To Realize Full Adder and Subtractor using logicgates	CO1,CO2	
2.	Design and implement Code Converters-Binary to Gray and BCD to Excess-3	C01,C02	
3.	Design and implement of BCD Adder using 4-bit Binary Adder (IC 7483)	C01,C02,C03	
4.	Realization of Boolean Expression using Multiplexer	CO3	
5.	Design and implement twobit comparator using logic gates	CO1, CO2	
6.	Design and implement Parity Generator and checker	CO1, CO2	
7.	Realization of Boolean Expression using Encoder	CO3	
8.	Realization of Boolean Expression using Decoder	CO3	
9.	Implement 2 bit Ripple Counter using JK Flip Flop	CO4, CO5	
10.	Design of Synchronous 2 bit Up/Down Counter using JK Flip Flop	CO1, CO4, CO5	
11.	Design and implement Modulo-N counter using Decade Counter IC 7490	CO1, CO4,CO5	
12.	Design and implement Sequence generator and detector using JK Flip Flop	CO1, CO4, CO5	
13.	Implement 3/4 bits shift registers using D Flip Flop	CO4	
Guidelines for Laboratory Conduction			

1. Teacher will brief the given experiment to students its procedure

2. Apparatus and equipments required for the allotted experiment will be provided by the lab assistants using SOP

3. Students will perform the allotted experiment in a group (three/four students in each group) under the supervision of faculty and lab assistant

4. After performing the experiment students will check their output from the teacher

Guidelines for Student's Lab Journal

Write-up should include title, aim, steps of circuit designing (Block Diagram, Truth Table, K Map, Expression, Realization, Conclusion)

Guidelines for Termwork Assessment

Continuous assessment of laboratory work shall be based on the overall performance of a student. Assessment of each laboratory assignment shall be based on rubrics that include

R1- timely completion (10),

R2- understanding of assignment (10) and

R3- presentation/clarity of journal writing (10)

S. Y. B. Tech. Artificial Intelligence and Data Science Pattern 2022 Semester: III					
Teachir	ADS222009: Programming Paradigms and Computer Networks LaboratoryTeaching Scheme:Credit Scheme:Examination Scheme:				
Practica	Practical : 02 hrs/week01Term Work: 25Marks Practical Exam: 25Marks				
Prerequ FYE221	uisite Courses:- FYE221010 001 : Applied Mathematics I	: Programming in C, FY	E221011:Programming	g in CPP,	
Compa	nion Course: ADS222009:Pro ADS222002 C	ogramming Paradigms an omputer Networks	d Java Programming		
 Course Objectives: To understand object-oriented concepts in Java such as data abstraction, encapsulation, inheritance, dynamic binding, and polymorphism To be familiar with functional and logical programming paradigm To understand basic concepts of Graphics Programming To know various algorithms for generating and rendering geometrical objects Course Outcomes: On completion of the course, students will be able to- 					
		Course Outcomes		Bloom's Level	
CO1	Demonstrate Object Oriente abstraction, encapsulation, a problems	d Programming features and polymorphism to solv	like inheritance, data ve various computing	2- Understand	
CO2	Illustrate the use of exception	n handling and multithre	ading in Java	2-Understand	
CO3	Compare and contrast Funct	ional and Logic program	ming	2-Understand	
CO4	Demonstrate basics of LAN layer and network layer	and functions of applica	tion layer, transport	2-Understand	
CO5	Apply concepts of framing,	error detection and contr	rol at Data link Layer	2-Apply	

List of Laboratory Experiments / Assignments			
Sr. No.	Laboratory Experiments / Assignments	COs Mappe d	
1	Write a JAVA program to create a base class "Person" with name and phone number as its attributes. Derive a class "Academic Performance" with Degree and percentage as its attributes from the "Person" class. Display both personal and academic information. Make use of constructor, default constructor, copy constructor and a destructor. Also Derive a class "Sports performance" with sports-name and score as its attribute from the "Person" class. Display personal data along with information about scores obtained in the Sport event.	CO1	
2	A publishing company deals with marketing of books and audio cassettes. For each book and the audio cassette the company needs to record a title and price of publication. Also a page count should be recorded for each book and a play-time in minutes should be recorded for each cassette. Design a suitable class hierarchy. Write a menu driven program that instantiates the book and tape class, allows users to manipulate and display the information about books and cassettes. The program should catch exceptions and if an exception is	CO1	

	caught, it should replace all the values of data members with zeroes.	
	Write a JAVA program to create User defined exception to check the following	
	conditions and throw the exception if the criterion does not met.	
	a. User has age between 18 and 55	
3	b. User stays has income between Rs. 50,000 – Rs. 1,00,000 per month	CO1
5	c. User stays in Pune / Mumbai/ Bangalore / Chennai	COI
	d. User has 4-wheeler	
	Accept age, Income, City, Vehicle from the user and check for the conditions mentioned above. If any of the condition not met then throw the exception.	
4	Write java program to create a super class called Figure that receives the dimensions of two dimensional objects. It also defines a method called area that computes the area of an object. The program derives two subclasses from Figure. The first is Rectangle and second is Triangle. Each of the sub class overridden area() so that it returns the area of a rectangle and a triangle respectively	CO1
5	Write a Java program that correctly implements producer consumer problem using the concept of inter thread communication	CO2
7	Consider a database of facts that describe parent relationships as well as gender relationships. The predicate parent (john,ann) is interpreted as: "John is a parent of Ann". The predicate male (john) is interpreted as: "John is a man". The predicate female (ann) is interpreted as: "Ann is a woman". Write a Prolog predicate half sister (X,Y) that is true if X is Y's half-sister.	CO3
	Setup a WAN which contains wired as well as wireless LAN using apacket	
8	tracer tool.	CO4
	Demonstrate transfer of a packet from LAN1 (wired LAN) to LAN2(Wireless LAN).	04
9	Write a program for DNS lookup. Given an IP address as input, it should return URL and vice-versa.	CO4
	Write a client-server programs using TCP socket for wired network to -	
10	a. Say Hello to Each other	CO4
_	b. File transfer	001
	c. Calculator	
11	write a program to demonstrate sub-nets and find the subnet masks	CO4
12	Write a program for error detection and correction for 7/8 bits ASCII codesusing Hamming Codes or CRC	CO5
	Guidelines for Laboratory Conduction	
Use of o	open source software is encouraged.	
1.	Operating System recommended: - 64-bit Open source Linux or its derivative Programming tools recommended: - Open Source Iava Programming tool	
3.	Simulation tools recommended : Packet tracer tool	
	Students shall use popular Java compilers/IDE such as GNU/Javac/Eclipse/Rose/SmartE	iffel
	Guidelines for Student's Lab Journal	
The lab	oratory assignments are to be submitted by student in the form of journal. Journal consis	sts of
Certific	ate, table of contents, and handwritten write-up of each assignment (Title, Objectives, Pr	roblem
Statement, Software and Hardware requirements, Theory- Concept in brief, algorithm, flowchart, Mathematical model (if applicable) and conclusions. Program codes with comple output of all		
performed		
Assigni	nents are to be submitted as softcopy.	
	Guidelines for Termwork Assessment	

Continuous assessment of laboratory work shall be based on the overall performance of a student. Assessment of each laboratory assignment shall be based on rubrics that include

R1- timely completion (10),

R2- understanding of assignment (10) and

R3- presentation/clarity of journal writing (10) (Coding standard, Indentation, Hungarian notation, input validation etc)

S. Y. B. Tech. Artificial Intelligence and Data Science Pattern 2022 Semester: III					
ADS222010: Python Programming Lab Teaching Scheme: Credit Scheme: Examination Scheme:					
Practical	Practical : 2 hrs/week 01 Term Work : 25 Marks				
	<u></u>				
Prerequi	site Courses:- FYE221010	Programming in C			
Course C	D bjectives:				
• To	understand core python pro	gramming	, · · · · · · ·		
• 10 • To	understand python looping,	control statements and s	string manipulations		
• 10					
Course Outcomes: On completion of the course, students will be able to–					
	Course Outcomes Bloom's Level				
CO1	Use the core concepts to write a python program3-Apply				
CO2	Apply control structure and loops to build a solution for a given problem 3-Apply				
CO3	Develop python program for string manipulation3-Apply				
CO4	Build a solution for a give dictionaries	n problem using lists, se	ts, tuples,	3-Apply	
CO5	Develop programs using functions3-Apply				
		COURSE CONTENT	ſS		
Installati	on of Python IDEs: PyCha	rm/Eclipse/PyDev			
Data-types in Python					
Variables in Python					
Identifiers, Data Types, Constants, Input / Output, Operators (Arithmetic, relational, logical, bitwise), Expressions, Precedence and Associativity, Type conversions					
Taking U	ser Input (Console)				
Conditional algorithmic constructs: if, if-else, nested if-else, cascaded if-else and switch statement					
Iterative algorithmic constructs: 'for', 'while' statements, nested loops, Continue, break statements					

Function: definition, call, variable scope and lifetime, the return statement. Defining functions, Lambda or anonymous function

Arrays: One- dimensional, multidimensional array, character arrays (Strings).

List of Laboratory Experiments / Assignments			
Sr. No.	Laboratory Experiments / Assignments	CO Mapped	
1	Write a python program that accepts seconds as input of type integer. The program should convert seconds in hours, minutes and seconds. Output should like this : Enter seconds: 12200 Hours: 3 Minutes: 23 Seconds: 20	CO1	
	Conditional Structures		
2	 The marks obtained by a student in 3 different subjects are input by the user. Python program should calculate the average marks obtained in 3 subjects and display the grade. The student gets a grade as per the following rules: Average Grade 90-100 O 80-89 A 70-79 B 60-69 C 40-59 D 0-39 F 	CO2	
3	Control structures Floyd's triangle is a right-angled triangular array of natural numbers as shown below: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Write a python program to print the Floyd's triangle	CO2	
4	 String Write a python program that accepts a string to setup a password with following requirements: The password must be at least eight characters long It must contain at least one uppercase letter It must contain at least one lowercase letter It must contain at least one numeric digit The program checks the validity of password. 	CO3	
5	 List Write a python program to Find the sum and average of given numbers using lists Display elements of list in reverse order Find the minimum and maximum elements in the lists 	CO4	
6	Tuple Write a Python program to sort a tuple by its float element. Sample data: [('item1', '13.10'), ('item2', '17.10'), ('item3', '25.3')] Expected Output: [('item3', '25.3'), ('item2', '17.10'), ('item1', '13.10')]	CO4	

	Dictionary			
	Write a python program to read string from user and create a dictionary			
	having key as word length and value is count of words of that length.			
	For example, if user enters 'I scream you scream we all scream for ice			
	cream'			
	Word Word length			
	I 1			
	scream 6			
7	you 3	CO4		
	scream 6			
	we 2			
	all 3			
	scream 6			
	for 3			
	ice 3			
	cream 5			
	The content of dictionary should be $\{1:1, 6:3, 3:4, 2:1, 5:1\}$			
	Set			
8	Write a python program for operations on set	CO4		
	Function			
	Write a function in python to display the elements of list thrice if it is a			
	number and display the element terminated with '#' if it is not a number			
	Suppose the following input is supplied to the program:			
	['23' 'MAN' 'GIRIRAI' '24' '7ARA']			
9	The output should be	CO5		
,	232323	005		
	232323 M A N#			
	GIRIRAI#			
	2/2/2/			
	ZARA#			
Mini Pro	ject			
10	Develop a mini project in a group based on Python programming concepts			
10	and design thinking	CO1 to CO5		
	Guidelines for Laboratory Conduction			
Use of coo	ling standards and Hungarian notation, proper indentation and comments.			
Operating	System recommended:- Linux or its derivative			
Use the co	oncepts of design thinking in mini project.			
	Guidelines for Student's Lab Journal			
The labora	atory assignments are to be submitted by students in the form of a journal. J	ournal consists		
of Certifi	cate, table of contents, and handwritten write-up of each assignment (Title, problem		
statement,	theory concepts in brief, algorithm, flowchart, test cases and conclusions).	Program codes		
with samp	le outputs shall be submitted in soft form.	C		
	Guidelines for Termwork Assessment			
Continuor	is assessment of laboratory work shall be based on the overall performance of	of a student.		
Assessment of each laboratory assignment shall be based on rubrics that include				
R1- timely completion (10)				
R2- unde	erstanding of assignment (10)			
R3- Use	Coding standards, proper documentation, neatness of writeup $(10) - 5$ ma	rks for coding		
standards	s and documentation and 5 marks for neatness of write up			
	· · · · · · · · · · · · · · · · · · ·			

Text Books

- 1. Reema Thareja, "Python Programming Using Problem Solving Approach", Oxford University Press, ISBN 13: 978-0-19-948017-6 2.
- 2. R. Nageswara Rao, "Core Python Programming", Dreamtech Press, ISBN-13: 978-9386052308

Reference Books

- 1. R. G. Dromey, "How to Solve it by Computer", Pearson Education India, ISBN-13: 978-8131705629
- 2. Maureen Spankle, "Problem Solving and Programming Concepts", Pearson, ISBN-13: 978-0132492645

S.Y.B.Tech. Artificial Intelligence and Data Science Pattern 2022 Semester: IV						
	SMH222111: Applied Mathematics-III					
Teaching S	cheme:	Credit Scheme:	Examination Sche	eme:		
Theory: 03	hrs/week	03	Continuous			
Tutorial:01hr/week		01	Comprehensive Evaluation:20Mar InSem Exam: 20M EndSemExam:60 Tutorial:25Marks	rks Iarks Marks 5		
Prerequisit	te Courses:- Applied Mathe	matics-I				
Course Ou	tcomes: On completion of the	he course, students wi	ll be able to–			
		Course Outcomes		Bloom's Level		
C01	Understand basic concept	of Statistic		2-Understand		
CO2	Understand basic concept	of probability distribu	ition	2-Understand		
CO3	Apply the basic concepts of	of statistics to real life	problems	3-Apply		
CO4	Apply the basic concepts of probability distribution theory to real 3-Apply life problems		3-Apply			
CO5	CO5 Analyze real life problems by using theory of statistics and Probability distribution 4-Analyze		4-Analyze			
	(COURSE CONTENT	ſS			
UnitI	Descriptive Measures		(08hrs+2hrsTutori	al) COs Mapped - CO1, CO2, CO3		
Measures of Deviation,	of central tendency (Mean, M Range), coefficients of varia	Iedian, Mode), Measu ation, Moments, Skew	rres of dispersion (Va ness and Kurtosis.	riance, Standard		
Unit II	Random Variable & Dis	tribution Functions	(08hrs+2hrsTutori	al) COs Mapped -CO1, CO2, CO3		
Random V function, P distributior	ariable, Distribution functio robability mass function (p. 1 function (Continuous and o	ns (Continuous and di m.f.), Probability dens discrete).	screte), Properties of sity function (p.d.f.) a	distribution nd Cumulative		
Unit III	Mathematical Expectation	on and Generating	(08hrs+2hrsTutori	al) COs Mapped CO3, CO4, CO5		
Mathemati	cal Expectation, Properties of	of expectation, Momen	nt Generating Functio	n		

Unit IV	Probability Distributions	(08hrs+2hrsTutorial)	COsMapped - CO4, CO5		
Discrete di	stributions: Geometric Binomial Poisson Unifo	rm Distribution			
Continuous	s distribution: Normal distribution Standard Nor	nal Uniform			
Continuou	s distribution. Tronnar distribution, Standard Tron	nai, Onnorm.			
Unit V	Correlation and Regression	(08hrs+2hrsTutorial)	COs Manned -		
Unit v	Correlation and Regression	(00113+2113+400141)	COS Mappeu -		
Coverience	Concept of correlation Karl Paarson's Coefficie	nt of Correlation Pank C	correlation		
Covariance	Superman's real Correlation appficient	ent of Correlation, Kank C	oneiation		
Decomposition,	Spearman's fank Correlation coefficient.				
Regression	: Lines of Regression, Regression coefficients.				
	TextBooks				
1. B.V.Ramana, "Higher Engineering Mathematics", TataMcGraw-Hill.					
2. B.S.Grewal,"Higher Engineering Mathematics", Khanna Publication, Delhi.					
3. AdvancedEngineeringMathematics,7e,bypeterV.O"Neil(ThomsonLearning)					
4. IntroductiontoProbabilityandStatistics forEngineersandScientists.5e.					
bySheldonM.Ross(ElsevierAcademicPress)					
PafarancaRoaks					
KUU UIUUDUUKS					
1. Erwin Kreyszig,"Advanced Engineering Mathematics", WileyEastern Ltd.					
2. P.N.Wartikar and J.N.Wartikar,"Applied Mathematics"(VolumesI and II), Pune Vidyarthi					
Griha Prakashan. Pune.					

3. AdvancedEngineeringMathematics,2e,by M.D.Greenberg(PearsonEducation).

	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr.No.	Components for Continuous Comprehensive Evaluation	Marks Alloted			
1	Assignments (Total3Assignment, Unit I and II 20marks, Unit III and IV20marks and UnitV- 10marks &50markswillbeconverted to 10Marks)	10			
2	Tests on each unit using LearniCo (Each test for15 Marks and total will be converted out of 10Marks)	10			

	List of Tutorial Assignments				
Sr.No.	Title	CO Mapped			
1	Examples on measures of central tendency and measures of dispersion	CO1,CO2, CO3			
2	Examples on Probability density function (p.d.f.) and Cumulative distribution function (Continuous and discrete).	CO1,CO2, CO3			
3	Examples on Probability mass function (p.m.f.) and Probability density function (p.d.f.)	CO1,CO2			
4	Examples on Cumulative distribution function (Continuous and discrete).	CO1,CO2			
5	Solve problems on measures of central tendency using MATLAB	CO1,CO2, CO3,CO4			
6	Solve problems on measures of dispersion using MATLAB	CO1,CO2, CO3,CO4			
7	Examples on Mathematical Expectation, Properties of expectation,	CO1,CO2, CO3			

8	Examples on Moment generating function	CO1,CO2, CO3
9	Examples on Geometric, Binomial, Poisson, Uniform Distribution	CO3, CO4,CO5
10	Examples on Normal, Standard Normal & Uniform distribution	CO3, CO4,CO5
11	Examples on Covariance, Karl Pearson's Coefficient of Correlation, Rank Correlation coefficient, Spearman's rank Correlation coefficient.	CO4,CO5
12	Examples on Lines of regression, Regression coefficients.	CO4,CO5

	Guidelines for Tutorial/Termwork Assessment			
Sr.No.	Components for Tutorial/Termwork Assessment	Marks Allotted		
1	Assignment on Computational Software	5		
2	Tutorial (Each tutorial carries 15marks)	15		
3	Attendance (Above95%:05Marks,below75%: 0Marks)	5		

S. Y. B. Tech. Artificial Intelligence and Data Science					
	P ADS22	Pattern 2022 Semester: I	IV		
	ADS22	2012: Advanced Data St	tructures		
Teaching S	Teaching Scheme: Credit Scheme: Examination Scheme:				
Theory : 0.	3 hrs/week	03	Continuous Comp	orehensive	
			Evaluation: 20 Ma	arks	
			InSem Exam: 20 I	Marks	
EndSem Exam: 60 Marks) Marks		
Prerequisit Mathematic	t e Courses:- ADS222001: F	undamentals of Data struc	ctures, ADS222003:	Discrete	
Companio	n Course:- ADS222017: Ad	vanced Data Structures L	aboratory		
Course Ob	jectives:				
• To i	inderstand basic concepts of	non linear data structures	s such as trees, graph	S	
• To s	study the concepts of hash tal	ble and files	<i>, C</i> 1		
• To 1	earn advanced data structure	es such as indexing techni	ques and multiway s	earch trees	
101					
Course Ou	tcomes: On completion of th	he course, students will be	e able to-		
		Course Outcomes		Bloom's Level	
CO1	Make use of non-linear data structures such as graph and trees to solve a given problem		3-Apply		
CO2	Use different representations of symbol table		3-Apply		
CO3	Apply the hash table and it's collision resolution methods and different file handling techniques3-Apply		3-Apply		
CO4	Use efficient indexing te and maintain data	Use efficient indexing techniques and multiway search trees to store 3-Apply and maintain data		3-Apply	
CO5	Analyze an algorithm use	ed for solving a given pro	blem	4-Analyze	
	-	COURSE CONTENTS	8	-	
Unit I	Graphs		(08 hrs)	COs Mapped - CO1, CO5	
Graph - Basi	c Concepts, Storage represen	ntation- Adjacency matrix	k, Adjacency list, Ad	jacency multi list	
Traversals-D	epth First Search (DFS) and	Breadth First Search(BF	S)		
Spanning Tre	ee - Connected components,	Minimum spanning Tree	, Greedy algorithms-	Prim's and	
Kruskal's for	r MST				
Dikjtra's Sing Self Study- I	gle source shortest path, Alg Data structure used in Webgr	orithm for Topological or aph and Google map.	rdering		
Unit II	Trees		(08 hrs)	COs Mapped - CO1, CO5	
Trees- Basic	terminology, General tree a	nd its representation, Rep	presentation using sec	uential and linked	
organization, Converting tree to binary tree, Types of trees					
Binary tree-	Binary tree- Properties, ADT, Representation using sequential and linked organization, Binary tree				
traversals (recursive and non-recursive)- inorder, preorder, postorder, Depth first and breadth first search,					
Operations o	Operations on binary tree, Formation of binary tree from given traversals,				
Applications of Binary trees					

Binary Search Tree (BST) - Concept, Definition, Comparison with binary tree, BST operations, applications of BST

Threaded binary tree, Expression tree, Huffman Tree (Concept and Use), Decision Tree, Game tree.

	v , 1	` I	, ·	
Unit III	Symbol Table		(07 hrs)	COs Mapped – CO2, CO5

Symbol Table-Representation of Symbol Tables- Static tree table and Dynamic tree table, Weight balanced tree - Optimal Binary Search Tree (OBST), OBST as an example of Dynamic Programming **Height Balanced Trees**- AVL tree. Red-Black Tree, Splay Tree.

8	× 1 J		
Unit IV	Hash tables and Files	(07 hrs)	COs Mapped –
			CO3, CO5

Hash table Concepts-Hash function, bucket, Collision, Probe, Synonym, Overflow, Open hashing, Closed hashing, Perfect hash function, Load density, Full table, Load factor, Rehashing, Basic operations, Issues in hashing

Hash functions- Properties of good hash function, Division, Multiplication, Extraction, Mid-square, folding and universal

Collision resolution strategies-Open addressing and Chaining, Hash table overflow- Open addressing and Chaining, Closed addressing and Separate chaining.

Files-Concept, Need, Primitive operations. Sequential file organization, Direct access file, Indexed sequential file organization-Concept and Primitive operations

Self Study- SkipList- Representation, Searching.

Unit V	Indexing and Multiway Trees	(06 hrs)	COs Mapped – CO4, CO5
			~ ~

Indexing and Multiway Trees- Indexing, Indexing techniques-Primary, Secondary, Dense, Sparse Multiway search trees, B-Tree- Insertion, Deletion, B+ Tree - Insertion, Deletion, Use of B+ tree in Indexing Heaps- Concept, Insert, Delete operation, Heap sort, Heap as a Priority Queue. Self Study- Trie Tree

Text Books

- 1. Horowitz, Sahani, Dinesh Mehata, "Fundamentals of Data Structures in C++", Galgotia Publisher, ISBN: 8175152788, 9788175152786
- 2. M Folk, B Zoellick, G. Riccardi, "File Structures", Pearson Education, ISBN:81-7758-37-5

Reference Books

 Sartaj Sahani, "Data Structures, Algorithms and Applications in C++", Second Edition, University Press, ISBN: 9788173715228

2. G A V Pai, "Data Structures and Algorithms", McGraw-Hill Companies, ISBN:9780070667266

Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Quiz on Unit 1, Unit-2, Unit-3 (Quiz 10 marks on each unit and will be converted to 10 Marks)	10		
2	Theory assignment on Unit- 4 & 5 (10 marks assignment on unit 4 and 5 each and that will be converted in to 10 Marks)	10		
	Total	20		

S. Y. B. Tech. Artificial Intelligence and Data Science Pattern 2022 Semester: IV ADS222013 : Operating Systems					
Teaching Sche	Teaching Scheme:Credit Scheme:Examination Scheme:				
Theory : 03 hrs/week		03	Continuous Comprehensive Evaluation: 20 Marks InSem Exam: 20 Marks EndSem Exam: 60 Marks		
Prerequisite C	Courses:- ADS222001:Fund	amentals of Data Structur	es		
Companion C	ourse:- ADS222018: Ope	rating Systems Lab			
 Course Objectives: To understand operating system services, types of operating systems and shell scripts To study process scheduling algorithms and multithreading techniques To get acquainted with the concepts of synchronization, deadlock prevention and avoidance algorithms To learn concepts of memory management and I/O management techniques To introduce Linux operating systems 					
	Course Outcomes Bloom's Lev			Bloom's Level	
CO1	Explain operating system services, types of operating systems and 2- Und basic shell commands		2- Understand		
CO2	Illustrate the concept of process scheduling algorithms to solve2- Understarscheduling problems2- Understar			2- Understand	
CO3	Compare algorithms for deadlock detection, prevention and 2- Understand avoidance			2- Understand	
CO4	Use algorithms for page r	eplacement and I/O mana	gement	3- Apply	
CO5	Describe Linux command	ls and utilities such as gre	p, tr, sed, awk	2- Understand	
	CO	URSE CONTENTS			
Unit I	Fundamental concepts of o	perating systems	(07 hrs)	COs Mapped - CO1	
Introduction, Operating systems services Types of operating systems : Batch, Time-sharing, Network, Distributed and real time. Operating system operations: Dual mode and multimode, System calls, Types of system calls. Bash shall scripting: Basic shall commands and scripting language.					
Unit II	Process management (08 hrs) COs Map CO2			COs Mapped - CO2	
Process : Concept, Process control block, Process state diagram, Inter process communication Process scheduling : Types, First come first serve, Shortest job first, Round robin, Priority based scheduling Threads : Multi core programming, Multithreading models, Implicit threading, Threading issues					
Unit III	Process coordination(07 hrs)COs Mapped - CO3				
Synchronization: The critical-section problem, Peterson's solution, Synchronization hardware, Mutex locks, Semaphores, Monitors					

Classic problems of synchronization: Producer-consumer problem, Reader/writer problem, Dining philosopher problem

Deadlock: Deadlock characterization, Methods for handling deadlocks, Deadlock prevention, Deadlock avoidance and detection, Recovery from deadlock.

Unit IV	Memory Management	(07 hrs)	COs Mapped - CO4	
Memory Partit	ioning: Fixed partitioning, Dynamic partitioning		1	
Contiguous M	emory allocation techniques: First fit, Best fit, Wo	orst fit, Swapping	, Structure of the	
page table, Segi	nentation, Demand paging			
Page Replacen	ent algorithms: First in first out, Optimal page repla	cement, Least rec	cently used	
translation look	aside buffer			
Unit V	I/O management and Introduction to Linux	07 hrs	COs Mapped –	
			CO4, CO5	
I/O devices, Di	sk scheduling algorithms: First come first serve, Sl	nortest seek time	first algorithm,	
SCAN, Circular	:-SCAN			
Introduction to	Linux: Essential features, File systems and directori	es, Linux shell co	ommands such as	
pwd, cd, ls, cat,	rm, cp, mkdir and Linux utilities such as tr, sed, grep,	egrep, awk. File	access rights.	
	Text Books			
1. Abraham Sil	berschatz, Peter Baer Galvin and Greg Gagne, "Ope	rating System Co	ncepts", WILEY,	
ISBN:978-8	1-265-5427-0, 9th Edition			
2. William Stal	lings, "Operating System: Internals and Design Princ	iples", Prentice H	Hall, ISBN 10: 0-	
13-380591-3	B, ISBN 13: 978-0-13-380591-8, 8th Edition			
Reference Books				
1. Tom Adelstein and Bill Lubanovic, "Linux System Administration", O'Reilly Media, ISBN 10: 0596009526, ISBN 13: 978-0596009526				
2. Harvey M. 013182827	Deitel, "Operating Systems", Prentice Hall, ISBN 8	10: 0131828274,	ISBN 13: 978-	

	Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Quiz on Unit 1, Unit-2, Unit-4, Unit 5 (Quiz 15 marks each and will be converted to 15 Marks)	15		
2	Theory assignment on Unit-3 (One Assignment on Unit III of 10 marks will be converted to 5 Marks)	05		
	Total	20		

S. Y. B. Tech. Artificial Intelligence and Data Science Pattern 2022 Semester: IV **ADS222014: Database Management System Credit Scheme: Teaching Scheme: Examination Scheme:** Theory :03 hrs/week 03 **Continuous Comprehensive Evaluation: 20 Marks** InSem Exam: 20 Marks EndSem Exam: 60 Marks Prerequisite Courses: ADS222001: Fundamentals of Data Structure Companion Course: ADS222019: Database Management System Laboratory **Course Objectives:** To understand the fundamentals of database management System and database query languages To know the principles of database design and transaction management • To study database system architecture and NOSQL databases Course Outcomes: On completion of the course, students will be able to-**Course Outcomes Bloom's Level** Illustrate applications of databases, and features of RDBMS 2-Understand **CO1** 3-Apply Construct database queries using SQL, PL/ SQL and Mongo DB. **CO2** Demonstrate ability to prepare logical design of database using ER model 2-Understand **CO3** and normalization technique. 2-Understand Compare RDBMS and NOSQL databases **CO4** Explain various protocols for Transaction Management 2-Understand **CO5 COURSE CONTENTS** (08 hrs) Unit I **Relational Model and SQL COs Mapped -CO1,CO2** Introduction: Basic concepts, Advantage of DBMS over file processing system, Data Abstraction, Database Language, Structure of DBMS, Data Modeling, database applications. **RDBMS:** Basic concepts, Attributes and Domain, Integrity Constraints. SQL: Introduction to Relational Algebra and Tuple Relational Calculus, Introduction to SQL, SQL Data types and Literals, DDL, DML, DCL, TCL, SQL Select Query and Clauses. Topic for Self-Study : Codd's Rule Unit II **Advanced SQL and PLSQL** (08 hrs) **COs Mapped -CO2** SQL Advanced Features: Set Operation, Aggregate Function, Null Values, Nested Sub Query, View, Joins, Sequence, Index, Introduction to Embedded and Dynamic SQL. Introduction to PL/SQL: Data types, Procedures, Functions, Cursor, Trigger, Package, Assertions,

Topic for Self-Study :Oracle Database Architecture

Roles and Privileges.

Unit III	Database Design: Entity- Relationship Model and Relational Database Design	(06 hrs)	COs Mapped - CO3	
Database I	Design and ER Model: ER Model, Extended E-R F	eatures, converting	ER model and EER	
model to ta	bles, schema diagrams.			
Relational	Database Design: Functional Dependency, Normal	ization 1NF, 2NF a	and 3NF	
Topic for S	Self-Study : BCNF.			
Unit IV	NO SQL Database	(07 hrs)	COs Mapped - CO2, CO4	
Database-s	ystem Architecture: Centralized and Clien	t-Server Architec	ture, Server System	
Architectur	e, Introduction to Parallel and Distributed databases		·	
NoSQL Da	tabases: Structured, Unstructured Data and Semi-S	tructured Data, Co	mparison of RDBMS	
and NoSQI	, CAP theorem and BASE property.			
Types of N	oSQL Databases: Key-value store, document store	, graph, wide colun	nn stores.	
Mongo DB	: Data types, CRUD operations, Aggregation, Index	ing, Sharding.		
Unit V	Transaction Management	(07 hrs)	COs Mapped - CO5	
Transaction: Transaction concept, Transaction state, Transaction Property, Concurrent Executions Serializability: Conflict serializability, View Serializability, Testing for Serializability, Deadlock prevention, Deadlock Detection and Recovery from deadlock. Concurrency Control Protocols: Two phase Locking, Timestamp-based protocol. Recovery: Failure classification. Shadow-Paging and Log-Based Recovery.				
Text Bool	KS			
		1 (1)	a c c c c th	
1. Abraham Silberschatz, Henry F. Korth and S. Sudharshan, "Database System Concepts", 6 th Edition Tata McGraw Hill Publishers, ISBN 0-07-120413-X.				
 Kristina Chodorow, "MongoDB: The Definitive Guide", 3rd Edition, Oreilly Publications, ISBN 1491954469 				
	Reference Books			
1. CJ 2. Prat ISB	Date, "An Introduction to Database Systems", Addia nod J. Sadalage, Martin Fowler, "NoSQL Distilled" N:0201144719	son-Wesly, ISBN:0 ', Addisen Wesley	201144719 publication,	

Gu	Guidelines for Continuous Comprehensive Evaluation of Theory Course				
Sr. No.	Sr. No. Components for Continuous Comprehensive Evaluation				
1	Quiz on Unit 1, Unit 2, Unit 3, Unit 4 (Quiz 15 marks each and will be converted to 15 Marks)	15			
2	Theory assignment on Unit-5 (One Assignment on Unit 5 of 10 marks will be converted to 5 Marks)	5			
	Total	20			

S. Y. B. Tech. Artificial Intelligence and Data Science					
	ADS22015: Soft	ware Engineering and P	roject Managemer	nt	
Teachin	Teaching Scheme: Credit Scheme: Examination Scheme:				
Theory :	: 03 hrs/week	03	Continuous Comprehensive		
			Evaluation: 20 M	arks	
			Insem Exam: 20 EndSom Exam: 6	Marks 60 Morks	
Duono gu	aite Commence ADC222001	Evendore ontolo of Doto St	Enusem Exam.		
ADS222	Isite Courses:-ADS222001	Fundamentals of Data St	ructures,		
	Objectives.	is and Java I logramming			
• To ut	derstand the need for the sc	oftware life cycle and its i	mplications		
• To be	e acquainted with methods of	of capturing, specifying, v	isualizing and analy	zing software	
requi	rements	1 0 , 1 1 0 ,	<i>.</i>	8	
• To un the I	nderstand project managem	ent through the life cycle	e of the project and	l current practices in	
Course	Dutcomes: On completion of	of the course, students will	ll be able to-		
		Course Outcomes		Bloom's Level	
CO1	Identify appropriate proces	ss model for software dev	elopment.	3-Apply	
CO2	Model software requireme	nts for software developn	nent.	3-Apply	
CO3	Make use of emerging trends for software project management.3-Apply		3-Apply		
CO4	Utilize project metrics for software project estimation and process improvement 3-Apply			ess 3-Apply	
CO5	CO5Analyze software risks involved in project development.4-Analyze			4-Analyze	
		COURSE CONTENT	Ϋ́S		
Unit I	Introduction to Software Software Process Models	Engineering and	(08hrs)	CO1	
Software	Engineering: The Nature	of Software, Defining S	oftware, Software	Engineering Process,	
Software 1	Engineering Practice.				
Process N	Iodels: A Generic Process I	Model, Process Assessme	nt and Improvemen	t, Prescriptive process	
models.	1 / A +1+, A +1+,				
Agile Dev	elopment: Agility, Agility	and Cost of change, Ag	ile process, Extrem	e Programming (XP),	
Other Agi	re Process Models- Scrum,	Feature Driven Developm	hent (FDD)	anah ag Clay Dhiling	
and JP Mo	y Topic: Use of Agne to en organ Chase	nnance business processe	s by major players	such as Sky, Philips	
Unit II	Understanding Requirem	nents and Design	(07hrs)	CO2	
	Concepts	0	× ,		
Requiren	nent Engineering: Establish	ning the Groundwork, Eli	citing Requirements	s, Developing the use	
cases, Bu	ilding the Requirement n	nodel, Negotiate Require	ements, Validating	Requirements, and	
Requirem	ent Analysis.				
Design Concepts: Design within the context of Software Engineering, The Design Process, Design					
Concepts, and The Design Model.					
Self-Stud	y Topic: Software Requirer	nent Specification of Libr	ary Management S	ystem	
Unit III	Emerging Trends in Sof Project Manager	tware Engineering & nent Concepts	(07hrs)	CO3	

Emerging Trends: Technology evolution, Observing Software Engineering Trends, Identifying soft trends, Technology directions, Tools related trends.

Project Management Concepts: The management spectrum, People, The Product, The Process, The Project, The W⁵HH Principle

Unit	Project Estimation and Software Process	(07hrs)	CO4
IV	Improvement		

Project Metrics: Software Measurement, Metrics for Software Quality, Metrics for Small Organizations

Estimation for Software Projects: Observation on Estimation, The Project Planning Process, Software Scope and Feasibility, Resources, Software Project Estimation, Decomposition Techniques, Empirical Estimation Models, Specialized Estimation Techniques

Software Process Improvement: Introduction, Approaches to SPI, Maturity Models - Capability Maturity Model (CMM), Capability Maturity Model Integration (CMMI)

Unit VProject Scheduling and Risk Management(07hrs)CO5

Project Scheduling: Basic Principles, Task set for Software Project, Task Network, Scheduling **Risk Management:** Reactive versus Proactive Risk Strategies, Software Risks, Risk Identification, Risk Projection, Risk Refinement, The RMMM Plan

Self-Study Topic: Risk management for E-commerce website

Text Books

- 1. Roger Pressman, "Software Engineering: A Practitioner's Approach"||, McGraw Hill, ISBN 0-07-3375
- 2. Ian Sommerville,"Software Engineering", Addison and Wesely, ISBN 0-13-703515-2.
 - **Reference Books**
- Rajib Mall, "Fundamentals of Software Engineering", Prentice Hall India, ISBN-13: 978-8120348981
- 2. Pankaj Jalote, "An Integrated Approach to Software Engineering", Springer, ISBN 13: 9788173192715.

	Guidelines for Continuous Comprehensive Evaluation of Theory Course			
Sr. No.	Components for Continuous Comprehensive Evaluation	Marks Allotted		
1	Quiz on Unit-1, Unit-2, Unit-4 and Unit-5 (Quiz 15marks each and will be converted to 15 marks)	15		
2	Theory assignment on Unit-3 (One assignment on Unit-3 of 10 marks will be converted to 5 marks)	05		
	Total	20		

S. Y. B. Tech. Artificial Intelligence and Data Science Pattern 2022 Semester: IV ADS222016:Design Thinking						
Teaching	aching Scheme:Credit Scheme:Examination Scheme:					
Theory :	Theory :01hr/week					
Prerequ	isite Courses : FYE 221015	Engineering Exploration	l			
Compan	ion Course:- ADS222020	: Project Based Learning	-Design Thinking			
Course (• To • To	Objectives: understand concepts of desi understand the different pha	gn thinking ases of design thinking				
Course (Dutcomes: On completion o	f the course, students wil	l be able to-			
		Course Outcomes		Bloom's Level		
CO1	Explain stages and process of	design thinking		2- Understand		
CO2	Identify the methods to empat	hize and define the problem	1	2-Understand		
CO3	Apply the ideation techniques	for problem solving		3-Apply		
CO4	Construct the prototype to eva	luate a design		3-Apply		
CO5	CO5 Apply testing techniques to improve the performance.		3- Apply			
		COURSE CONTENT	S			
Unit I	Unit IOverview of Design Thinking Process(02 hrs)CO1					
Introducti Importance Human-Co MOOC co Design Th Week 1:ht	on to DesignThinking - Defir of DesignThinking, Problem s entered Design (HCD) proces urse: NPTEL : inking - A Primer: Prof. Bala tps://drive.google.com/drive/fo	nition, Ideas, Inventions, In solving, DesignThinking too s - Empathize, Define, Idea Ramadurai Iders/19wC ynKlyLYdnPR	novations, Origin of ols. te, Prototype and Tes V aNrxIsUBvt9UcN	DesignThinking, st. Jo?usp=share_link		
Unit II	Empathy and Define		(02 hrs)	COs Mapped - CO2		
Empathy - How to emphasize, Role of empathy in DesignThinking, Purpose of empathy maps, Things to be done prior to empathy mapping, Customer journey mapping. Define -How might we questions, The Five Whys Method.						
MOOC course: NPTEL : Design Thinking - A Primer: Prof. BalaRamadurai Week 2:https://drive.google.com/drive/folders/1UT_eELRZJ4g0CtYNkiJh4klcEBvpFvsi?usp=share_link						
Unit III	Ideation		(02hrs)	COs Mapped – CO3		
Idea generation - Basic design directions, Themes of Thinking, Inspiration and references, Brainstorming, Value, Inclusion, Sketching, Presenting ideas, Refinement, Thinking in images, Thinking in signs, Appropriation, Humour, Personification, Visual metaphors.						
MOOC course: NPTEL : Design Thinking - A Primer: Prof. BalaRamadurai Week 3: <u>https://drive.google.com/drive/folders/1EPW5wZJtGd0P8y3-ixkHMbvnM_VUq3wC?usp=share_link</u>						

Unit	Prototype	(02hrs)	COs Mapped –		
IV			CO4		
Prototypiı	ng- Assumptions during the DesignThinking process, Story	yboards, Models and	prototypes,		
Quick and	Dirty Prototyping, Validation in the market, Best practices	of presentation.			
MOOC co	urse: NPTEL :				
Design Th	inking - A Primer: Prof. BalaRamadurai				
Week 4: <u>ht</u>	tps://drive.google.com/drive/folders/111xxzuCbCZ75Ut7j	m5wVEAzotQprX_et	<u>t?usp=share_link</u>		
Unit V	Testing and Implementation	(02 hrs)	COs Mapped – CO5		
Test Phase	e -Technique for interviews and surveys, Kano Model,	Desirability testing,	Testing prototypes,		
Obtaining	feedback to refine product usability.				
Implemen	tation - Efficiency and effectiveness of innovation and imp	plementation strategie	es.		
MOOC co	urse: NPTEL :				
Design Th	inking - A Primer: Prof. BalaRamadurai				
Week 4: <u>ht</u>	tps://drive.google.com/drive/folders/111xxzuCbCZ75Ut7j	m5wVEAzotQprX et	<u>t?usp=share_link</u>		
	Text Books				
1. "Design	Thinking", Gavin Ambrose, Paul Harris, AVA Publishing	(UK) Ltd, ISBN:978	-2-940411-17-7.		
2. "Handbo	ook of DesignThinking - Tips & Tools for how to DesignT	[•] hinking", Christian M	Mueller-		
Rotenb	erg.				
3. "Change	e by Design: How Design Thinking Transforms Organizati	ons and Inspires Inno	ovation", Tim Brown.,		
Harper	Collins Publication, ISBN:9780061937743.				
	Reference Books				
1. "Design	Thinking for Strategic Innovation: What They Can't Teach	You at Business or I	Design School",		
IdrisM	botee, Wiley, ISBN: 978-1-118-62012-0		-		
2. "Design	ing for Growth: ADesignThinkingToolKit for Managers",	Jeanne Liedtka and T	Гіт Ogilvie, Columbia		
Univer	sity Press, ISBN: 0231158386, 9780231158381				
MOOC Course					
1.Design T	Design Thinking - A Primer: Prof. BalaRamadurai- https://archive.nptel.ac.in/courses/110/106/110106124				

S. Y. B. Tech. Artificial Intelligence and Data Science					
	P ADS2220	attern 2022 Semester: 17: Advanced Data Str	IV uctures Lab		
Teaching Scl	neme:	Credit Scheme:	Examination Schen	ne:	
Practical : 04 hrs/week 02 Term Work: 25 Marks Practical Exam: 50 Ma Practical Exam: 50 Ma		arks Marks			
Prerequisite	Courses:- ADS222001:Fun	damentals of Data struct	tures, ADS222003:Disc	rete Mathematics	
Companion	Course: ADS222012: Adv	anced Data Structures			
 Course Objectives: To understand basic concepts of non linear data structures such as trees, graphs To study the concepts of hash table and files To learn advanced data structures such as indexing techniques and multiway search trees 					
Course Outc	omes: On completion of th	e course, students will b	be able to-		
	Course Outcomes			Bloom's Level	
CO1	CO1Make use of non-linear data structures such as graph and trees to solve a given problem3-Apply				
CO2	Use different representations of symbol table3-Apply				
CO3	Apply the hash table and it's collision resolution methods and different file handling techniques3-Apply				
CO4	Use efficient indexing tec and maintain data	chniques and multiway s	earch trees to store	3-Apply	
CO5	Analyze an algorithm use	d for solving a given pro	oblem	4-Analyze	

List of Laboratory Experiments / Assignments				
Sr. No.	Sr. No. Laboratory Experiments / Assignments			
1	Flight management : There are flight paths between cities. If there is a flight between city A and city B then there is an edge between the cities. The cost of the edge can be the time that flight takes to reach city B from A, or the amount of fuel used for the journey. Write a menu driven C++ program to represent this as a graph using adjacency matrix and adjacency list. The node can be represented by the airport name or name of the city. Check whether cities are connected through flight or not. Compare the storage representation.	CO1, CO5		
2	Graph traversal : The area around the college and the prominent landmarks of it are represented using graphs. Write a menu driven C++ program to represent this as a graph using adjacency matrix /list and perform DFS and BFS.	CO1, CO5		

3	Activity on vertex(AOV) network: Sandy is a well organized person. Every day he makes a list of things which need to be done and enumerates them from 1 to n. However, some things need to be done before others. Write a C++ code to find out whether Sandy can solve all his duties and if so, print the correct order	CO1, CO5
4	Binary search tree: Write a menu driven C++ program to construct a binary search tree by inserting the values in the order give, considering at the beginning with an empty binary search tree, After constructing a binary tree- i. Insert new node, ii. Find number of nodes in longest path from root, iii. Minimum data value found in the tree iv. Search a value v. Print values in ascending and descending order	CO1, CO5
5	 Expression tree: Write a menu driven C++ program to construct an expression tree from the given prefix expression eg. +a*bc/def and perform following operations: Traverse it using post order traversal (non recursive) Delete the entire tree Change a tree so that the roles of the left and right pointers are swapped at every node 	CO1, CO5
6	A Dictionary using BST: A Dictionary stores key and value pairs Data: Set of (key, value) pairs, Keys are mapped to values, Keys must be comparable, Keys must be unique. Standard Operations: Insert(key, value), Find(key), Delete(key) Write a menu driven C++ program to provide above standard operations on dictionaries and provide a facility to display whole data sorted in ascending/ Descending order. Also find how many maximum comparisons may require for finding any keyword. Use Binary Search Tree for implementation	CO1, CO5
7	Tree using traversal sequence : Write a C++ program to construct the binary tree with a given preorder and inorder sequence and Test your tree with all traversals	CO1, CO5
8	A Dictionary using AVL: A Dictionary stores key and value pairs Data: Set of (key, value) pairs, Keys are mapped to values, Keys must be comparable, Keys must be unique. Standard Operations: Insert(key, value), Find(key), Delete(key) Write a menu driven C++ program to provide above standard operations on dictionaries and provide a facility to display whole data sorted in ascending/ Descending order. Also find how many maximum comparisons may require for finding any keyword. Use Height balanced tree(AVL) and find the complexity for finding a keyword	CO2, CO5
9	Telephone book management : Consider the telephone book database of N clients. Write a menu driven C++ program to make use of a hash table implementation to quickly look up a client's telephone number. Use of two collision handling techniques and compare them using number of comparisons required to find a set of telephone numbers	CO3, CO5

10	A Dictionary using Hash table: A Dictionary stores key and value pairs Data: Set of (key, value) pairs, Keys are mapped to values, Keys must be comparable, Keys must be unique. Standard Operations: Insert(key, value), Find(key), Delete(key) Write a menu driven C++ program to provide above standard operations on dictionaries Write a menu driven C++ program to provide all the functions of a dictionary (ADT) using hashing and handle collisions using chaining.	CO3, CO5
11	Sequential File: The students' club members (MemberID, name, phone, email) list is to be maintained. The common operations performed include these: add member, search member, delete member, and update the information. Write a menu driven C++ program that uses file operation to implement the same and perform all operations.	CO3, CO5
12	Min/max Heaps: Marks obtained by students of second year in an online examination of a particular subject are stored by the teacher. Teacher wants to find the minimum and maximum marks of the subject. Write a menu driven C++ program to find out maximum and minimum marks obtained in that subject using heap data structure. Analyze the algorithm	CO4, CO5
13	 A Dictionary using STL map and Hashmap: Implement Dictionary (key and value pairs) using using STL map in C++ and Hashmap in Java and compare all dictionary implementation BST AVL User defined Hash table STL Map Hashmap in Java Use Visual C++ and Java Compiler 	CO1, CO2, CO3, CO5
14	 Study Assignment: Explain Data structures used in whatsapp in details Consider following real time application and explain in detail the combinations of data structures and algorithms used in it. Social media applications require efficient and scalable data structures to manage user-generated content, facilitate user interactions, and ensure the reliability and availability of the platform. The primary challenge in designing data structures for social media applications is to accommodate the massive volume of data generated by users, while providing fast and responsive access to that data. Some specific challenges that data structures in social media applications must address include: Handling user interactions such as likes, comments, and shares, and ensuring the integrity and consistency of those interactions. Supporting fast and flexible search and filtering of content based on user preferences, geographic location, hashtags, and other criteria. 	CO1 to CO5

Mini Project				
Student has to perform one mini project based on concepts covered in the course, Write a detailed problem statement for your project, Design and implement a code for the same using appropriate data Structures.	CO1 to CO5			
Additional Programming Problems				
1 Skip Lists: Write a C++ program to create a skip list for a given set of elements. Find the element in the set that is closest to some given value. (note: Decide the level of element in the list Randomly with some upper limit)	CO3, CO5			
2 Huffman algorithm : Write a C++ program to implement a file compression algorithm that uses a binary tree. Your program should allow the user to compress and decompress messages containing alphabets using the standard Huffman algorithm for encoding and decoding.	CO1, CO5			
Tour management: Tour operators organize guided bus trips across Maharashtra. Tourists may have different preferences. Tour operators offer a choice from many different routes. Every day the bus moves from starting city S to another city F as chosen by the client. On this way, the tourists can see the sights alongside the route traveled from S to F. Clients may have preference to choose the route. There is a restriction on the routes that the tourists may choose from, the bus has to take a short route from S to F or a route having one distance unit longer than the minimum distance. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route. Write a C++ program to solve above problem.	CO1, CO5			
4 Optimal Binary search tree : Given sequence $k = k1 < k2 < < kn of n$ sorted keys, with a search probability pi for each key ki. Write a C++ program to build the Binary search tree that has the least search cost given the access probability for each key.	CO2, CO5			
5 Trie : Write a C++ program to store a collection of strings that have to be inserted in the trie and perform search operation	CO4, CO5			
Guidelines for Laboratory Conduction				
Use of coding standards and Hungarian notation, proper indentation and comments. Use of open source software is to be encouraged. Operating System recommended:- Linux or its derivative Programming tools recommended: - Open Source line gcc/g++ (Visual C++ compiler for few assignments and note the difference)				
Guidelines for Student's Lab Journal				
The laboratory assignments are to be submitted by students in the form of a journal. Journal consists of Certificate, table of contents, and handwritten write-up of each assignment (Title, problem statement, theory concepts in brief, algorithm, flowchart, test cases and conclusions). Program codes with sample outputs shall be submitted in soft form. Guidelines for Termwork Assessment				

Continuous assessment of laboratory work shall be based on the overall performance of a student. Assessment of each laboratory assignment shall be based on rubrics that include

R1- timely completion (10),

R2- understanding of assignment (10) and

R3- presentation/clarity of journal writing (10) (Coding standard, Indentation, Hungarian notation, input validation etc)

Mini Project assessment will be based on Teamwork, Communication skill, Social relevance of mini project, Ethics followed.

S. Y. B. Tech. Artificial Intelligence and Data Science Pattern 2022 Semester: IV ADS222018: Operating Systems Laboratory					
Teaching Scher	me:	Credit Scheme:	Examination S	Scheme:	
Practical : 02 hrs/week		01	Term Work: 25 Marks Practical Exam : 25 Marks		
Prerequisite Co	ourses:- ADS222001:Fund	amentals of Data Structu	ires		
Companion Co	urse:- ADS222013: Ope	rating Systems			
 Course Objectives: To understand operating system services, types of operating systems and shell scripts To study process scheduling algorithms and multithreading techniques To get acquainted with the concepts of synchronization, deadlock prevention and avoidance algorithms To learn concepts of memory management and I/O management techniques To introduce Linux operating systems 					
	C	course Outcomes		Bloom's Level	
CO1	Explain operating system basic shell commands	services, types of operat	ing systems and	2- Understand	
CO2	CO2 Illustrate the concept of process scheduling algorithms to solve 2- Understand scheduling problems				
CO3	CO3 Compare algorithms for deadlock detection, prevention and 2- Understand avoidance				
CO4	Use algorithms for page r	eplacement and I/O man	agement	3- Apply	
CO5Describe Linux commands and utilities such as grep, tr, sed, awk2- Understand					

Sr. No.	List of Laboratory Assignments/ Experiments	COs Mapped
1	Write a shell script for implementation of control flow statements.	CO1
2	Write a shell script to find factorial of a given number.	CO1
3	Write a C program to compute and print the average waiting time, average turnaround time and CPU burst times for the given list of processes. Display/print the Gantt chart for first come first serve, shortest job first, priority scheduling and round robin scheduling algorithm.	CO2
4	Write a C program to implement inter process communication using shared memory, pipes, named pipes and signals	CO2
5	Write a C program to implement producer-consumer problem	CO3
6	Write a C program to implement page replacement algorithms such as first in first out, least recently used and optimal page replacement	CO4
7	Installation of Linux operating system and basic configuration.	CO5
8	Assignment on Unix basic commands such as pwd, ls, cat, redirection and pipes and Unix utilities like tr, sed, grep, egrep, awk.	CO5

	Execute following AWK operations on the text file :	CO5		
	1 Print the lines which match the given pattern.			
9	2 Splitting a Line Into Fields			
	3 To find the length of the longest line present in the file			
	4 Printing the lines with more than specified characters			
	Guidelines for Laboratory Conduction			
Use of coo	ling standards and Hungarian notation, proper indentation and comments.			
Use of op	ben source software is to be encouraged. Operating System recommende	ed: Linux or its		
derivative	. Programming tools recommended: Open Source line gcc/g++			
	Guidelines for Student's Lab Journal			
The labor	atory assignments are to be submitted by students in the form of a journal.	Journal consists		
of Certifi	cate, table of contents, and handwritten write-up of each assignment	(Title, problem		
statement	, theory concepts in brief, algorithm, flowchart, test cases and conclusions).	Program codes		
with samp	le outputs shall be submitted in soft form.			
	Guidelines for Term work Assessment			
Continuous	s assessment of laboratory work shall be based on overall performance of	a student.		
Assessment of each laboratory assignment shall be based on rubrics that include				
R1- timely completion (10),				
R2- underst	anding of assignment (10) and			
R3- present	ation/clarity of journal writing (10).			

S. Y. B. Tech. Artificial Intelligence and Data Science Pattern 2022 Semester: IV ADS222019: Database Management System Lab

Teaching	Scheme:	Credit Scheme:	Examination Scher	me:
Practical :02 hrs/week		01	Term Work: 25 Marks Practical : 25 Marks	
Prerequis	site Courses: ADS222001	: Fundamentals of Data S	Structure	
Compani	on Course: ADS222014:	Database Management S	ystem	
Course O	D bjectives:			
• To un	derstand the fundamentals	of database management	t System and database	query languages
• To kn	ow the principles of databa	se design and transaction	management	
• To stu	dy database system archite	ecture and NOSOL datab	ases	
Course O	Dutcomes: On completion	of the course, students w	ill be able to–	
		Course Outcomes		Bloom's Level
CO1	Illustrate applications of a	databases, and features o	f RDBMS	2-Understand
CO2	Construct database queri	es using SQL, PL/ SQL	and Mongo DB.	3-Apply
CO3	Demonstrate ability to pr model and normalization	repare logical design of d technique.	latabase using ER	2-Understand
CO4	Compare RDBMS and N	IOSQL databases		2-Understand
CO5	Explain various protocol	s for Transaction Manag	ement	2-Understand

List of Laboratory Experiments / Assignments			
Sr. No.	Laboratory Experiments / Assignments	CO Mapped	
1	Consider the given Database Schema: employee (employee-name, street, city) works (employee-name, company-name, salary) company (company-name, city) manages (employee-name, manager-name) Write SQL queries for the following 1. Find the names of all employees who work for First Bank Corporation. 2. Find the names and cities of residence of all employees who work for First Bank Corporation 3. Find the names, street addresses, and cities of residence of all employees who work for First Bank Corporation and earn more than Rs.10,000. 4. Find all employees in the database who live in the same cities as the companies for which they work. 5. Find all employees in the database who live in the same cities and on the	CO1, CO2	

	same streets as do their managers.	
	6. Find all employees in the database who do not work for First Bank G	
	Corporation.	
	7. Find all employees in the database who earn more than each employee	
	of Small Bank Corporation.	
	8. Assume that the companies may be located in several cities. Find all	
	companies located in every city in which Small Bank Corporation is	
	located.	
	9. Find all employees who earn more than the average salary of all	
	employees of their company.	
	10. Find the company that has the most employees.	
	11. Find the company that has the smallest payroll.	
	12. Find those companies whose employees earn a higher salary, on	
	average, than the average salary at First Bank Corporation.	
	Consider the given relational table:	
	employee(empno , empname, designation, city, salary, zipcode, county)	
	Write SQL queries for the following	
	1. Create a sequence used to generate employee numbers for	
2	the empno column of the emp table.	CO1 CO2
2	2. Create an Index on county.	001, 002
	3. Find the country whose $zipcode = 071$ and check whether the query uses	
	the Index and write your observation.	
	4. Create a view for employees having salary < 50000 and stays in	
	'Mumbai'	
	Consider the given database schema:	
	Student (<u>studentid</u> , studentname, instructorid, studentcity)	
	Instructor(instructorid,Instructorname,instructorcity,specialization)	
	Use all types of Joins	
	1. Find the instructor of each student.	
3	2. Find the student who is not having any instructor.	CO1, CO2
	3. Find the student who is not having any instructor as well as instructor	
	who is not having student.	
	4. Find the students whose instructor's specialization is computer.	
	Create a view containing total number of students whose instructor belongs	
	to "Pune".	
	Draw an ER diagram for university database system using ER and EER	
	features and normalize the table till 3NF. Create the database in MYSQL	CO3
4	and Write a menu driven program in Java to connect with a database using	005
	Jdbc-Odbc Connectivity and to store and retrieve information	
	Create a database with following schemas	
	Borrower(Rollin, Name, DateofIssue, NameofBook, Status) &	
	Fine(Roll_no,Date,Amt)	
	1. Write a PL/SQL block to accept input for Borrower table.	
5	2. Write a PL/SQL block using control structures to calculate fine by using	CO1 CO2
5	the following rules:	CO1, CO2
	a. check the number of days (from date of issue), if days are	
	between 15 to 30 then fine	
1		
	amount will be Rs 5per day	

	c. for days less than 30, Rs. 5 per day.				
	After submitting the book, status will change from I to R. If condition of				
	fine is true, then details				
	will be stored into fine table.				
	Create two tables O_Roll(Rollno,Name,DOB,Phone,address)				
	N_Roll(Rollno,Name,DOB,Phone,address)				
6		CO1. CO2			
	write a PLSQL block using various types of cursor(implicit,Explicit,For,	,			
	such a way duplicate records are to be eliminated				
	Such a way duplicate records are to be eminiated.				
	Create a Library database with the schema Decks (A coNe Title Author Dublisher Count)				
	Dooks(Accino, Hue, Aumor, Publisher, Count).				
	a Create a table Library Audit with same fiels as of Books				
7	b. Create a before trigger to insert records into Librry Audit table	CO1 CO2			
,	if there is deletion in Books table.	001, 002			
	Create a after trigger to insert records into Librry_Audit table if there is				
	updation in Books table.				
	Implement the following MongoDb Query				
	1. Create a collection named books.				
	2. Insert 5 records with field TITLE, DESCRIPTION, BY, URL, TAGS				
	AND LIKES				
	3. Insert 1 more document in collection with additional field of user				
	A Display all the documents whose title is 'mongodh'				
	 Display all the documents written by 'iobn' or whose title is 				
	'mongodb'				
	6. Display all the documents whose title is 'mongodb' and written by				
8	'john'.	CO2			
	7. Display all the documents whose like is greater than 10.				
	8. Display all the documents whose like is greater than 100 and whose				
	title is either 'mongodb' or written by 'john'.				
	9. Update the title of 'mongodb' document to 'mongodb overview'				
	10. Delete the document titled 'nosql overview'.				
	11. Display exactly two documents written by 'john'.				
	12. Display the second document published by 'john'.				
	13. Display all the books in the sorted fashion.				
	Insert a document using save method.				
	DESCRIPTION BY URL TACS AND LIKES				
	Implement the following Aggregation and Indexing Oueries				
	1 Find the number of books published by john				
	2. Find books which have minimum likes and maximum likes	~ ~ ~			
9	published by john.	CO2			
	3. Find the average number of likes of the books published by john.				
	4. Find the first and last book published by john				
	5. Create an index on author name.				
	Display the books published by john and check if it uses the index which				
	we have created				

10	 Create the following collection in mongodb Student (rollno,name,address,contact_no,department) Write a menu driven program in python to connect with the database and to perform the following operation Insert details of the student. Update the address of Pooja from Shivaji Nagar to Saraswati Nagar. Display the student's information. 	CO2
	4. Delete a student's record whose rollno is 32.	

Guidelines for Laboratory Conduction

Use of open source software is encouraged

Operating System recommended: -64-bit Open-source Linux or its derivative

Programming tools recommended:-

Front End: Java/ Python any other language

Backend : MongoDB/ MySQL

Guidelines for Student's Lab Journal

The laboratory assignments are to be submitted by students in the form of a journal. Journal consists of Certificate, table of contents, and handwritten write-up of each assignment (Title, Date of Completion, Objectives, Problem Statement, Software and Hardware requirements, Theory-Concept in brief, conclusion/analysis). Program codes with sample output of all performed assignments are to be submitted as softcopy.

Guidelines for Term work Assessment

Continuous assessment of laboratory work shall be based on overall performance of students. Assessment of each laboratory assignment shall be based on rubrics that include Rubric R1- timely completion(10 mark), R2- understanding of assignment (10 mark), R3- presentation/clarity of journal writing (10 mark)

	S. Y. B. Tech. Artificial Intelligence and Data Science			
]	Pattern 2022 Semester	: IV	
	ADS222020: Pro	oject Based Learning -	DesignThinking Lab	
Teaching	g Scheme:	Credit Scheme:	Examination Schen	ne:
Practica	l: 02 hrs/week	01	Term Work : 25 M	arks
Prerequ	isite Courses: FYE 221015	Engineering Exploration	ion	
Course (Objectives:			
• To	understand concepts of desi	ign thinking		
• To	understand the different ph	ases of design thinking		
Course (Dutcomes: On completion of	of the course, students w	ill be able to–	
		Course Outcomes		Bloom's Level
CO1	Explain stages and process of	design thinking		2- Understand
CO2	CO2Identify the methods to empathize and define the problem2- Understand			2- Understand
CO3	CO3 Apply the ideation techniques for problem solving 3		3- Apply	
CO4	CO4 Construct the prototype to evaluate a design 3- Apply			3- Apply
CO5	CO5Apply testing techniques to improve the performance.3- Apply			3- Apply

List of Tasks			
Sr. No.	Tasks to be performed	COs Mapped	
1	Creating teams, assigning roles and responsibilities	CO1	
2	Empathy : Brain storming, ideation and setting actionable goal statements	CO1, CO2	
3	Identify stakeholders, people/organization, problems and opportunities, prepare questionnaire and discuss with stakeholders	CO1, CO2	
4	Draw mind maps	CO1, CO2	
5	Construct empathy map	CO2	
6	Develop customer journey map	CO1, CO3	
7	Identify required skills and techniques to solve listed problems	CO1, CO2, CO3	
8	Enlist all possible solutions	CO1, CO2,CO3	
9	Make a prototype for user testing	CO4	
10	Test the prototype	CO5	

	Guidelines for Laboratory Conduction	
•	Students will work in a group, preferably 4-6 students per group.	
•	Entire project work is divided into 10 tasks.	
•	Faculty is to monitor progress of each task during phases of project work.	
	Guidelines for students Lab Journal	
Students will submit the term work in the form of project report at the end of semester.		
Guidelines for Term work Assessment		
Each task carries 30 marks based on following rubrics.		
ſ	R1: Timely completion 10 Marks	
	R2: Understanding 10 Marks	

10 Marks

R3: Documentation

Final presentation: 30 Marks Final project report : 30 Marks